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ABSTRACT 

Inland waters are significant conduits of carbon dioxide (CO2) to atmosphere, offsetting over 60% 

of net uptake of carbon into the terrestrial biosphere. However, these estimates are highly 

uncertain, rely heavily on point-in-time indirect measurements, and did not capture highly dynamic 

CO2 fluxes at the air-water interface. Therefore, temporal CO2 flux variability and governing 

processes remain understudied, making predicting future flux responses to environmental changes 

extremely difficult and uncertain. 

To address these knowledge gaps, I combined the analysis of CO2 fluxes and their drivers 

at the short time scale (hourly-seasonal) using eddy covariance observations together with longer 

time scale drivers (seasonal-decadal) using synthesis of long-term lake chemistry observations and 

application of the traditional boundary layer techniques. 

I evaluated uncertainties attributed to pCO2 estimation using carbonate equilibria, the most 

commonly used method of estimating CO2 flux from freshwater systems and assessing the role of 

aquatic ecosystems in regional and global carbon balances. The results showed that systematic 

errors dominate random errors in pCO2 calculations, and given all sources of error, the historical 

observations of carbon system parameters were unlikely to provide robust estimates of mean or 

temporal trends in pCO2. 

I also explored ice feedbacks on interannual pCO2 variability in seven lakes in northern 

Wisconsin. Although declining ice cover significantly increased water temperature, these increases 

do not correspond to temperature-mediated pCO2 increases. Ice duration and length of thermal 

stratification were poor indicators of springtime and fall pCO2. I showed that even extreme 

warming events remained undetected when pCO2 was estimated from pH-based carbonate 
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equilibria. The results imply that detecting pCO2 variability and change in response to climate 

warming is rather unlikely. 

The synthesis of eddy covariance observations from globally distributed lakes and 

reservoirs showed higher variability of temporal patterns of CO2 flux and a lack of relationship 

with latitudinal gradients of precipitation and temperature relative to other terrestrial components 

of global carbon balances. All representative lakes showed surprisingly coherent CO2 flux 

oscillations in diurnal and sub-monthly time scales. The up-scaled CO2 flux were 40% lower than 

current global CO2 fluxes.  
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CHAPTER 1 

BACKGROUND 

1.1  Lakes and reservoirs as significant components of a global carbon budget 

Inland waters are significant conduits of carbon dioxide (CO2) to atmosphere [Cole et al., 2007; 

Aufdenkampe et al., 2011], and while previously under-appreciated [Battin et al., 2009], are now 

included in global carbon balances [Ciais et al., 2013]. Outgassing of carbon dioxide (CO2) from 

inland waters has been estimated at 1 PgC yr-1, comparable in magnitude to cumulative 

anthropogenic carbon release due to net land use change, offsetting over 60% of net uptake of 

carbon into the terrestrial biosphere or 40% of ocean uptake for 2002-2011 [Ciais et al., 2013].  

Of the 1 PgC flux, lakes and reservoirs are estimated to emit from 0.32 to 0.64 PgC yr-1 

[Cole et al., 2007; Tranvik et al., 2009; Aufdenkampe et al., 2011; Raymond et al., 2013]. Lakes 

are subsidized with terrestrially-derived inorganic and organic carbon [McCallister and del 

Giorgio, 2012; McDonald et al., 2013; Finlay et al., 2015; Weyhenmeyer et al., 2015], which is 

further recycled in lakes. The eventual fate of carbon in lakes includes three pathways: export, 

sedimentation, and exchange of C with atmosphere [Cole et al., 2007], and the balance between C 

evasion and sedimentation determines whether lakes are net sources or net sinks of carbon to the 

atmosphere [Hanson et al., 2004]. Although lake C flux has been shown to be very dynamic 

[Jonsson et al., 2008a; Atilla et al., 2011; Bennington et al., 2012; Karlsson et al., 2013], the 

temporal variability of lake – atmosphere CO2 exchange is rarely resolved in regional and global 

carbon balances, which to date rely heavily on extrapolation from limited sets of infrequent 

observations. The overarching goal of this dissertation is to address the lack of consideration of 

temporal variability of lake-atmosphere exchanges of carbon from hours to decades.  
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1.2  Air-water carbon flux: theory and measurements 

A key to understanding CO2 flux at the lake-atmosphere interface is the near – surface turbulence 

in the air boundary layer. It can be generated either mechanically due to surface friction when wind 

flows over lake’s surface (i.e., shear-induced turbulence, 𝑢𝑢∗) or due to surface heating and 

buoyancy (i.e., buoyancy-generated turbulence, 𝑤𝑤∗, Figure 1) [MacIntyre et al., 2010]. What is 

unique for aquatic systems is that the surface itself is highly dynamic and has an additional, 

waterside boundary layer affecting the air-water interface from below [Wanninkhof et al., 2009]. 

Waterside shear (𝑢𝑢𝑎𝑎𝑎𝑎∗) and convection 𝑤𝑤𝑎𝑎𝑎𝑎∗ also contribute to near-surface turbulence. Moreover, 

two diffusive sublayers develop above and below water surface, where a constant slow gas 

diffusion occurs [Wanninkhof et al., 2009]. 

Wind forcing has a dominant effect on turbulence, hence, gas transfer velocity is often 

parameterized as a function of wind speed [Wanninkhof, 1992; Cole and Caraco, 1998; 

Wanninkhof et al., 2009]. However, in low wind conditions or water convective mixing associated 

with heat losses, the buoyancy-generated turbulence can modulate the rate of gas exchange 

[Eugster, 2003; MacIntyre et al., 2010; Polsenaere et al., 2013]. In small lakes, buoyancy is a 

dominant forcing over the exchange rates [Read et al., 2012], and although buoyancy is a 

significant component of k, the 𝑤𝑤𝑎𝑎𝑎𝑎∗ term is rarely included in the estimates of carbon emissions 

from the lakes [MacIntyre et al., 2010; Read et al., 2012]. The extent to which atmospheric and 
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waterside boundary layer processes 

control gas exchange at air-water 

interface is a topic of hot debate. 

However, the presence of significant 

waterside forcing on CO2 flux implies gas 

exchange even without significant kinetic 

forcing from atmosphere [Aubinet et al., 

2012].  

To estimate lake-air carbon flux, 

one can use indirect or direct methods. 

Indirect methods include floating 

chambers, tracer gas, mass balance, boundary layer mass balance [Cole and Caraco, 1998; 

Algesten et al., 2005; Torgersen and Branco, 2007; Jonsson et al., 2008b; Stets et al., 2009; Cole 

et al., 2010]. The most commonly used method is the boundary layer (BL) technique where the 

flux depends on the amount of turbulent kinetic energy (TKE) exchange between the lake – air 

interface, and the concentration gradient between the lake surface and the air. In this approach, the 

flux is computed as:  

𝑭𝑭𝑭𝑭 = 𝒌𝒌 × 𝑲𝑲𝟎𝟎 ×(𝒑𝒑𝒑𝒑𝒑𝒑𝟐𝟐 (𝒂𝒂𝒂𝒂) −  𝒑𝒑𝒑𝒑𝒑𝒑𝟐𝟐 (𝒂𝒂𝒂𝒂𝒂𝒂))            (1) 

where k is the gas transfer velocity, K0 is the solubility of CO2 in the water, pCO2 (air) is the partial 

pressure of CO2 in air, and pCO2 (aq) is the partial pressure of CO2 in water [Cole and Caraco, 

1998]. In hardwater lakes, fluxes are chemical enhanced and require the addition of the α 

coefficient [Wanninkhof and Knox, 1996]. While the differential pCO2 in air and in water is 
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relatively straightforward to measure, the measurement of physical exchange is challenging [Cole 

et al., 2010; Galfalk et al., 2013], and remains a key uncertainty in constraining lake C flux in 

shorter timescales.  

The eddy covariance (EC) technique, in contrast to indirect methods, directly measures air-

water exchange of CO2, H2O, energy, and momentum. It does not disturb the water - air interface 

and captures all sources of turbulent gas exchange across a lake flux footprint (i.e., lake fetch). 

Neglecting mean advection, column CO2 storage, and vertical flux divergence, which are all good 

assumptions for a flat surface like a lake [Lee, 1998], EC flux is given as:  

𝑭𝑭𝑭𝑭 =  𝝆𝝆 𝒄𝒄′𝒘𝒘′������           (2) 

where ρ is the density of the dry air, c’ and w’ are the instantaneous deviations from the time-

averaged values of the mixing ratio of gas concentration in the air (c’) and vertical wind speed 

components, respectively [Aubinet et al., 2012]. The bar above the product of fluctuations denotes 

ensemble or time averaging. These terms can be measured by high frequency (>10 Hz) 

observations of atmospheric CO2 and vertical wind velocity over the water surface. If simultaneous 

water CO2 concentration is measured, it is also possible to infer k by re-arranging equation 1 

[MacIntyre et al., 2010; Heiskanen et al., 2014], providing a secondary estimate of lake flux. 

Simultaneous measurements of CO2 using eddy covariance (EC) combined with indirect methods 

(chamber or models of surface renewal and boundary layer) showed good agreement between flux 

estimates [Eugster, 2003; Vesala et al., 2006], flux underestimation [Jonsson et al., 2008; 

Podgrajsek et al., 2014; Xiao et al., 2014] or overestimation [Eugster, 2003; Guérin et al., 2007] 

when using indirect methods, and variable periods of agreement and disagreement [Podgrajsek et 
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al., 2014]. The largest discrepancies were found between EC and floating chamber measurements 

[Eugster, 2003].  

Although measurements of CO2 concentration in water are relatively easy, the paucity of 

direct CO2 measurements over chemically diverse ecosystems is a major problem in deriving 

robust estimates of CO2 flux from inland waters [Raymond et al., 2013], and hence, the fluxes are 

poorly constrained [Ciais et al., 2013]. All global estimates of CO2 emissions to the atmosphere 

rely on estimating pCO2 from carbonate equilibria from temperature, pH, and alkalinity (ALK)/ 

dissolved inorganic carbon (DIC), however, the quality of these estimates is questioned [Wallin et 

al., 2014; Abril et al., 2015]. Consequently, the uncertainty in global C emissions from lakes and 

reservoirs (0.32 Pg C yr-1) ranges from 0.06 to 0.84 Pg C yr-1 [Raymond et al., 2013], hindering 

the ability to detect long-term CO2 change. The predictions on potential CO2 responses to global 

changes are unreliable [Phillips et al., 2015; Hasler et al., 2016]. 

1.3  Drivers of carbon flux between lakes and atmosphere 

In addition to constraining the air-water CO2 flux, to predict its temporal variation, it is essential 

to understand the controls over gas exchange coefficient, k, and lake – air CO2 difference, ΔpCO2 

(Fig. 1). First, the factors controlling k, called kinetic forcing, will be described. Further, the factors 

that affect ΔpCO2, called, called thermodynamic forcing, are described.  

Gas transfer 

Gas transfer velocity, k, is primarily governed by the shear- and buoyancy-induced turbulence at 

water surface (Fig. 1). During unstable boundary layer conditions, the wind primarily affects the 

turbulence [Stull, 1988]. Wind and wind-generated wave fields, scale with the lake fetch, and 

significantly enhance gas exchange rates [Wanninkhof et al., 2009; Vachon and Prairie, 2013; 

Heiskanen et al., 2014]. Rainfall also has a large effect on k [Cole and Caraco, 1998; Guérin et 
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al., 2007], with rain intensity and drop size having the largest effect [Wanninkhof et al., 2009]. For 

low winds and neutral stability, which are frequent over the lake water bodies [Wanninkhof and 

Knox, 1996; Cole and Caraco, 1998], buoyancy-induced turbulence controls k [Aubinet et al., 

2012]. Buoyancy-enhanced turbulent flux is strongly associated with the diurnal and seasonal lake 

surface heating cycles, creating local free convection during the night and in the fall [Eugster, 

2003; Jonsson et al., 2008b; Mammarella et al., 2015; Podgrajsek et al., 2015]. Conversely, heat 

gain and water column stratification have opposite effects on k and generally suppress turbulence 

[Eugster, 2003; Jonsson et al., 2008b; MacIntyre et al., 2010]. Even though convection and water 

column stability seem to be important for describing the flux rates, very few studies to date have 

investigated their interactions with k [MacIntyre et al., 2010; Heiskanen et al., 2014; Mammarella 

et al., 2015] and their contribution to fluxes often remains unclear [Podgrajsek et al., 2015].  

1.4 Water chemistry 

Water chemistry is an important aspect of CO2 flux to be considered in aquatic ecosystems. The 

carbon dioxide in aquatic ecosystems is partitioned between dissolved CO2
∗  (i.e., combined 

concentrations of carbonic acid H2CO3 and dissolved CO2 (aq)), and bicarbonate (HCO3
−) and 

carbonate (CO3
2−) ions. These three forms are referred to as DIC and are represented by the series 

of equilibria:  

𝐶𝐶𝐶𝐶2(𝑎𝑎𝑎𝑎)
∗ + 𝐻𝐻2𝑂𝑂 ↔  𝐻𝐻(𝑎𝑎𝑎𝑎)

+ +  𝐻𝐻𝐻𝐻𝐻𝐻3−  ↔  𝐻𝐻(𝑎𝑎𝑎𝑎)
+ +  𝐶𝐶𝐶𝐶32− 

The relative proportion of these forms are sensitive to pH; hence, any changes in pH shift 

the proportion of CO2 in the total DIC pool. Because most freshwaters have pHs between 5 and 8 

[Schlesinger and Bernhardt, 2013], bicarbonate ions dominate over other carbonate species. The 

alkaline (HCO3
−) and (CO3

2−) ions are two major compounds of alkalinity [Stumm and Morgan, 
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1996] which provide acid buffering and resistance against pH changes. Lakes high in landscape 

position, for example, receive relatively low alkalinity loading; hence, tend to be poorly-buffered, 

have low pH, and high CO2 concentrations [Kratz et al., 1997; Webster et al., 2000; Hanson et al., 

2006]. In contrast, in high pH lakes, the carbonate system favors (HCO3
−) and (CO3

2−), which has 

important ramifications for lake metabolic balance and C flux. When primary producers remove 

CO2 during the photosynthesis, pH increases and shifts thermodynamic equilibria towards 

bicarbonate and carbonate ions; hence, the diurnal amplitude of CO2 is dampened compared to 

O2, leading to underestimation of gross primary production [Hanson et al., 2003]. Moreover, gas 

transfer velocity in these lakes can be chemically enhanced up to 8% in low wind conditions 

[Wanninkhof and Knox, 1996]. Consequently, the magnitude of C flux at the lake – atmosphere 

interface can quickly change without a necessary driving force from the atmosphere [Eugster, 

2003; Aubinet et al., 2012].  

1.5 Biology 

It is important to recognize that lake CO2 flux is an integrative measure of the net ecosystem 

exchange of CO2 between the ecosystems and the atmosphere (i.e., NEE). It results from two 

fluxes of opposite signs: CO2 uptake by photosynthesis (i.e., gross primary production, GPP) and 

CO2 production from respiration (i.e., ecosystem respiration, ER), with negative NEE indicating 

CO2 removal from atmosphere [Aubinet et al., 2012]. Because lakes are subsidized with terrestrial 

organic and inorganic carbon, ER generally exceeds GPP, which results in net heterotrophy and 

net emission of CO2 to atmosphere [del Giorgio et al., 1997; Cole et al., 2007]. GPP and ER rates 

are often estimated from dissolved oxygen (DO) observations [Staehr et al., 2012; Solomon et al., 

2013]. In these lakes, GPP is tightly connected to total phosphorus (TP) while ER is controlled by 

dissolved organic carbon (DOC) concentration [del Giorgio et al., 1997; Hanson et al., 2003; 
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Perga et al., 2016], and ecosystem level CO2 responses vary immensely depending on nutrient 

and color content. Additionally, anaerobic processes produce and consume CO2 independent of 

biotic interactions [Torgersen and Branco, 2007; Dubois et al., 2009; Holgerson, 2015]. Other 

controls over metabolic balance include temperature, photosynthetically active radiation (PAR), 

chlorophyll a, water column thermal stratification and stability [Hanson et al., 2003; Coloso et al., 

2011; Yvon-Durocher et al., 2012].  

1.6 Seasonal and long-term drivers 

CO2 flux regulation is time dependent [Hanson et al., 2006; Finlay et al., 2015; Perga et 

al., 2016]. Moreover, the same driver may affect different physical, chemical and biological 

processes at different temporal time scales [Hanson et al., 2006; Finlay et al., 2015; Perga et al., 

2016]. Thus, the importance of different drivers and their contribution to CO2 flux change over 

time [Sturtevant et al., 2015; Perga et al., 2016]. The strength and even sign of ecosystem-scale 

CO2 feedbacks also may significantly vary depending on nutrient, color, connectivity with 

landscape, waterbody morphometry [Blenckner, 2005; Webster et al., 2008]. While our knowledge 

of controls of CO2 flux comes mostly from space-for-time studies, often based on point-in-time-

measurements, less is known about the importance of meteorological drivers of temporal 

variability of CO2 and their contribution to fluxes as a function of time. 

In seasonally ice-covered lakes, the timing of ice melt exerts the largest single control on 

seasonal thermal and energy regimes of northern lakes, as well as on annual CO2 flux [Rouse et 

al., 2003; Karlsson et al., 2013]. The transition from ice-covered to open-water is accompanied 

with large pulses of CO2 accumulated under the ice [Anderson et al., 1999; Riera et al., 1999; 

Striegl et al., 2001; Baehr and DeGrandpre, 2002; Huotari et al., 2009; López Bellido et al., 2009; 
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Demarty et al., 2011]. Similar pulses are observed during the fall mixing, which tend to be higher 

than springtime emission due to prolonged thermal stratification (CO2 accumulates in the 

hypolimnion) and longer mixis events [Riera et al., 1999; López Bellido et al., 2009; Huotari et 

al., 2011]. While physical processes associated with ice phenology, convective mixing, and 

stratification exert control over diurnal to annual amplitude of lake CO2 and flux [Baehr and 

DeGrandpre, 2002; Eugster, 2003; Hanson et al., 2006; Åberg et al., 2010; Atilla et al., 2011; 

Ducharme-Riel et al., 2015], inflow of nutrients and dissolved organic carbon controls CO2 flux 

at regional time scales [Denfeld et al., 2015]. Although carbon emissions from the “dormant” 

season can “switch” the annual net balance from a C sink to a source [Karlsson et al., 2013], they 

are rarely included in annual carbon budgets [Riera et al., 1999]. A major difficulty is that ice 

cover within a few weeks before/after ice off is too thin to allow safe sampling, hence this period 

is under-sampled [Hanson et al., 2006]. Potential emissions can be estimated based on 

accumulated CO2 inventories under the ice [Striegl et al., 2001; López Bellido et al., 2009]. 

However, these inventories may lead to erroneously high rates of evasion owing CO2 reduction 

by under-ice algal blooms after the last sampling but before ice-off [Baehr and DeGrandpre, 2002] 

or may show no CO2 accumulation with ice duration at all [Denfeld et al., 2015]. Moreover, the 

linkages between ice dynamics and the timing and strength of springtime and fall CO2 emissions 

are largely unexplored because of lack of multi-year time series.  

The increase in CO2 and other greenhouse gases in the atmosphere is causing climate 

warming at unprecedented rates [Risbey et al., 2014]. The upward trends in air temperature and 

frequency of extreme precipitation events have already been observed across the U.S. [Meehl et 

al., 2009; Kucharik et al., 2010; Villarini et al., 2013]. Many researchers have shown significant 

20th century trends in physical and biological lake processes in response to climatic change, 
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including greater rates of water temperature warming over air temperature, decreases in ice cover, 

prolonged growing season, and greater resistance to water column mixing [Magnuson, 2000; 

Winder and Schindler, 2004; Austin and Colman, 2007; Schneider and Hook, 2010; Weyhenmeyer 

et al., 2011; O’Reilly et al., 2015]. However, there is less research on how these influence lake-

atmosphere CO2 flux [Phillips et al., 2015; Hasler et al., 2016]. In fact, the lack of time series to 

study temporal magnitudes and dynamics of CO2 is one of the major obstacle to predicting 

responses to rising CO2 in the atmosphere [Hasler et al., 2016]. Hypothesized temperature-

mediated effects include increased metabolic rates, promoting hypolimnetic and anoxic conditions 

in thermally stratified lakes, decrease gas solubility, and increase pCO2 in the water [Williamson 

et al., 2008; Takahashi et al., 2009; Tranvik et al., 2009; Yvon-Durocher et al., 2010; Demars et 

al., 2016]. However, in a globally distributed lake dataset, lake pCO2 was found to be temperature-

independent [Sobek et al., 2005] or provide spurious relationships with temperature [Alin and 

Johnson, 2007].  

It is proposed that climate-driven changes, such as changes in hydrology in the watersheds 

and altered delivery rates of terrigenous carbon, will be primary pathways of changes to lakes 

[Williamson et al., 2008; Tranvik et al., 2009; Weyhenmeyer et al., 2015]. Annual CO2 evasion 

rates in boreal lakes closely follow annual precipitation patterns [Rantakari and Kortelainen, 2005; 

Roehm et al., 2009], hence the pCO2-DOC relationship is proposed to be a useful metric of altered 

precipitation patterns and changes in the export of DOC to lakes [Sobek et al., 2005]. More long-

term empirical evidence supports the hypothesis that delivery of solutes (carbon and nutrients) to 

lakes is a primary control over dissolved inorganic carbon at the decadal scale [Hanson et al., 

2006; Maberly et al., 2013; Perga et al., 2016]. However, this relationship might be obscured by 

water browning, disturbance history, biotic and abiotic interactions [Blenckner, 2005; Evans et al., 
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2006; Monteith et al., 2007]. Development of mechanistic models to separate these effects is 

urgently needed [Hasler et al., 2016].  

Inland waters, in addition to climate change, are persistently subjected to human pressures, 

such as eutrophication, hydromorphological alterations, land use change, toxic substances inputs, 

invasive species expansion, or water infrastructure expansion [Carpenter et al., 2011; Lehner et 

al., 2011], all of which threaten the important ecosystem services inland waters provide [Bennett 

et al., 2009; Allan et al., 2015]. All these pressures likely exert synergistic and antagonistic effect 

on lakes [Christensen et al., 2006; Tranvik et al., 2009], significantly contributing to the 

complexity of climate – lake C interactions. Therefore, there is an urgent need to advance our 

understanding on key drivers and processed driving C flux in a variety of systems in time and in 

space.  

1.7 Overview of dissertation research 

The major theme of this dissertation is multi-temporal controls of air-water CO2 exchange in lakes 

and reservoirs at scales ranging from half-hourly to interannual. Atmospheric exchange of CO2 is 

a flux critical for balancing lake carbon budgets, assessing the role of lake ecosystems in a lake-

rich region, and constraining fluxes in regional and global carbon balances. My dissertation 

focuses on both the short time scale (hourly-seasonal) using eddy covariance observations and the 

long time scale (seasonal-decadal) using synthesis of long-term lake chemistry observations and 

application of the traditional boundary layer technique. To improve process–level understanding 

of the variability of air-water CO2 flux and advance prediction of CO2 evasion variability from 

ecosystems facing global change, I address the following questions: 
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• What are the uncertainties attributed to pCO2 calculations from carbonate equilibria using

two CO2-related parameters?

• Which environmental controls govern multi-temporal variability of CO2 flux in lakes and

reservoirs? How do ecosystem characteristics modulate responses to micrometeorological

drivers?

• What is the role of ice cover duration in interannual variability of CO2 flux from seasonally

ice-covered lakes?

The dissertation is divided into three chapters that address these questions. In Chapter 2, I

examine the uncertainty associated with estimating pCO2, a proxy of CO2 flux, from carbonate 

equilibria. This is currently the most commonly used approach of calculating pCO2 but 

quantitative studies on uncertainties propagating through equilibria remain scarce. I conducted an 

error analysis of historical observations at North Temperate Lake Long Term Ecological Research 

(NTL LTER) site to quantify random errors in pH, DIC, and ALK measurements to examine how 

these uncertainties propagate onto uncertainties in pCO2 estimated from three carbonate equilibria 

in four lake groups across a broad gradient of water chemical composition. Although this study 

primarily focused on random error analysis, the uncertainties in direct and estimated pCO2 

observations were compared to determine if other than random pCO2 errors contributed to 

uncertainty in pCO2 calculations. To date, there is no comprehensive evaluation of random errors 

effects on pCO2 estimation.  

In Chapter 3, I investigate the effects of interannual variability of lake ice on water 

temperature, thermal structure, and CO2 efflux from seven NTL lakes in Northern Wisconsin. 

Because ice provides a “winter switch” for lake physical and geochemical processes, the 

interannual variability of ice provided an excellent tool to test relationships among climate, ice, 
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and lake ecosystem responses independent of long-term trends. The historical observations of 

long-term data from NTL-LTER sites were used to model lake thermal structure and CO2 flux at 

annual basis and derive metrics to correlate with ice dynamics. The role of interannual variability 

in annual CO2 efflux and implications for predicted further ice cover loss was investigated. 

In Chapter 4, I ask: What are the multi-temporal patterns of CO2 flux in globally distributed 

lakes and reservoirs? What governs those patterns? Are ecosystem-specific characteristics 

modulating ecosystem-scale CO2 responses to environmental drivers? High temporal resolution 

flux measurements from 19 eddy covariance flux towers over lakes and reservoirs representing six 

climatic zones and wide gradients of nutrient and color were synthesized. This is a first multi-site 

and multi-temporal analysis of eddy CO2 fluxes. Fluxes of CO2 and environmental drivers were 

used to investigate the patterns of CO2 flux at daily to seasonal time scale and how environmental 

controls change as a function of time. Comparison across diverse ecosystems was used to examine 

the role of ecosystem-specific characteristics in modulating these driver responses. Based on 

empirical data, the CO2 fluxes were up-scaled to evaluate lakes and reservoir contribution to the 

global carbon budget.  

In Chapter 5, I synthesize the results and address the questions: What are the multi-

temporal drivers of CO2 flux, how do they change with time scale, and how do ecosystem 

feedbacks to environmental drivers? I also discuss the uncertainties attributed to estimating CO2 

in freshwaters and how they may affect our ability to predict ecosystem responses to global change. 

Together, these findings are used to provide a pathway for future research and pathways for the 

discipline.  
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CHAPTER 2 

Large uncertainty in estimating pCO2 from carbonate equilibria in lakes 

AUTHORS 

Malgorzata Golub, Ankur R. Desai, Galen A. McKinley, Christina K. Remucal, Emily H. Stanley 

KEY POINTS 

• pCO2 random error varies by input parameter pairs and lake alkalinity groups

• Systematic uncertainty dominates random errors in pCO2 estimation

• Comparison to directly observed pCO2 reveals poor precision and accuracy of calculated

pCO2

ABSTRACT 

Most estimates of carbon dioxide (CO2) evasion from freshwaters rely on calculating the partial 

pressure of CO2 (pCO2) from two CO2-related parameters using carbonate equilibria. Thus, input 

parameter errors drive uncertainty of pCO2 estimates. We quantified random errors in the 

parameters pH, dissolved inorganic carbon and alkalinity from North Temperate Lakes Long Term 

Ecological Research paired observation time series, and using a bootstrap approach, propagated 

the errors onto pCO2 calculated from three carbonate equilibria in four lake groups across a broad 

gradient of chemical composition. We also compared the error magnitudes between direct and 

estimated pCO2 observations. The empirical random errors of the three parameters were mostly 

below 2% of the median, although the measurements in low alkalinity lakes were more uncertain. 

Depending on the alkalinity group and choice of input parameter pairs, random pCO2 errors ranged 
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from 3.7% to 31% of the median. However, when compared with direct pCO2 measurements, all 

parameter combinations produced biased pCO2 estimates with only 3%-31% of total errors 

explained by random pCO2 errors indicating that systematic uncertainties dominated pCO2 

calculations. We demonstrate poor precision and accuracy of pCO2 estimates derived from any 

combination of two CO2-related parameters and recommend direct pCO2 measurements instead. 

These results indicate that historical observations of carbon system parameters are unlikely to 

provide robust estimates of mean or temporal trends in pCO2. To reduce uncertainty in CO2 

emissions from freshwater components of terrestrial carbon balances, future efforts should focus 

on improving accuracy and precision of CO2-related parameter (including direct pCO2) 

measurements and associated pCO2 calculations. 

2.1      INTRODUCTION 

Outgassing of carbon dioxide (CO2) from inland waters has been estimated to offset approximately 

60% of net uptake of carbon into the terrestrial biosphere. However, this calculation is based on 

estimates of source strength at the air-water interface that is highly uncertain [Ciais et al., 2013; 

Raymond et al., 2013]. One of the largest unknowns is the accuracy and precision of freshwater 

partial pressure of CO2 (pCO2) estimates. Improving understanding and comprehensive evaluation 

of how observational uncertainties propagate onto pCO2 estimation is therefore a key step towards 

achieving robust estimates CO2 emissions from freshwater components of terrestrial carbon 

balances with improved confidence in detection of long-term change. 

The net air-water CO2 exchange is calculated as a product of the CO2 gas transfer velocity 

(k), the CO2 solubility constant (K0) and the gradient between pCO2 in the atmosphere and water 

(ΔpCO2). The aquatic component of ΔpCO2 in current estimates of carbon evasion from inland 

waters relies on calculating pCO2 using carbonate equilibria due to scarcity of direct pCO2
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measurements at regional and global scales [Atilla et al., 2011; Butman and Raymond, 2011; 

McDonald et al., 2013; Raymond et al., 2013]. Carbonate equilibria use temperature and the 

combination of two CO2-related parameters (i.e., pH, alkalinity (ALK), dissolved inorganic carbon 

(DIC)) to calculate pCO2 in surface waters [Parkhurst and Appelo, 1999; van Heuven et al., 2011]. 

Therefore, the knowledge on the magnitudes and sources of parameter errors is necessary to 

quantify the effect of those uncertainties on estimates of aquatic pCO2.  

Oceanographers have made significant efforts to standardize and reduce errors, resulting 

in thermodynamically consistent measurements of CO2-related parameters, highly precise and 

accurate estimates of the seawater carbonate system [Lueker et al., 2000; Millero, 2007], and thus 

of the ocean sink for anthropogenic carbon [Sabine et al., 2004; Ciais et al., 2013b; Khatiwala et 

al., 2013]. Similar efforts however have not been undertaken for the carbon dioxide system in 

freshwaters. Although there would be an additional challenge of addressing the more diverse 

chemical composition of inland waters [Dickson and Riley, 1978], an error analysis for freshwaters 

is critical to identify key uncertainties in measurements of CO2-related parameters and pCO2 

calculations. 

Given the high accuracy and precision of atmospheric pCO2 measurements [Andrews et 

al., 2014], uncertainties attributed to measurement errors in aquatic carbon system parameters are 

likely the largest source of uncertainty in ΔpCO2 calculated from carbonate equilibria. The 

measurement errors include systematic errors and random errors. Systematic errors (e.g., 

instrument limitations and methodological errors) affect the accuracy of the measurements [Skoog 

et al., 2014] and lead to directional (i.e., positive or negative) biases in the measurements of pH, 

ALK, and DIC concentration [Herczeg and Hesslein, 1984; French et al., 2002; Lozovik, 2005]. 

Although systematic errors are likely to cause biased pCO2 estimates in surface waters [Herczeg 
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and Hesslein, 1984; Butman and Raymond, 2011; Abril et al., 2015], their contributions to regional 

and global CO2 emissions from freshwaters have not yet been quantified [Raymond et al., 2013]. 

Fully accounting for systematic biases and quantifying their effect on the accuracy of pCO2 

estimates will however require information on instrumentation and analytical procedures used 

among researchers. Such information is not currently available for freshwater systems. 

Random errors are always present in carbonate system parameter observations but must be 

considered during data analysis and result interpretation [Aubinet et al., 2012]. Difficult to control 

factors (e.g., fluctuations of temperature or barometric pressure) or insufficient understanding of 

errors in analytical procedures cause data to scatter around the mean values and affect the 

parameter precision and accuracy [Skoog et al., 2014]. The measurement precision is characterized 

by estimating the standard deviation from multiple measurements collected under different 

conditions (reproducibility) or from a pair of independent measurements made under identical 

conditions (repeatability), assuming normally distributed errors [ISO, 2010]. Unlike in 

atmospheric and oceanic studies [Millero, 2007; Andrews et al., 2014], acceptable precision levels 

have not been quantified for freshwater systems. However, quantifying errors is necessary to 

estimate uncertainty around pCO2 means and temporal trends. To our knowledge, there is no 

comprehensive study on how random errors in pH, ALK and DIC affect the precision of pCO2 

calculated from multiple carbonate equilibria in freshwaters, contributing to current uncertainties 

in estimating pCO2.  

In view of increasing use of carbonate equilibria to estimate pCO2 and C flux from 

freshwater systems, we asked: What are the uncertainties attributed to pCO2 calculations from 

carbonate equilibria using two CO2-related parameters? This is currently the most commonly used 

approach of estimating pCO2 but quantitative studies on uncertainties propagating through 
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equilibria remains scarce. To help rectify this knowledge gap, we conduct a comprehensive error 

analysis of historical observations at North Temperate Lake Long Term Ecological Research (NTL 

LTER) site. We quantify random errors in pH, DIC, ALK measurements to demonstrate how these 

propagate onto uncertainties in pCO2 estimated from three carbonate equilibria in four lake groups 

across a broad gradient of water chemical composition. Although our study primarily focuses on 

random error analysis, we also compare uncertainties in direct and estimated pCO2 observations 

to determine whether random pCO2 errors are a dominant source of uncertainty in pCO2 

calculations.  

2.2     MATERIAL AND METHODS 

Study site and data collection 

We quantified random error using observations from the NTL LTER data set for years 

1986 – 2011 (NTL LTER website). Carbonate system parameters have been measured since 1986 

in seven lakes located in northern Wisconsin, USA, and in four lakes in southern Wisconsin since 

1996. The northern lakes are located in the Northern Highland Lake District (NHLD) which has a 

mosaic of mixed, hardwood, and coniferous forests (~53 % of total area), wetlands (28%), lakes 

(13%), and other land coverages [Buffam et al., 2010]. Soils in the NHLD are dominated by sandy 

gravel and gravelly sand with dominance of silicate over carbonate [Attig, 1985]. The southern 

lakes are located in the Yahara River Lake District (YRLD), which is dominated by agriculture 

(65%), urban (20%) land uses and the remainder for forest, wetland, or water bodies [Carpenter 

et al., 2007]. Soils in YRLD are dominated by glacial tills, most commonly sand, silt and clay 

accumulated over dolomite and limestone parent geology [Clayton and Attig, 1997]. 
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The carbon system parameters: pH, total alkalinity (ALK), and dissolved inorganic carbon 

(DIC), and water temperature (WT) were measured biweekly (WT), monthly (pH and DIC), or 

quarterly (ALK). Depending on the lake maximum depth and thermocline depth, the samples were 

taken from one to six depths per sampling. On each sampling occasion, blind-paired samples were 

collected for all variables except water temperature from a randomly selected depth. To ensure 

valid comparison across the three combinations of input parameters, we used only data with paired 

measurements for all three CO2-related parameters. This limited the analysis to quarterly 

measurements at one depth per lake.  

To prevent CO2 loss or entrainment, water samples for determination of CO2-related 

parameters were gently collected, avoiding splashing and air exposure. The bottles were rinsed 

with the water to be sampled, then filled to the top including overflow, and carefully screwed on 

the displacement cap. Bottles were checked for the presence of air bubbles by inverting the bottles. 

If bubbles were present, water samples were discarded and refilled again.  

Water samples for pH measurements were collected with a peristaltic pump and tubing to 

20 ml scintillation vials with displacement caps to exclude air from the vial. In this study we used 

the air-excluded pH samples only. The samples were stored in a cold and dark container minimize 

biological activity until just before analysis, and then warmed up in the same container to room 

temperature. The pH samples were analyzed the same day using a potentiometric method in two 

laboratories: Hasler Lab in Madison (water samples from southern lakes) and Trout Lake Station 

Lab (water samples from northern lakes). The electrode syringe barrel sealed with teflon tape 

around the electrode was conditioned with lake water to be analyzed for at least 15 minutes. After 

uncovering the electrode filling solution hole, the conditioning solution was removed from the 

barrel using the three-way valve and aspiration system. The electrode chamber was flushed in and 
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out for several times with 2-ml water samples to be measured. The bottles for pH determination 

were opened just before analysis to draw of 2-ml aliquots of the water sample for several runs of 

measurements. The measurements were repeated until two consecutive millivolt readings were 

within 1 mV. Last mV reading was recorded. After analyzing all samples, the mV readings for 

three buffer solutions: pH 10.00, 7.00, and 4.00 were obtained. The recorded buffer and sample 

mV values were used to calculate pH values. The pH meters were changed from PHM84 Research 

pH meter to Orion model 720 pH meter in 1988. Since July 2010, pH was measured using a 

Radiometer combination pH electrode and Orion 4Star pH meter. The dates of pH electrode 

replacement were unavailable. The relative accuracy of all pH meters was ±0.002 according to the 

manufacturers’ specifications. 

Dissolved inorganic carbon (DIC) samples were collected with the peristaltic pump, tubing 

and in-line filtered through 0.40-micron polycarbonate filter into 24 ml glass vials capped with 

septa, leaving no head space. The samples were not poisoned prior storage analysis. The samples 

were refrigerated at 4˚C and sent in the shipper to Hasler Lab via Fed Ex overnight delivery. The 

samples were stored refrigerated and analyzed within two-to-three weeks. After phosphoric acid 

addition, the samples were analyzed with OI Model 700 Carbon Analyzer (before May 2006) or a 

Shimadzu TOC-V-csh Total Organic Carbon Analyzer (to date). The detection limit for DIC was 

0.15 ppm for the analytical measurement range of 60 ppm. The accuracy and precision of

Shimadzu’s Analyzer was 1.5% according to manufacturer’ specification. 

Total alkalinity (ALK) samples were collected with the peristaltic pump and tubing to 20 

ml HDPE plastic containers with conical caps. The ALK samples were not poisoned prior storage 

and analysis. The samples were stored refrigerated at 4˚C and then sent to Hasler Lab in Madison 

via Fed Ex overnight delivery. The sample were stored refrigerated at 4˚C until determination, 
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which typically occurred within two weeks. Prior to analytical determination, samples were 

brought to room temperature. ALK was determined by titrating water samples to an endpoint pH 

of circa 3.557 by adding 10 µL increments of 0.05N HCL to 16-ml sample from southern lakes or 

0.01N HCL to 4-ml sample from northern lakes. Between February 1986 and November 2001, the 

alkalinity measurements in four lakes (Trout Lake, Sparkling Lake, Allequash Lake and Big 

Muskellunge Lake) were made using a Brinkmann 636 Titroprocessor. The detection limit for the 

gran alkalinity titration was approximately 5 µeq. L-1, for the analytical range spanning to 4000 

µeq. L-1. The accuracy of manual alkalinity titration is unavailable.  

Random errors in CO2-related parameters 

To minimize the impact of outlying observations on distribution and statistical properties 

of random errors, we removed paired measurements with chemical composition differences larger 

than 15% following the NTL LTER QA/QC protocol. Many of removed observations were already 

flagged for other quality control reasons. Quality control led to removal of 8% (58/709) of pH 

observations in antilog scale, 9.5% (68/709) of ALK measurements, and 2.4% (14/709) of DIC 

observations. 

Because carbonate chemistry data in NTL LTER lakes varied over 1-3 orders of magnitude 

(Table 2.1), the lakes were grouped into four groups based on ALK and dissolved organic (DOC) 

concentrations: two bog lakes with low ALK but high DOC (hitherto called “LBALK”, one 

clearwater lake with low ALK and low DOC (“LCALK”), four lakes with moderate ALK and low 

DOC (“MALK”), and four lakes with high and moderate DOC (“HALK”). Grouping lakes also 

allowed having large enough populations of paired observations to generate reasonable resampling 

distribution [Chernick and LaBudde, 2011] for error analysis.  
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To quantify random uncertainties from paired samples, we followed the approach 

described in Hollinger and Richardson [2005]. For a given parameter (Pi) we used a pair of 

independent measurements (X1, X2) that were made under identical conditions. Because every 

measurement (Xi) is subject to uncertainties, each parameter value represents the best estimate of 

the measured constituent plus the random (ε) and systematic (δ) errors. While random errors cause 

scatter around the mean value, systematic errors underestimate or overestimate the mean value. 

Since no information on systematic errors in CO2-related parameters at NTL LTER site were 

available for the majority of the records, we initially focused on the effect of random errors only 

while neglecting the effect of systematic uncertainties on the pair. Thus, ε was an approximation 

of the random variable with mean 0 and standard deviation σ(ε). Since the mean difference 

between two independent measurements (X1–X2) was close to zero and random uncertainties were 

independent and identically distributed, the standard deviation σ(ε) can be determined from 

equation 1: 

σ(ε) =  1
√2
σ(X1 − X2)                      (Eq. 1) 

Therefore, random errors of each parameter, ε(Pi), were quantified as the standard deviation of the 

difference of repeated pairs of measurements.  

Finally, distributions of parameter errors were characterized by fitting and characterizing 

the probability density functions (pdf) using the fitdist function in Matlab R2014b and open-source 

codes. For each pdf, the mean, the scaling, and if applicable, the shape parameters, skewness and 

kurtosis were calculated. We used Shapiro-Wilk test to evaluate the normality of each distribution. 

The effect of random parameter errors on pCO2 estimates 
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To assess random uncertainty attributed to pCO2 estimation, we propagated errors onto pCO2 

derived from two CO2-related parameters. We used three combinations of two input parameters: 

pH-DIC (pCO2-pH-DIC equilibrium), pH-ALK (pCO2-pH-ALK equilibrium), and ALK-DIC 

(pCO2-ALK-DIC equilibrium). All three thermodynamic equilibria calculated pCO2 from pH and 

DIC; however, the calculations in two equilibria (pCO2-pH-ALK and pCO2-ALK-DIC) required 

an additional step of estimating of DIC and pH, respectively.  

The mass-conservation equation for DIC calculations was defined as: 

[DIC] = [H2CO3
∗ ] + [HCO3

−] + [CO3
2−]        (Eq. 2) 

Where H2CO3
∗  is the sum of aqueous CO2 and carbonic acid (H2CO3). The alkalinity equation 

neglected the contribution of non-CO2 species and was defined as: 

[ALK] = [HCO3
−] + 2[CO3

2−] + [OH−] – [H+]       (Eq. 3) 

For pCO2 calculations, we used in-situ water temperature, the dissociation constants for 

freshwaters after Millero [1979], and barometric pressure at 1 atmosphere. The influence of ionic 

strength was neglected and all calculations were performed in pH NBS scale. Calculations were 

performed with the MATLAB-version of the CO2 System Calculations [i.e., CO2SYS, van 

Heuven et al., 2011]. The sets of equations for three parameter pairs are described in [Dickson, 

A.G., Sabine, C.L., Christian, 2007].

A bootstrap method was used to propagate parameter errors onto carbonate equilibria 

equations to estimate random pCO2 errors. This approach uses empirical data and does not 

introduces any assumptions about error population distributions [Chernick and LaBudde, 2011]. It 

also provides more realistic estimates of random uncertainty because allows partial cancelation of 

errors. At each iteration, the random error for each parameter were bootstrapped with substitution 
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from the error pools specific for each alkalinity group. The parameters’ error terms were 

simultaneously applied to the entire population of observations within each ALK group 

representing a full spectrum of chemical and temperature ranges observed in lakes. Applying errors 

to all observations at once permitted to investigate errors propagating through equations, not errors 

in individual observations [Yanai et al., 2010]. Since parameter measurements were independent, 

the covariance between two parameters was assumed zero and random errors uncorrelated 

[Bevington and Robinson, 2003]. Therefore, random errors for each parameter were propagated 

independently. 

We propagated random parameter errors 10000 times, and at each iteration, computed the 

population pCO2 median. For highly-skewed or heavy-tailed distributions, similar to distributions 

found for both parameters and random errors (Table 2.2, Figure S1), the sample median is 

considered a good measure of central tendency [Chernick and LaBudde, 2011]. From histogram 

of 10000 population pCO2 medians, we inferred the properties of random pCO2 error distribution. 

The population median described the best estimate of population center within each ALK group. 

The uncertainty in the estimate of population median were described as the standard error of the 

median. For each ALK group, we propagated random errors in three runs, one run with errors in 

both parameters, and two runs with errors in each parameter separately. The uncertainty attributed 

to bootstrapping accounted for <1% in all three carbonate equilibria. 

Although our goal was to demonstrate uncertainty propagating onto pCO2 derived from 

two carbonate parameters, we also acknowledge that using just two CO2-related parameters may 

result in spurious pCO2 estimates in some ALK groups. Therefore, we also run additional 

simulations after correcting organic acids contribution to total alkalinity in the LBALK group and 

after considering ionic strength influences in the HALK group. In the LBALK group, 1 µM of ALK 
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was subtracted for each 1 mg L-1 of DOC before running ALK-based equilibria. The pool of 

observations for pCO2 calculations decreased by 30% as negative ALK observations were 

removed before simulations. Additionally, we corrected thermodynamic constant for influences of 

ionic strength before pCO2 calculations in the HALK group. Only one hardwater lake (Lake 

Wingra) had major ions measurements and the same ionic strength was assumed for other lakes 

within HALK group. Estimated ionic was calculated from a Debye-Hückel equation [Brezonik and 

Arnold, 2011] and accounted for I=0.0091 M. The activity coefficients were calculated from an 

extended Debye-Hückel equation [Brezonik and Arnold, 2011]. 

The estimates of random uncertainty in pCO2 estimation were conservative because they 

did not take into account temperature effect on pCO2 errors. Temperature effect can be large as it 

affects non-state variables (i.e., pCO2 and pH) and calculations of two dissociation constants of 

carbonic acid and [Lueker et al., 2000; Atilla et al., 2011]. Our dataset does not have paired 

observations of water temperature to estimate the stochastic error in temperature measurements 

and poses limitations of this study 

The pCO2 values estimated from pCO2-ALK-DIC equilibrium in LCALK, MALK, and HALK

groups were also biased relative pCO2 calculated from pCO2-pH-DIC and pCO2-pH-ALK 

equilibria because observations with DIC concentrations smaller than ALK concentrations 

(DIC<ALK) were removed. Exclusion of DIC<ALK observations enabled pCO2-ALK-DIC 

equilibrium to solve for pH over 10000 iterations in this ALK groups. A single model iteration 

revealed that removing DIC<ALK (more alkaline) observations increased the median pCO2 

estimates by 22, 123, 1448 µatm in the LCALK, MALK, and HALK groups, respectively. Removed 

observations accounted for 4 (4.2%) observations in LCALK group, 77 (11.7%) in MALK group, and 
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101 (34.6%) in HALK group (Text S2.1, Fig. S2.1). Negative ALK observations were also 

removed before propagating errors in pCO2-pH-ALK and pCO2-ALK-DIC equilibria. 

Comparison of uncertainties in direct and indirect pCO2 measurements 

To determine how much uncertainty between direct and indirect measurements can be 

explained by random error propagating though three carbonate equilibria, we took direct 

measurements of pCO2 together with carbonate chemistry measurements for a limited number of 

observations (n=17). The measurements of CO2-related parameters were taken according sampling 

and handling protocols described above. The mole fraction of CO2 (ppmv) at 0.1 m depth was 

directly measured using a non-dispersive infrared Vaisala CARBOCAP CO2 probe enclosed in 

waterproof, gas permeable polytetrafluoroethylene (PTFE) membrane following the Johnson et 

al., [Wilcox, 2010] approach. Each measurement was taken over 16 minutes, first allowing the 

probe to equilibrate to environmental conditions (which generally occurred within 15 minutes), 

and then taking a one-minute measurement at one second intervals.  

The probes were calibrated against gas standards in the laboratory before each field 

campaign to evaluate if the probe performs within the manufacturers’ accuracy specifications and 

to identify potential sensor drifts. The average of the last 60 records was assumed to represent field 

CO2 concentration. The measured CO2 values were linearly fitted to calibration curves. The post-

measurement corrections of calibrated values were applied to compensate temperature and 

barometric pressure differences relative to manufacturer’s factory settings (i.e., 1013 hPa at 25°C), 

1.5 ppmv CO2 values increases per 1 hPa barometric pressure decrease and 3 ppmv declines per 

1°C water temperature decrease. These corrections were derived empirically by the manufacturer. 

Additionally, the CO2 values were lowered by 14.7 ppm to compensate for greater pressure on 
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probes at 10 cm measurement depth [Johnson et al., 2010]. The partial pressure of CO2 in µatm 

(pCO2) were calculated as a product of mole fraction and barometric pressure at 1 atmosphere.  

The probe accuracy and precision were 1.5% of the range and 2% of the reading at 25° C 

and 1 atmosphere for a range of 0-3000 ppm according to manufacturer specification and 

consistent with our calibration results. The paired observations of direct pCO2 measurements were 

not taken, hence the precision of field measurements were unquantified. 

Finally, for each data point, we used the combination of corresponding paired 

measurements of pH, DIC, and ALK to calculate pCO2. The lake-specific random parameter errors 

were propagated onto each pCO2 observation over 10000 iterations; each pCO2 estimate and its 

random error constitute the median and standard deviation of 10000 medians. The random error in 

direct measurements was set to 2% following the manufacturer specifications.  

2.3      RESULTS  

Random errors in CO2-related parameters 

The analysis of nearly 600 paired samples showed that most random errors in CO2-related 

parameters measurements were relatively small relative to parameters’ medians when pooled by 

alkalinity group (Table 2.1-2.2). The random error standard deviation (σn), the estimate of 

measurements’ precision, in pH measurements were ±0.02 across all ALK groups and were below 

0.4% of the median. Unlike errors in pH, the random errors in ALK and DIC measurements 

increased with the magnitude of parameters’ measurements. The random ALK errors ranged from 

±0.3 µM in LCALK group to ±56.4 µM in HALK group. Similarly, the smallest random DIC errors 

were in LCALK group, ±3.4 µM, while the largest errors were in HALK group, ±83 µM. However, 

when expressed in relative measures, the random uncertainty was the largest in low ALK groups, 
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accounting for 15.94% of the median ALK in LBALK group and 5.5% of the median DIC in LCALK 

group. The parameter error magnitudes were also independent of the season, year, 

water temperature, and measurement depth (Fig. S2.3).  

The empirical distributions of random parameter errors were generally symmetrical 

around the mean with skewness values close to zero (Table 2.2, Fig. S2.2). Although the kurtosis 

for pH across all ALK groups was close to kurtosis values observed in normally distributed data 

(typically <3), the errors in ALK and DIC were strongly leptokurtic with characteristic high 

peaks near the mean difference and heavy tails. The Gaussian distributions were confirmed for 

random pH errors in LBALK and LCALK groups only (Shapiro-Wilk test, p<0.05). Hence, σn 

would inadequately characterize the parameters’ error dispersion in ALK and DIC 

measurements.  

A t location-scale distribution (tLocat) best characterized distribution of random errors in 

ALK and DIC (Fig. S2.2). This distribution has an additional, shape parameter (ν) where 

small values indicate heavy tails in error distributions and sensitivity to outliers. Low ν values 

(<2) were found in DIC error distributions across all ALK groups and in ALK error distributions 

in medium to high ALK groups (Table 2.2). However, the tLocat distribution provided only a 

slightly better fit compared to normal distribution in pH uncertainties and approached a normal 

distribution in the HALK group. Other probability density functions which can accept negative 

values of random parameter errors did not improve the data fit (data not shown). 

The effect of random parameter errors on pCO2 estimates 

Random pCO2 errors propagating through ALK-based equilibria were always higher than pCO2 

errors propagating through pCO2-pH-DIC equilibrium (Table 2.3). We found only two 

cases where random pCO2 errors were comparable, with pCO2-pH-DIC and pCO2-

pH-ALK equilibria 
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differing by 10% in the MALK group and by 8% in the HALK group. In contrast, the random pCO2 

errors derived from pCO2-ALK-DIC equilibrium were 5 and 30 times higher in MALK and HALK 

groups compared to errors propagating through pCO2-pH-DIC equilibrium. In the LCALK group, 

the random pCO2 errors were 2 times (pCO2-pH-ALK equilibrium) and 0.5 times (pCO2-ALK-

DIC equilibrium) higher relative to random pCO2 errors derived from pCO2-pH-DIC equilibrium. 

The pCO2-pH-ALK and pCO2-pH-DIC equilibria in the LBALK group showed 6 and 0.2 times 

higher sensitivities to random parameter errors relative to pCO2-ALK-DIC equilibrium.  

Across the lake alkalinity gradient, random pCO2 errors calculated from pCO2-pH-DIC 

equilibrium were the highest (±166 µatm) in LBALK group, but remained similar (~40 µatm) 

across the remainder of ALK groups (Table 2.3). Similarly, random errors propagating through 

pCO2-pH-ALK equilibrium were also highest (±1026 µatm) in the LBALK group, though the error 

decreased steadily down to ±41 along ALK groups. The pCO2 errors calculated from pCO2-

ALK-DIC equilibrium ranged from ± 59 µatm in the LCALK group to ± 1156 µatm in HALK 

group. Extreme pCO2 errors corresponded to unrealistically high estimates of median pCO2: 

15225±1026 µatm (10999±935 µatm after adjustment) derived from pH and ALK in the 

LBALK group, and 3725±1156 µatm (3129±985 µatm after adjustment) calculated from pCO2-

ALK-DIC equilibrium in the HALK group (Table 2.3). 

Regardless of carbonate equilibrium used, random pCO2 errors were exponentially 

proportional to the median pCO2 (Fig. 2.1). Random pCO2 errors decreased along pH gradient in 

pCO2-pH-DIC and pCO2-pH-ALK equilibria, with greatest pCO2 error decline per pH unit change 

in acidic waters (pH<5.5) (Fig. 2.1). Unlike in pH-based equilibria, the random pCO2 errors 

propagating through pCO2-ALK-DIC equilibrium were higher at both ends of pH gradient with 
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minimum error at pH around 6.5. Changes in pCO2 errors along DIC and ALK gradients depended 

on the carbonate equilibrium used.  

Adjusting for contribution of organic acids to total alkalinity in humic lakes (LBALK group) 

and for ionic strength in highly buffered lakes (HALK group) generally resulted in lower random 

pCO2 errors (Table 2.3). The random pCO2 error decreased by 9%, from ±1026 µatm to ±935 

µatm in pCO2 derived from pH and ALK in LBALK group. However, adjusted values were still 5 

times more sensitive to random parameter errors relative to pCO2 errors derived from pH 

and DIC. Adjusting pCO2 in pCO2-ALK-DIC equilibrium nearly doubled uncertainty from 

±198 µatm to ±391 µatm. Correcting for ionic strength in HALK groups decreased random pCO2 

errors by 15% across three carbonate equilibria. 

Comparison of uncertainties in direct and indirect pCO2 measurements 

The spread of random pCO2 errors in indirect observations, expressed here as mean absolute 

deviation, accounted for at least 33, 10, 7, 36 µatm in LBALK, LCALK, MALK, and HALK groups, 

respectively (Table 2.4). Random error deviation in direct pCO2 measurements in these groups 

were 7, 3, 4, and 5 µatm, respectively. The largest random pCO2 errors in direct and 

indirect observations cumulatively explained less than 16%, 32%, 12%, 27% of the root-

mean-square errors (RMSEs) between direct and indirect pCO2 observations in LBALK, 

LCALK, MALK, and HALK groups, respectively. The global RMSEs were explained by random 

pCO2 errors by <8% in pCO2-pH-DIC equilibrium, <5% in pCO2-pH-ALK equilibrium, and 

<20% in pCO2-ALK-DIC equilibrium (Fig. 2.2, Table 2.4). 

Although measurements of carbonate parameters were taken at the same time as direct 

pCO2 measurements, the calculated pCO2 always failed to reproduce direct pCO2 (Fig. 2.2, Table 

2.4). Equilibria pCO2-pH-DIC and pCO2-pH-ALK tended to overestimate pCO2, while pCO2-
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DIC-ALK equilibrium generally underestimated pCO2 (Fig. 2.2). The largest mismatch with 

directly measured pCO2 occurred for observations in the LBALK group calculated from pCO2-pH-

ALK equilibrium and in the HALK group calculated all from any combination of parameters had. 

These discrepancies persisted even after adjusting pCO2 values for influences of organics acids 

and ionic strength.  

2.4      DISCUSSION 

Random errors in CO2-related parameters 

Most random errors were relatively small relative to median parameter values when pooled by lake 

type (Table 2.1-2.2). The standard deviations of carbonate parameter measurements derived for a 

normal distribution (σn) reported in Table 2.2 compare our estimates of parameter repeatability 

with published values of precision. The precision in the pH measurements ranged from ±0.01 to 

±0.17 pH units, thus pH precision values were among the most precise potentiometric pH 

measurements reported for freshwaters [Herczeg and Hesslein, 1984; French et al., 2002; Phillips 

et al., 2015]. More precise pH measurements are achieved using spectrophotometric methods with 

precision ranging from ±0.008 to ±0.002 pH units [French et al., 2002; Lynch et al., 2010]. The 

reported repeatability in DIC and ALK measurements in low to medium ALK groups agreed with 

precision values ranging <12 µM [Wilkinson et al., 1992; Baehr and DeGrandpre, 2002; Abril et 

al., 2015]. However, random errors in highly buffered waters (HALK group) were approximately 

four-fold higher for ALK and sevenfold for DIC (Table 2.2) than ever reported.  

The empirical error distributions deviated from the normal distribution assumption in 

the majority of carbonate parameters’ measurements in this study (Fig. S2.2, Table 2.2), 

similarly to CO2-related studies showing non-Gaussian distributions of random errors 

[Richardson and 
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Hollinger, 2005; Ciais et al., 2013b; Cueva et al., 2015]. The fitted probability density functions 

imply more frequent small errors around the mean parameter errors (around zero) and also more 

frequent high errors compared to errors that would otherwise be derived from normal probability 

density functions (Table 2.2, Fig. S.2). Hence, the errors derived from normal distribution will 

underestimate both small and large random errors at the heavy distribution tails.  

Although the tLocat distribution provided better fit over Gaussian in ALK and DIC 

observation coming from MALK to HALK groups, neither of these two distributions nor any other 

probability density functions fitted provided good data fit in some ALK groups (i.e., pH in MALK, 

Fig. S2.2). Moreover, the variance was defined only for shape parameter values of ν>2 in 

tLocat distribution (Table 2.2). These results influenced our choice of the method to propagate 

random parameter errors onto carbonate equilibria, the bootstrap approach over the Monte Carlo 

approach, as no assumptions regarding error distributions were required. The variety of error 

distribution also limits the use of statistical and modeling techniques (i.e., assuming normal 

distribution) to describe pCO2 uncertainties. 

The heavy tails in the PDFs of random parameters’ errors might also be indicative of a 

quality control problem that warrants further evaluation of NTL LTER data. The outlying 

observations with large concentration differences between duplicates (expressed as high kurtosis 

and low tLocat shape parameter ν, Table 2.2) were present despite prior-analysis removal of 

duplicate pairs that differed more than 15% (Fig. S2.2). These results suggest that samples 

chemical composition can significantly change between samples collection and analytical 

analysis (from several hours for pH to two-three weeks for ALK and DIC samples). Potential 

sources behind changing constituents’ composition include lack of sample poisoning to stop 

biological activity [Dickson, A.G., Sabine, C.L., Christian, 2007; Åberg and Wallin, 2014], 

taking unfiltered ALK 
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samples with substantial amount of acid-neutralizing particles [Abril et al., 2015], DOC 

interference with pH electrode [Herczeg and Hesslein, 1984], transport of samples to another lab 

or long shelfing time between duplicate samples analysis. Many of enlisted potential errors are 

systematic, and unlike random uncertainties, cannot be evaluated from duplicate samples. This 

warrants further targeted efforts towards quantifying and reducing errors in NTL LTER site.  

The increased uncertainty of certain measurements in some ALK groups might also 

indicate that the behavior of systematic errors may vary under certain conditions. For example, the 

measurements of ALK in humic lakes (LBALK group) and pH in highly buffered and productive 

lakes (HALK group) were particularly vulnerable, with 46% and 17% of paired observations failing 

QA/QC criterion. Furthermore, even though the random parameter errors were generally below 

2% of the median, the uncertainties in ALK and DIC measurements exceeded 5% in low ALK 

groups (Table 2.1-2.2). These results may suggest the presence of systematic biases in the 

measurements in these groups (and likely in other ALK groups) and potential challenges for 

correcting historical observations for these biases. 

4.1. The effect of random parameter errors on pCO2 estimates 

The cumulative effect of random parameter errors on pCO2 calculations across alkalinity 

gradient in NTL LTER site showed that sensitivity to errors varied by the choice of input parameter 

pairs and alkalinity group. Although the parameter errors were generally below ±2% of 

parameters’ median values across all ALK groups (Table 2.1-2.2), unadjusted pCO2 errors ranged 

from ±3.7% to ±31.5%, depending on parameter pairs and lake ALK group (Table 2.3). 

Our repeatability estimates for pCO2-pH-DIC (±3.7%-5.5%) were within range of the few 

existing studies for freshwaters, where the precision of pCO2 calculated ranged from 3% to 5% 

[Herczeg and Hesslein, 1984; Baehr and DeGrandpre, 2004].  
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Among the three equilibrium models, the pCO2-pH-DIC equilibrium was always least 

sensitive to random errors in the input parameter pairs (Table 2.3). The highest attainable 

precision of pCO2 estimates was ±36 µatm (5.5%) in the LCALK group and ±45 µatm (3.7%) in 

the MALK group. The pCO2 estimates calculated from ALK and DIC were most uncertain. 

Similar patterns of propagated random pCO2 uncertainty was found in seawater studies [Dickson 

and Riley, 1978; Millero, 2007], however our lowest pCO2 errors were at least 20 times higher 

than in seawaters [Millero, 2007]. Although findings from Millero [2007] cannot be directly 

applied to chemically heterogeneous freshwaters [Dickson and Riley, 1978], our results imply 

low precision of pCO2 estimates based on historical pH, DIC and ALK data from our study lakes. 

Single-parameter random error propagation identified that dominant terms contributing to 

random pCO2 uncertainty changed along water chemical composition (across ALK groups). In 

pCO2-pH-DIC and pCO2-pH-ALK equilibria, the dominance of DIC and ALK uncertainty in 

contribution to pCO2 uncertainty switched to pH uncertainty with increasing ALK (Table 2.3). 

The “break point” fell between LCALK and MALK groups which corresponded to transition from 

slightly acidic to slightly alkaline waters (Table 2.1). The largest single-parameter contribution 

to pCO2 error was observed at both ends of buffering capacity gradient, in LBALK and HALK 

groups. For example, although random pH errors were the same across all ALK groups (Table 

2.2), the pH effect on pCO2 derived from pCO2-pH-DIC equilibrium increased from ~30% in the 

LBALK group to ~90% in the HALK group (Table 2.3).  

The pCO2 calculations from ALK and DIC were overall highly uncertain (Table 2.3) 

and also likely obscured by reduced number of observations in all ALK groups except for 

the LBALK group (removed observations with DIC<ALK concentrations (Fig. S2.1), negative 

alkalinity, failing QA/QC criteria).  
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The random error propagation showed that the lower the median pCO2, the higher the 

precision of pCO2 estimates (Fig. 2.1, Table 2.3). For example, uncertainties generally declined 

after adjusting for ionic strength in the HALK group or for organic acid contribution in the LBALK 

group since applying corrections resulted in lower median pCO2 estimates and accordingly lower 

random pCO2 errors (except for pCO2 derived from ALK and DIC in the LBALK group). Doubled 

pCO2 uncertainty (from pCO2-ALK-DIC equilibrium) in bog lakes could partly be explained by 

13% increase in median pCO2 due to removal observations with negative alkalinity. Since this 

equilibrium is also highly prone to errors due to similar DIC and ALK values [Dickson and Riley, 

1978], we likely introduced additional errors in pCO2 calculations by assuming non-carbonate 

concentrations equated DOC concentrations without verifying by charge balance of major ions. 

The proportionality of random error to median pCO2 also implies that any inaccuracies in 

estimating median pCO2 will be reflected in random pCO2 estimates. 

Comparing random pCO2 errors across ALK groups also allowed to assess how error 

magnitudes propagated through three carbonate equilibria with changing water chemical 

composition. pCO2 errors showed largest declines were in these waters and overall inversely 

proportional to pH (Fig. 2.1, Table 2.3) since low pH and low ALK waters had highest median 

pCO2 derived from pH-based equilibria. This is not surprising given DIC species concentrations 

in carbonate equilibria are a function of the pH [Brezonik and Arnold, 2011]. Nonlinear 

relationship with increasing pH and pCO2 errors were in pCO2-ALK-DIC equilibrium where 

largest uncertainties were in hardwater and humic lakes. Nonlinearities of pCO2 errors in DIC-

based equilibria corresponded to high pCO2 errors in low ALK, high DOC waters (humic lakes).  

The comparison of pCO2 errors within ALK groups permitted us to examine if three 

carbonate equilibria showed similar sensitivities to random parameter errors under the same water 
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chemical composition. While all three equilibria should produce similar pCO2 values and errors, 

the comparisons of pCO2 estimated showed large differences in a vast majority of lake ALK 

groups (Table 2.3). These results indicate that certain combinations of parameters produced 

more uncertain pCO2 estimates relative to other equilibria. Using pCO2-pH-ALK 

equilibrium to calculate pCO2 in LBALK and LCALK groups, for example, always resulted in 

elevated pCO2 values and errors, particularly in bog lakes (even after organic acids adjustment). 

Therefore, pH and ALK observations should not be used in this groups. In MALK and HALK groups, 

pCO2 values and errors derived from pH-based equilibria were similar within random error 

uncertainty contrary to extremely high uncertainty of pCO2 calculated from ALK and DIC. 

While rather availability of given parameter pairs, not errors pCO2 estimates, determines the 

choice of carbonate equilibrium, the knowledge on uncertainties associated with pCO2 calculations 

helps evaluate the results. Lack of agreement of pCO2 estimates within each ALK groups may also 

indicate significant systematic biases affecting pCO2 calculations. 

4.2. Comparison of uncertainties in direct and indirect pCO2 measurements 

Random errors in directly measured pCO2 were at least several times lower than uncertainty in 

any pCO2 estimated from carbonate equilibria (Fig. 2.2, Table 2.4). After considering potential 2-

3-fold increase of probe’s random errors due to difficult to control factors in field measurements, 

the comparable uncertainties between direct and indirect pCO2 measurements would occur only 

in pCO2 derived from pH-based equilibria in LCALK and MALK groups. Therefore, our findings 

indicate poor precision of virtually all pCO2 derived from any carbonate equilibrium and across 

all ALK groups. 

Small proportion of explained root mean square errors (RMSEs) between direct and 

indirect pCO2 estimates that random errors are minor source of uncertainty in pCO2 estimation. 
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When considering the highest achievable precision of unadjusted pCO2 estimates only, the 

proportion of unexplained variation for pCO2 ranged from 69% to 97% (Table 2.4, Fig. 2.2). Since 

RMSE measures the accuracy of model predictions, our findings demonstrate poor accuracy of 

pCO2 estimates from any carbonate equilibrium and across all ALK groups.  

Deviation from a theoretical 1:1 line between calculated and observed pCO2 showed the 

directionality of biases in pCO2 calculations (Fig. 2.2). All pCO2 values showed positive biases 

(i.e., overestimated) except for pCO2 estimated from pCO2-ALK-DIC equilibrium in LCALK and 

MALK groups which showed negative biases (Fig. 2.2, Table 2.4). The underestimated pCO2 

occurred for observations with ALK>DIC (Fig. S2.1). These findings imply a widespread 

presence of systematic errors, either in input parameters or in pCO2 calculations, 

which cause overestimation of pCO2 concentrations from all three carbonate equilibria in 

surface waters.  

The pCO2 calculations from pH and ALK are currently most commonly used carbonate 

equilibrium in freshwater systems. We showed larger discrepancies between direct and 

indirect pCO2 observations were when pCO2 was calculated from pCO2-pH-ALK equilibrium 

(Fig. 2.2, Table 2.4). The average pCO2 overestimation ranged from 164% in the LCALK group 

to 625% (470% adjusted) in the LBALK group. Similarly highly overestimated pCO2 values were 

previously reported for pCO2-pH-ALK equilibrium, particularly in poorly buffered waters and 

with high DOC contribution [Butman and Raymond, 2011; Wallin et al, 2014, Abril et al., 

2015]. However, we also show highly overestimated pCO2 in the HALK group, 570% and 

460% before and after adjustment (Table 2.4).  

The pCO2-pH-DIC equilibrium produced overestimated pCO2 values across all ALK 

groups, however, the overestimation increased along alkalinity and pH gradients, from on 

average 1% in the LBALK group to 560% (470% in pCO2 adjusted) in the HALK group 

(Table 2.4). Published 
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discrepancies between direct and indirect pCO2 for this equilibrium differed by study. The pCO2 

estimates were either unbiased [Cole et al., 1994] or underestimated in bog lakes (i.e., LBALK 

group in this study) [Riera et al., 1999], or agreed within 8% with direct pCO2 observations in a 

lake with chemistry closest to MALK group [Baehr and DeGrandpre, 2004]. Our findings suggest 

larger than previously reported biases in pCO2 calculation from pCO2-pH-DIC equilibrium.  

Adjusting for organic acids in the LBALK groups and for ionic strength in the HALK 

group emphasizes high uncertainty of pCO2 estimated derived from any combination of carbonate 

parameters in these ALK groups (Fig. 2.2, Table 2.2-2.3). Relative to pCO2 estimated from two 

CO2-related parameters, adjusted pCO2 values were generally lower and showed improved 

reliability of pCO2 calculations expressed as decreased RMSEs by 22% in the pCO2-pH-ALK 

equilibrium, 26-30% in the pCO2-pH-ALK equilibrium, and 8% in the pCO2-ALK-DIC 

equilibrium. To make pCO2 adjustments, however, additional measurements were required in 

pCO2 calculations: dissolved organic carbon (or major ions) to estimate non-carbonate alkalinity 

in humic lakes, and major ions (or specific conductance or total dissolved solids) to approximate 

ionic strength and activity coefficients in highly buffered lakes. Such measurements can be 

unavailable but their omission in pCO2 calculations introduces an additional source of error  

Despite improved reliability of pCO2 calculations after adjusting for organic acids and 

ionic strength, the adjusted pCO2 values remained biased relative to direct pCO2 measurements. 

The positive bias in the LBALK group accounted for on average 470% in pCO2 calculated from pH 

and ALK and 2% in pCO2 calculated from ALK and DIC (Table 2.4). The overestimated 

pCO2 vales were in the HALK group: 470% (from pCO2-pH-DIC equilibrium), 460% (pCO2-pH-

ALK), and 270% in pCO2-ALK-DIC. These findings highlight difficulty of estimating pCO2 in 

humic 
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lakes from pCO2-pH-ALK equilibrium and in hardwater lakes from all three carbonate equilibrium 

and likely introduce additional uncertainty in regional carbon balances. 

A number of factors could cause field measurements of CO2-related parameters to fail to 

reproduce directly measured pCO2. First, consider biases in the measurements. As we discussed 

in the 3.1 section, the carbonate parameters’ concentrations significantly changed 

between sampling and analytical determination (Fig. S2.2, Table 2.2). Consequently, 

although all measurements were taken under identical conditions, the pCO2 estimated 

from carbonate equilibria reflected the changed concentrations relative to direct pCO2 

measurements. Furthermore, the systematic biases in carbonate parameter measurements 

are present in freshwaters systems [Herczeg and Hesslein, 1984; Metcalf et al., 1989; 

French et al., 2002, Lozovik, 2005] and likely cause biased pCO2 estimates [Herczeg and 

Hesslein, 1984; Butman and Raymond, 2011; Abril et al., 2015]. The accuracy of pCO2 probe 

used in this study comprised 1.5% of the reading potentially contributing 20-30 µatm to 

overall uncertainties. Likewise, potential probe’s precision decreases in the field 

measurements could add additional uncertainty. All of these factors likely impacted large 

discrepancies between direct and indirect pCO2 measurements, however, their contribution 

remained unquantified for our lakes due lack information on systematic errors. 

The observed mismatch between direct and indirect pCO2 observations can also be 

attributed to systematic errors in pCO2 calculations from carbonate equilibria. Adjusting for 

organic acids contribution in the LBALK group and for ionic strength in the HALK group 

significantly improved the estimated pCO2 (Fig. 2.2, Table 2.3-2.4) suggesting significant 

uncertainty attributed to a priori assumptions about carbonate equilibria equations approximating 

the CO2 system (Fig. 2.1-2.2). The equations also ignored the contribution of non-CO2 acid-bases 
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(i.e., borate, phosphate, arsenate, ammonia, silicate) to ALK and the inference of calcium forming 

ions with DIC mass balance and likely produced biased pCO2 estimates in freshwaters [Gelbrecht 

et al., 1998]. The pCO2 biases can also be attributed to errors in calculation of the two dissociation 

constants of carbonic acid and bicarbonate (i.e., pKa1 and pKa2), as it was shown in oceanic studies 

[Millero, Pierrot, Lee, et al., 2002; Lueker, Dickson, and Keeling, 2000; Millero, 2007], or using 

outdated and likely untested in many heterogeneous freshwater systems dissociation constants. 

At present, we cannot elucidate which systematic errors contributed to observed mismatch 

between direct and indirect pCO2 measurements. While further investigation on a larger pool of 

observations is necessary to validate the accuracy of pCO2 calculations, we conclude the effect of 

random parameter errors on pCO2 was rather small compared to dominant systematic errors. Given 

all sources of uncertainty in pCO2 calculations, it is clear that having just two field measurements 

of CO2-related parameters (plus temperature) was insufficient to produce thermodynamically 

consistent estimates of pCO2 in our lakes, regardless of the combination of input parameters used. 

Direct pCO2 measurements are therefore recommended. 

4.4 Implications for estimating pCO2 from carbonate equilibria in freshwaters 

To illustrate importance of considering pCO2 errors in results interpretation, we propagated 

random and systematic parameter errors and uncertainties due to different time series beginnings 

and endings onto the time series at Crystal Lake (LCALK group) (Fig. 2.3). Uncertainty around 

median pCO2 ranged from ±24 to ±40 µatm, and in some cases, made in impossible to determine 

whether lake was classified as undersaturated or supersaturated with respect to atmospheric pCO2. 

The trend line indicated an insignificant pCO2 decrease -2 ±26 µatm per year owing high overall 

uncertainties around the trend line. Given a growing number of studies using carbonate equilibria 

to estimate pCO2 and C flux from inland waters [Butman and Raymond, 2011; McDonald et al., 
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2013; Raymond et al., 2013], and temporal trends of inorganic carbon species [Jones, 2003; 

Raymond and Cole, 2003], it is necessary to perform error analysis to determine the bounds of 

uncertainty around pCO2 estimates and determine which method is sensitive enough to detect 

long-term change.  

The systematic pCO2 errors additionally affected the median pCO2 estimates and the 

accuracy of pCO2 predictions. While we determined the presence of non-negligible systematic 

errors (δ) additionally affecting the median pCO2 estimates, further targeted effort is essential to 

identify the sources and behavior of systematic errors. Such information is necessary to correct 

for systematic biases in pCO2 calculations from historical observations of pH, DIC, and ALK, and 

to improve the accuracy of measurements and pCO2 predictions in the future. Since pCO2 

estimates and random pCO2 errors were proportionally related (Fig. 2.2, Table 2.3), the random 

pCO2 errors also reflected systematic errors propagating through biased pCO2 medians. Therefore, 

the improved accuracy of pCO2 calculations from carbonate equilibria will likely increase the 

precision of pCO2 estimates.  

Despite using consistent methodology of sample collection, handling, analytical 

determination, and quality control, the results from NTL-LTER site indicate large uncertainties 

arising from pCO2 estimation from carbonate equilibria. More research is needed to determine 

how our result extrapolate to other datasets and freshwater systems, although our findings are 

generally supported by previous studies. To fully account for systematic biases and quantify their 

effect on the uncertainty of pCO2 estimates at global scales, it will require information on 

instrumentation, analytical procedures used among researchers, and reporting uncertainties 

attributed to pCO2 estimation. Such information is currently unavailable for freshwater systems. 

Given bounds of uncertainty in global C emissions from lakes and reservoirs (0.32 Pg C yr-1) range 
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from 0.06 to 0.84 Pg C yr-1, and from rivers and streams (1.8 Pg C yr-1) vary from 1.5 to 2.1 

Pg C yr-1 [Raymond et al., 2013], freshwater researchers must make significant efforts to 

standardize and reduce errors in pCO2 predictions. 

Unlike atmospheric and oceanographers, the freshwater community has not determined the 

acceptable levels of precision and accuracy of carbonate parameter measurements to achieve pCO2 

estimates with uncertainty level permitting to detect long-term pCO2 changes. Overall uncertainty 

of atmospheric CO2 measurement account for <0.2 ppm [Andrews et al., 2014]. Current laboratory 

measurements of seawater, for example, have precision and accuracy ±1 µmol kg-1 and ±2 µmol 

kg-1 for DIC, ±1 µmol kg-1 and ±3 µmol kg-1 for ALK, and ±0.0004 and ±0.002 for pH 

measurements to produce fugacity CO2 (fCO2 values are a few µatm lower than pCO2 after 

accounting for non-ideal nature of gas phase) estimates with uncertainty ±6 µatm or higher 

[Millero, 2007]. Similar levels of uncertainty must be determined for direct pCO2 measurements. 

While above analytical uncertainties are incomparable with errors estimates of in our lakes (Table 

2.2-2.3), they serve as a gold standard that sets the bar for improving freshwater measurements of 

CO2-related parameters.   

Adapting solutions already developed for seawater could potentially advance 

methodological improvements of the CO2 system measurements in freshwater systems. The 

certified reference materials (CRM) of CO2 measurements in oceans contributed most towards 

development of fully calibrated dataset with uniformly calculated estimates [Key et al., 2004; 

Sabine et al., 2004]. The CRM samples were prepared in one certified laboratory and distributed 

among laboratories to serve as an independent measurement quality test. Furthermore, a unified 

quality assurance and quality control procedure was applied to compare the results from different 

research groups and identify laboratories having problems with accuracy and precision. Finally, 
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an unambiguous guide on best practices on CO2 measurements [Dickson and Goyet, 1994; 

Dickson, A.G., Sabine, C.L., Christian, 2007] provided up-to-date information on the chemistry of 

the CO2 system in seawater, well-tested analytical methods of analyzing parameters, and standard 

operating procedures. If using carbonate equilibria from two CO2-related parameters continued to 

be the most common method of estimating pCO2 in freshwaters, developing similar solutions is 

urgently needed. 

Since none of the selected input parameter pairs produced thermodynamically consistent 

pCO2 estimates across all ALK groups, an important question on the suitability of carbonate 

equilibria to estimate pCO2 in freshwaters arises. While pCO2 in humic systems were previously 

excluded from regional and global carbon balances due to unreliable pCO2 estimates [Cole et al., 

1994; Raymond et al., 2013; Wallin et al, 2014], our findings demonstrate more widespread 

problems. Given current uncertainties in pCO2 estimation, the carbonate parameters should not be 

used to estimate pCO2 from carbonate equilibria, although these parameters are still essential to 

characterize chemical composition of freshwater systems. However, accounting for systematic 

uncertainties in pCO2 estimates might be still insufficient to derive sound pCO2 estimates. Despite 

having highly precise and accurate measurements of carbonate parameters of seawater, the pCO2 

derived from any choice of input parameters generally gives pCO2 estimates more uncertain 

relative to directly measured pCO2, [Dickson and Riley, 1978; Dickson, A.G., Sabine, C.L., 

Christian, 2007; Millero, 2007]. Therefore, oceanographers recommend using direct pCO2 

measurements in CO2-related studies, especially if two carbon system parameters cannot be 

precisely constrained [Dickson and Riley, 1978; Dickson, A.G., Sabine, C.L., Christian, 2007; 

Millero, 2007]. We agree that direct pCO2 measurements are key to constraining CO2 flux from 

diverse aquatic components of terrestrial carbon balances. 
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2.5      CONCLUSIONS 

Due to increasingly frequent use of carbonate equilibria to estimate pCO2 and C emissions from 

freshwater systems, we evaluated uncertainties attributed to pCO2 estimation from carbonate 

equilibria using two CO2-related parameters. We quantified random parameter errors in pH, 

dissolved inorganic carbon, and total alkalinity measurements in four lake groups encompassing a 

broad gradient of water chemical composition (humic, poorly buffered clearwater, moderate 

alkalinity, and hardwater) to determine how these errors propagate onto uncertainties in pCO2 

estimated from three carbonate equilibria: pCO2-pH-DIC, pCO2-pH-ALK, and pCO2-ALK-DIC. 

The results presented here indicate that relatively low random parameter errors can produce 

random pCO2 error up to one third of estimated median pCO2, depending on the choice of input 

parameter pairs and lake alkalinity group. The comparison of direct and indirect pCO2 

observations reveals that all parameter combinations produces biased pCO2 estimates. Large 

proportion of unexplained uncertainty imply dominance of systematic errors in pCO2 estimation 

from carbonate equilibria.  

Given all sources of uncertainty in pCO2 calculations, we demonstrate that none of the 

choice of input parameter pairs provides reliable and reproducible pCO2 estimates. Therefore, we 

recommend direct pCO2 measurements in studies aiming estimation of pCO2 and C flux from 

inland waters. Questions remain regarding how our results extrapolate to other data sets and 

freshwater systems, what is the contribution of random and systematic errors to regional and global 

pCO2 estimates, what are the acceptable levels of precision and accuracy of pCO2 estimates to 

achieve robust pCO2 estimates that are comparable at global scales and sensitive enough to detect 

temporal changes, and whether using carbonate equilibria to estimate pCO2 is a suitable method 

for freshwaters. However, regardless which method is going to be used to estimate pCO2 and C 
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flux from inland waters, freshwater community urgently needs to standardize and reduce errors in 

aquatic pCO2 estimation. 
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2.6      TABLES 

Table 2.1 Chemical characteristics within lake alkalinity groups (low to high); the values represent the 
median and 5th and 95th percentiles 

Variable LBALK
1 LCALK

2 MALK
3 HALK

4 

pH 5.03 (4.58-5.52) 
(n = 2136) 

6.32 (5.62 – 7.06) 
(n = 1543) 

7.44 (6.65 – 8.38) 
(n = 6016) 

8.31 (7.44 – 9.08) 
(n = 3631) 

ALK (µM) 15 (-16 - 102) 
(n = 754) 

29 (11 – 77) 
(n = 498) 

797 (388 – 997) 
(n = 2025) 

3524 (2608–4196) 
(n = 1021) 

DIC (µM) 263 (45-644) 
(n = 2060) 

62 (30-292) 
(n = 1508) 

855 (429 – 1227) 
(n = 5826) 

3612 (2475 - 4499) 
(n = 3149) 

DOC (mgL-1) 16.36 (8.09 – 28.37) 
(n = 2055) 

1.90 (1.36 – 2.54) 
(n = 1492) 

3.38 (2.48 – 4.73) 
(n = 5782) 

6.12 (4.65 – 8.56) 
(n = 3129) 

TP (µgL-1) 8 (3 - 32) 
(n = 2107) 

23 (9-106) 
(n = 1446) 

11 (4 - 90) 
(n = 5840) 

61 (13 - 463) 
(n = 4477) 

TN (µgL-1) 193 (105 - 463) 
(n = 2112) 

721 (360 – 1889) 
(n = 1537) 

311 (166 - 885) 
(n = 5948) 

920 (610 – 2540) 
(n = 1537) 

1 – Lakes grouped in LBALK group are: Crystal Bog, Trout Bog 
2 –LCALK group includes Crystal Lake 
3 – Lakes grouped in MALK group are: Allequash Lake, Big Muskellunge Lake, Sparkling Lake, Trout Lake 
4 – Lakes grouped in HALK group are: Fish Lake, Lake Mendota, Lake Monona, Lake Wingra 



47 

Table 2.2 Statistical properties of random errors in carbon system parameters within four alkalinity groups 
calculated from paired observations. The reported values were rounded according to significant figure 
convention1.  

1 the significant figures convention reports all certain digits plus the first uncertain digit.  
2 the variable is normally distributed at significance level 0.05 according to Shapiro-Wilk test 

Lake group Parameter Normal distribution 
parameters 

Skewness Kurtosis t location-scale distribution 
parameters 

[µ] [σn] [µ] [σ t] [ν] 

LBALK 
(n=55) 

pH2  0.002 0.018  0.021   3.2  0.002   0.016 10.3 

ALK (µM)  0.1 2.4  2.0 12.9  0.2   1.1   2.1 

DIC (µM)  1.4 12.3  1.8   7.7 -0.9   5.5   1.8 

LCALK  
(n=48) 

pH2  0.002 0.017 -0.114   3.7  0.002   0.013   4.3 

ALK (µM)  0.3 0.3 0.282   4.4  0.2   1.1   3.3 

DIC (µM)  0.9 3.4 1.62   7.7  0.5   1.3   1.6 

MALK (n=331) pH  0.003 0.015 -0.143   4.8  0.003   0.009   2.6 

ALK (µM)  0.6 11.7 1.4 12.8 -0.3   3.6   1.4 

DIC (µM) -0.3 13.8 -0.4   9.1 -0.4   3.9   1.2 

HALK 
(n=150) 

pH  0.003 0.019  0.022   3.0  0.003   0.019 56.2 

ALK (µM)  6.8 56.4  0.517 13.0  4.6 13.7   1.2 

DIC (µM)  6.1 83.0 -0.44 13.0  4.3 34.7   1.9 
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2.7      FIGURES 

Figure 1.1 Random pCO2 errors across median pCO2 estimates (A-C), pH gradient (D-F), and ALK/DIC 
gradients (G-I) shows that pCO2 errors were exponentially proportional to median pCO2 estimates across 
three carbonate equilibria. Random pCO2 errors were inversely proportional to pH gradient in pCO2-pH-
DIC and pCO2-pH-ALK equilibria, and proportional to ALK/DIC in the pCO2-ALK-DIC equilibrium. 
Note different scales of y-axes between panels. In cases where regression failed to produce a significant 
fit, the likes shown are piecewise interpolation.  
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2.8      APPENDIX I 

SUPPORTING INFORMATION for: 

Large uncertainty in estimating pCO2 from carbonate equilibria in lakes 

Malgorzata Golub, Ankur R. Desai, Galen A. McKinley, Christina K. Remucal, Emily H. Stanley

Text S2.1. Problems with estimating pCO2 using pCO2-ALK-DIC equilibrium 

The pCO2-ALK-DIC equilibrium was sensitive to DIC/ALK concentration imbalances. When DIC 
concentrations were smaller than ALK concentrations (DIC<ALK), pCO2-ALK-DIC overestimated the 
median pH by 1.81 pH units (9.22 in DIC<ALK group and 7.41 in DIC>ALK), resulting in 
largely underestimated median pCO2 (47 µatm in DIC<ALK group and 1,577 µatm in DIC>ALK, Fig. 
S1). We found DIC<ALK observations mainly in epilimnetic waters and in 1/3 of observations in 
eutrophic lakes (high ALK group), indicating that DIC/ALK imbalance was due to 
photosynthetically-driven DIC drawdown and non-carbonate alkalinity contribution to total alkalinity.  

Figure S2.1. The calculations of pH (left panel) and pCO2 using pCO2-ALK-DIC equilibrium (right 
panel) in two groups of observations: DIC<ALK and DIC>ALK demonstrate that DIC/ALK 
concentration imbalances below one resulted in erroneously high pH predictions and low pCO2 
concentrations compared to predictions in DIC/ALK>1. Extreme outliers: pH>12 in DIC<ALK group 
(n=6) and pCO2 > 10000 µatm in DIC>ALK (n = 12) were omitted. 
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CHAPTER 3 

Limited role of ice duration and thermal stratification on interannual 

variability CO2 efflux from seasonally ice-covered lakes 

AUTHORS 

Malgorzata Golub, Ankur R. Desai1 

ABSTRACT 

Climate warming has induced widespread ice cover loss and warming temperature in seasonally 

ice-coved lakes. While ice duration dynamics has cascading effects on lake physical and 

biogeochemical processes, little is known on ice-CO2 emission feedbacks, primarily due to lack 

of long observational time series. Here, we evaluate ice feedbacks on interannual variability of 

pCO2 with a nearly three-decade-long time series for seven lakes from the North Temperate Lake 

Long Term Ecological Research program. There was no relationship between interannual, under-

ice pCO2 accumulation and springtime pCO2 with ice cover duration. While one day of ice cover 

loss corresponded to on average 4°C increase in summer water temperature, temperature increases 

did not enhance summer pCO2. We did not observe hypolimnetic pCO2 build-up and higher fall 

emissions due to longer thermal stratification and higher temperature on annual basis. An artificial 

warming experiment in Crystal Lake revealed that temperature-mediated pCO2 increases were 

small and within carbonate equilibria parameter uncertainties, and were likely lost to other 

geochemical effects on pCO2. Our results demonstrate that under-ice pCO2 is more dynamic than 
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previously assumed, predicting springtime emissions from ice is unreliable, and detecting climate 

warming impact on pCO2 calculated from carbonate equilibria is difficult. 

3.1      INTRODUCTION 

Outgassing of carbon dioxide (CO2) from inland waters offsets approximately 60% of net uptake 

of carbon into the terrestrial biosphere [Ciais et al., 2013]. However, these up-scaled estimates of 

carbon emissions from lakes and reservoirs do not generally include ice cover dynamics 

[Aufdenkampe et al., 2011; Raymond et al., 2013], which comprise a significant proportion of a 

year in temperate, boreal and Arctic lakes [Karlsson et al., 2013; Ducharme-Riel et al., 2015]. 

Therefore, it is uncertain how the source carbon strength from inland waters will respond to 

warming climate, hindering prediction of carbon fate in lakes carbon balances [Phillips et al., 

2015; Hasler et al., 2016] and contribution to regional and global carbon balances. Here we 

investigate interannual variability of pCO2 in relation to ice cover dynamics in seven north 

temperate lakes in Northern Wisconsin.  

A warming atmosphere would first manifest on lakes by changing the lake physical 

environment: shortening lake cover duration [Magnuson, 2000; Weyhenmeyer et al., 2011], 

increasing variability of ice phenology [Benson et al., 2012], warming water temperature [Winslow 

et al., 2014; O’Reilly et al., 2015] and changing lake thermal structure [Austin and Colman, 2007]. 

Lake annual CO2 balances in seasonally ice-covered lakes are tightly linked to these ice dynamics 

[Striegl et al., 2001; Karlsson et al., 2013] and temperature-mediated effects [Finlay et al., 2015]. 

Thus, there is good reason to expect that a changing physical environment, such as ice cover, 

influence lake chemistry and productivity.  
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Lake-ice prevents the exchanges of CO2 at air-water interface and determines the amount 

of CO2 accumulated under ice and further outgassing magnitudes after ice break-up [Riera et al., 

1999; Striegl et al., 2001; Demarty et al., 2010]. These springtime emissions account for a 

significant proportion of CO2 balances in seasonally ice-covered lakes [Riera et al., 1999; 

Karlsson et al., 2013]. Although ice cover duration is a poor predictor of under-ice CO2 in boreal 

and subarctic lakes at regional scale, lake-ice might play more important role in CO2 dynamics at 

local and temporal timescales [Denfeld et al., 2015]. In the case of dimictic lakes, the timing and 

length of thermal stratification closely follows lake-ice phenology [Austin and Colman, 2007], and 

CO2 accumulated in deep waters over summer is then outgassed during fall turnover [López 

Bellido et al., 2009; Karlsson et al., 2013; Ducharme-Riel et al., 2015]. However, the linkages 

between ice dynamic and the timing and strength of springtime and fall CO2 emissions remain 

unexplored because the majority of studies cover one season only. Therefore, to establish the role 

of ice cover dynamics in CO2 evasion variability, we need multi-year and multi-lake observation. 

A warming climate would imply shorter length of ice cover for lakes. Shorter ice cover 

leads to longer exposure to heat during growing season, and hence, contributes to warmer water 

temperature in the following season, and earlier onset and strength of thermal stratification [Austin 

and Colman, 2007; Posch et al., 2012]. Ice cover contributes to widespread warming trends of 

surface temperature across in ice-covered lakes [Schneider and Hook, 2010; O’Reilly et al., 2015]. 

Lake thermal stratification also suppresses turbulence in water column, modulating CO2

exchanges at air-water interface [MacIntyre et al., 2010], and decouples hypolimnetic waters from 

gas exchanges with atmosphere for prolonged time. Temperature, in turn, mediates processes 

regulating CO2 balances such as CO2 gas solubility in water [Weiss, 1974], metabolic rates, 

especially ecosystem respiration [Yvon-Durocher et al., 2012; Marotta et al., 2014], and 
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hypolimnetic accumulations rates [Ducharme-Riel et al., 2015]. Therefore, the effect of ice 

variability on lake CO2 variability might span beyond springtime and fall emissions but persist 

across years.  

In this view of climate-warming induced loss of ice cover and risk of permanent lake ice 

loss in many regions [Weyhenmeyer et al., 2011], it is critical to improve our understanding of ice-

CO2 emission feedbacks. Here we analyzed a long-term multi-lake dataset of lake ice cover and 

CO2 and asked: How does interannual variability in lake-ice phenology affect phenology of CO2 

emissions from lakes? To answer this question, we collected and harmonized over three-decade-

long records for seven lakes studied under North Temperate Lake Long Term Ecological Research 

program. Our working hypotheses are that shorter ice cover (1) reduces under-ice CO2 

accumulation and springtime efflux, (2) increases CO2 emissions during an open water season 

through longer exposure to heat, and (3) increases fall pulses of CO2 due to prolonged thermal 

stratification and warmer water temperature in hypolimnion. By testing these hypotheses, we can 

improve our predictive understanding on responses of CO2 emission from aquatic systems to 

declining ice cover.  

3.2      MATERIAL AND METHODS 

Study area and data collection  

Seven lakes are located in the Northern Highland Lake District (NHLD) in northern Wisconsin, 

USA. NHDL has a mosaic of mixed, hardwood, and coniferous forests (~53 % of total area), 

wetlands (28%), lakes (13%), and other land coverages [Buffam et al., 2010]. Soils in the NHLD 

are dominated by sandy gravel and gravelly sand with dominance of silicate over carbonate [Attig, 

1985].  
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The limnological data are collected under North Temperate Lake Long Term Ecological 

Research (NTL-LTER) program since 1981. The core lakes include two seepage humic lakes: 

Crystal Bog (CB) and Trout Bog (TB); one seepage clearwater lake (Crystal Lake); two lakes with 

intermediate landscape position: Big Maskellunge Lake (BM) and Sparkling Lake (SP); and two 

lakes with low landscape position: Allequash Lake (AL) and Trout Lake (TR). Lake area ranges 

from to 0.6 ha in CB to 1565.1 ha in TR. The mean depth ranges from 1.7 m in CB to 14.6 m in 

TR. Ice cover duration is ~ 145 days across all lakes and varies by lake and calendar year. Lake 

morphometric characteristics are in Table 3.1.  

Ice cover observations are made every other day around ice freezing and melting period. 

A lake is regarded as ice-covered when the sampling boat cannot reach the deepest point in the 

lake. Days of year with first ice and with first open water were set as freeze and break-up dates. 

Ice cover duration was calculated as a number of days between freeze and break-up dates. 

Water temperature is measured bi-weekly during open water season and every 6 weeks 

during ice-covered season. The measurements are made in the deepest part of each lake at 1-m 

depth intervals. Water temperature was averaged for epilimnion and hypolimnion.  

Nutrient chemistry is measured at the same station at several depths: the top and bottom of 

the epilimnion, mid-thermocline, and top, middle, and bottom of the hypolimnion. Parameters 

characterizing chemistry of lakes used in this study include: pH, dissolved inorganic carbon (DIC), 

total dissolved nitrogen (TN), total phosphorus (TP), dissolved organic carbon (DOC). The 

chemical composition parameters were averaged for epilimnion and hypolimnion. Statistical 

properties of lake chemical composition are summarized in Table 3.1.  
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Mixing and stratification indices 

The indices of mixing and stratification for each lake was modelled from water 

temperature, wind speed, and lake bathymetry, using Lake Analyzer for MATLAB [Read et al., 

2011] and available through Global Lake Ecological Observatory Network GitHub website 

(http://github.com/GLEON). Onset of stratification is set to one week with temperature gradient 

larger than 1°C. End of stratification is set to day of year when entire water column is fully mixed 

and water column is isothermal.  

Variability of CO2  

Concentration of CO2 and other inorganic carbon species from lakes was modeled from 

observations of pH, DIC, and water temperature using dissociation constants for freshwaters 

[Millero, 1979]. The carbonate equilibrium model based on pH and DIC enables the comparison 

of CO2 concentration across NHDL without producing erroneous values for humic lakes, and also 

showed highest precision of CO2 estimates (3.6-5.5% of the median) compared to other carbonate 

equilibria models [Golub et al, in review). The influence of ionic strength was neglected and all 

calculations were performed in pH NBS scale. Calculations were performed with the MATLAB-

version of the CO2 System Calculations [i.e., CO2SYS, van Heuven et al., 2011]. 

Time series with carbon data spanned period of 1986-2014. Under ice measurements, for 

example, were made around 18, 56, and 90 days of year. Although we estimated CO2 

concentrations for each sampling period, we were particularly interested in interannual variation 

of CO2 concentrations at four characteristic periods of CO2 emissions in ice-covered lakes: under-

ice, spring emissions after ice break-up, summer emissions, and fall emissions after autumn 

turnover.  
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We examined the relationship between ice duration and pCO2 to test hypothesis that shorter 

ice cover leads to lower under-ice pCO2. We compared pCO2 values all under-ice observations 

and calculated ice duration at time of measurement (number of days since ice-on). Therefore, CO2 

concentrations from at least two last measurements before ice-out was considered as representative 

for estimating under-ice CO2 accumulation rate and as a proxy of springtime emissions. Because 

sampling periods just before and after ice melt and freeze are dangerous for sampling, these periods 

were particularly under-sampled and we relied on linear extrapolations until ice-off and ice-on 

dates. Second comparison comprised within-year observations for which we fitted 29 annual 

curves, and linearly extrapolated to ice-melt days. We assumed no air-water CO2 exchanges 

through ice, linear CO2 build-up over winter, and no under-ice convective mixing and biotic 

uptake. 

To test hypothesis that shorter ice cover leads to greater hypolimnetic CO2 accumulation 

via prolonged lake thermal stratification and warmer temperature, we analyzed CO2 concentration 

in summer months (June, July, and August). The measurements below thermocline were averaged 

to hypolimnetic CO2 concentrations. No CO2 exchange between epilimnion and hypolimnion was 

assumed. For the same months (JJA) we estimated summer emission and correlated with ice 

duration to verify hypothesis that longer open water season contributes to higher pCO2. 

3.3      RESULTS 

Lake-ice variability effect on lake mixing and temperature regimes 

Lake-ice showed similar dynamics across all seven lakes (Table 3.1). Shallower lakes had longer 

ice cover, around 150 days, while deeper lakes had about 12 days shorter (~137 days). Interannual 

variability of ice duration was coherent across all lakes, ranging from 14 to 17 days. The effect of 

interannual variability of ice on mixing regimes varied by stratification index and lake (Table 3.2). 
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Ice cover duration showed a significant positive relationship with onset of stable stratification in 

four, mostly deep lakes (Table 3.2). In two lakes, TB and CR, longer ice cover also corresponded 

to prolonged stable stratification. The length of open water season was negatively correlated with 

ice duration across all lakes. Additionally, shorter ice duration corresponded to higher summer 

water temperature both in epilimnion and in hypolimnion (Table 3.2, Fig. 3.1). The loss of ice 

cover by one day translated into slopes around 0.4°C in summer water temperature, coherently 

across of all lakes. The intercepts of ice duration-water temperature relationship corresponded with 

depth of mixed layer, with fastest warming rates found in bog and in shallow lakes, however the 

relationship was insignificant. 

Lake-ice variability effect on under-ice accumulation and prediction of springtime pCO2 

When considering under-ice pCO2 accumulation from pooled under ice observations, pCO2 

gradually accumulated with longer ice cover duration (Fig. 3.2). Except for Trout Bog Lake, all 

lakes showed significant, positive relationships of under ice pCO2 and ice duration (R2adj. at 

p<0.05 for AL, BM, CB, CR, SP, TR lakes accounted for 0.15, 0.30, 0.12, 0.27, 0.32, 0.34, 

respectively). The rates of under-ice pCO2 accumulation were 4 µatm d-1 in CR, 6 µatm d-1 in TR, 

9 µatm d-1 in AL, BM, SP, and 18 µatm d-1 in CB. 

However, under-ice pCO2 also showed high interannual and between-sampling-dates 

variability across all lakes (Fig. 3.2). In SP, for example, the pCO2 standard deviation accounted 

for 436, 405, and 552 µatm at first, second, and third sampling dates (around 15, 50, and 90 day 

of year), respectively. Moreover, nearly a half of interannual observations showed pCO2 decline 

or nonlinear relationship with ice duration. Most nonlinear pCO2 responses to ice duration showed 

under-ice pCO2 build-up between first and second sampling points, but pCO2 decline between 

second and thirds sampling points. Also, the rates of pCO2 change were several times slower at 
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the end of ice cover. Similar nonlinearities and declines of pCO2 with ice duration were observed 

across all lakes. 

Springtime pCO2 calculated from both cumulative and annual under-ice data showed 

different ranges of interannual variability at ice-off (Fig. 3.2-3.3). In SP, for example, the pCO2 

standard deviation was 186 µatm for cumulative and 990 µatm for annual data. Annual pCO2 data 

predicted 4-6 times more variable springtime pCO2 than cumulative data in non-bog lakes. The 

root mean square errors (RMSE) between these two methods of springtime pCO2 estimation 

ranged from 468 µatm in CR to 2853 µatm in CB. Differences in the springtime pCO2 means 

estimated from two methods were within 15%, however, pCO2 predicted from cumulative under-

ice pCO2 tended to be overestimated. There was no relationship between springtime pCO2 

calculated from annual under-ice data and ice duration across all lakes (Fig. 3.2-3.3). The observed 

(within two weeks since ice-melt) were significantly lower than estimated pCO2, except for TB 

(Table 3.3).  

Lake-ice variability indirect effects on lake CO2 concentrations 

The temperature-mediated effects on pCO2 were season showed no or negative 

relationships with water temperature (Fig. 3.1) except for a weak relationship between pCO2 and 

water temperature in CR. Stratification length played an important role in summer hypolimnetic 

pCO2 build-up in three deep lakes, BM, TR, and SP, explaining 59%, 40% and 20% of pCO2 

variability respectively (Fig. 3.5, Table 3.3). The pCO2 accumulation rates accounted for 34, 22, 

and 19 µatm d-1, respectively. Like under-ice pCO2 accumulation (Fig 3.2), however, 60% 

annual data showed linear increases, linear decreases, non-linear increases and declines along 

length of stable stratification (Fig. 3.4). Nearly two third of with-in year summer seasonal pCO2 

data showed non-nonlinear responses to stratification length. When extrapolated till end 

stratification season, 
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the fall were unrelated to length of thermal stratification. Fall pCO2 values in non-bog lakes were 

similar to springtime pCO2 magnitudes (Table 3.3).  

3.4      DISCUSSION 

Lake-ice variability effect on lake mixing and temperature regimes 

Here we used interannual variability to test coupling ice cover dynamics to water temperature and 

pCO2 in seasonally ice-covered lakes, allowing us to test hypothesis related to warming climate 

effects on ice and ecosystem responses at shorter time frame and independently of long term trends 

[Austin and Colman, 2007]. Shorter ice cover duration corresponded to earlier onset of 

stratification in three deep lakes and one meromictic lake, and to warmer summer water 

temperature in epilimnion and hypolimnion (Table 3.2, Fig. 3.1). These results agree with observed 

warming trends in lakes [Hanson et al., 2006; Austin and Colman, 2007; O’Reilly et al., 2015] and 

to variation in stratification metrics [Austin and Colman, 2007]. An ice-albedo feedback was 

proposed to explain these relationships where dark water absorb more heat relative ice-coved 

waters [Austin and Colman, 2007]. Ice cover duration was found as one of the best exploratory 

variable responsible for warming trends in seasonally ice-covered lakes [O’Reilly et al., 2015]. 

Interestingly, all lakes had similar slopes of relationship between summer water 

temperature and ice duration, which corresponded with lake depth (Fig. 3.1, Table 3.1). Given all 

lakes were affected by the same climatic conditions and heat capacity is the same across lakes was 

the same, shallower and brown lakes warmed up faster than deeper lakes Recent studies indicate 

an interplay of morphometric characteristics in response to warming climate [Winslow et al., 2014; 

O’Reilly et al., 2015]. However, our results partly agree with, warming trends in non-bog lakes in 

this study [O’Reilly et al., 2015], who although found the highest warming rates were in the 
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shallowest Lake Allequash (0.85°C decade-1), the second shallowest lake, Lake Big Muskellunge 

had the slowest warming rates across non-bog lakes (0.56°C decade-1). 

Lake-ice variability effect on under-ice CO2 and prediction of springtime pCO2 

Our first hypothesis that shorter ice cover leads to lower CO2 accumulation, however, was 

partly falsified as we did detect significant relationships with cumulative under-ice CO2 but 

insignificant relationship for within-year data (Fig. 3.2). In contrast to our finding, lack of ice 

duration with under-ice relationship was found in Swedish and Finnish lakes [Denfeld et al., 2015]. 

However, as we showed on SP lake example (Fig. 3.2), observation of the within-year variability 

of under-ice pCO2 suggests influences of other factors on under-ice CO2 accumulation. Other 

studies shown that pCO2 concentration correlated with nutrients and dissolved organic 

concentration, suggesting hydrological influences as the dominant influence over ice blocking 

CO2 exchange with atmosphere [Denfeld et al., 2015]. Moreover, under-ice CO2 can be 

sequestered when solar radiation penetrates though ice and under-ice turnover brings nutrient-rich 

water to the epilimnion [Baehr and DeGrandpre, 2004]. As a result of potential confounding 

factors, there is no convincing evidence that length of ice increases pCO2 build-up, and that in 

turn, ice durations as a proxy of under-ice pCO2 accumulation and springtime emissions. These 

results imply that approximating spring emissions based on under-ice pCO2 as has been done in 

some studies [Denfeld et al., 2015; Ducharme-Riel et al., 2015] may introduce biases in CO2 

emissions. In the case of our study lakes, the RMSEs of springtime pCO2 at the ice melt ranged 

from 468 µatm to 2853 µatm (Fig. 3.3). 

Lake-ice variability indirect effects on lake CO2 concentrations 

Summer temperature had either a flat or negative relationship of pCO2 for both epilimnetic 

and hypolimnetic temperature. We attribute this to relative small temperature effect on pCO2 
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relative to non-temperature effects (i.e., chemical and biological, Fig. 3.1). Henry’s law implies 

that all else being equal, pCO2 should increase as solubility constant goes down with increasing 

temperature. However, temperature-mediated pCO2 increases were likely overridden by other 

factors. Similarly confounding relationships were found in large lakes [Alin and Johnson, 2007] 

and possibly in global databased on lake chemistry [Sobek et al., 2005]. Such responses would not 

be expected here, as the lakes in this study generally had low productivity, except for highly 

productive epilimnetic waters in bog lakes (Table 3.1). However, given ecosystem respiration 

generally exceeded gross primary production in these lakes [Hanson et al., 2003], it is likely that 

CO2 production was sufficient to offset temperature-dependent increases. Consequently, we 

falsified hypotheses 2 and 3 that pCO2 increases were attributed to ice cover variability. 

High variability of pCO2 in summer temperature in bog lakes (Fig. 3.1) might suggest 

influences of other factors affecting CO2 interannual variability. We assumed the absence of long-

term trends in input parameters and pCO2 while analyzing interannual variability. However, over 

the study period, we bserved non-monotonic variability in pCO2 across years in some lakes, mostly 

in bog lakes. We detected no trends in wintertime measurements, implying limited atmospheric 

change as winter is assumed to be a dormant season and chemical composition is least affected by 

biology. However, prolonged open waters season in years with shorter ice cover could also have 

resulted in increased influx of nutrients and dissolved organic carbon during precipitation events 

[Sobek et al., 2005; Tranvik et al., 2009]. For example, Finnish annual CO2 fluxes showed a 

positive relationship with precipitation [Rantakari and Kortelainen, 2005]. However, CO2 trends 

in bog study lakes, were coherent rather with chlorophyll a than precipitation at least at shorter 

temporal scales [Hanson et al., 2006], suggesting the impact of nutrient delivery with precipitation. 
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Another factor of the lack of pCO2 relationship with hypolimnetic temperature is attributed 

to the presence of anoxic conditions and methane production instead of carbon mineralization to 

CO2 [Tranvik et al., 2009]. However, this is unlikely in this study, as most lakes in this study are 

unproductive or polimictic to experience prolonged or any anoxic conditions. Additional analyses 

using dissolved oxygen in addition to CO2 would help disentangle that effect. 

To illustrate difficulty in estimating temperature-effect on pCO2 derived from the pCO2-

pH-DIC equilibrium, we used data for Crystal Lake in years 2011-2014, in which thermal 

stratification was artificially perturbed to eradicate an invasive, cold water rainbow smelt [Gaeta 

et al., 2012; Lawson et al., 2015]. Thermal de-stratification occurred in 2012-2013 while 2011 and 

2014 were used as reference points. Assuming no major external events affecting lake chemistry 

and temperature during the experiment, the mean summer (June-August) epilimnetic water 

temperature increased by 3.64°C, a twofold increase relative to interannual variability of seasonal 

means. The pCO2 and DIC increased by 266 µatm and 15 µM, while pH declined by 0.13 units. 

These changes corresponded to nearly fivefold increase compared to interannual variation of pCO2 

and equal to interannual variation in pH and DIC. To quantify pCO2 sensitivity to parameter 

changes, the reported single-parameter values were perturbed on long-term summer parameter 

averages (Fig. 3.5). Despite higher water temperature, pCO2 increased by 22 µatm and was within 

random parameter uncertainties (±42 µatm) around long-term pCO2 mean. The pH and DIC 

influences on pCO2 accounted for +64 µatm and +111 µatm, respectively.  

These results suggest that detecting the effect on pCO2 from an average 0.4°C increase per 

1 day of ice loss (+8 µatm) was rather unlikely, given high pCO2 sensitivity to pH and DIC. While 

many researchers suggest temperature independence of pCO2 and CO2 flux [Sobek et al., 2005; 

Weyhenmeyer et al., 2015], we find instead that while temperature does have a large effect on 
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pCO2, it is generally overridden by biotic effects. Thus, the regression analyses typically show no 

or negative temperature-pCO2 relationships [Alin and Johnson, 2007] Separating temperature and 

non-temperature effects on pCO2 [Takahashi et al., 2002; Atilla et al., 2011] would be beneficial 

for quatifying temperature effects on pCO2 with climate warming. 

3.5      CONCLUSIONS 

To answer question of “How does interannual variability in ice phenology affect phenology of 

CO2 emissions from lakes?”, we tested CO2 connections to changing ice feedbacks on nearly-

three-decade long time series for seven seasonally ice-covered lakes.  

Although cumulative under-ice pCO2 observations were positively correlated with ice 

duration in six lakes, within-year pCO2 showed high temporal variability, especially in the second 

part of winter. Interannual springtime pCO2, predicted from under-ice pCO2, was hence 

uncorrelated with ice duration. We also found that longer exposure to heat with shorter ice duration 

significantly increased water temperature but did not resulted in temperature-mediated pCO2 

increases in epilimnion and hypolimnion. Earlier onset of thermal stratification corresponded to 

shorter ice cover, and played an important role in hypolimnetic accumulation of pCO2 in deep 

lakes. However, high within-year temporal pCO2 variability resulted in pCO2 unrelated to the 

length of thermal stratification at the end of summer. Moreover, all lakes showed elevated fall 

pCO2 regardless of lake morphometry and presence of stratification. Therefore, the contribution 

of hypolimnetic CO2-rich waters to CO2 pulse during autumn turnover was insufficiently 

explained by the length of thermal stratification. Warming experiment results coupled with model 

simulations revealed that even extreme temperature warming (corresponding to warming trends 

spanning several decades) effect on pCO2 remained undetected because of high pCO2 uncertainty 

calculated from pH and DIC.  
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Linking temporal pCO2 variability to direct (shorter ice-covered periods) and indirect 

(warmer waters and/or longer thermal stratification) effects of climate-induced ice cover loss 

proved to be difficult from existing long-term records. Our results imply more biogeochemically 

dynamic processes regulating wintertime pCO2 than previously assumed and inability to predict 

the magnitudes of spring CO2 pulses from ice duration itself. Limited role of water temperature 

and thermal stratification in summer and fall pCO2 indicates an unresolved interplay of physical 

and biogeochemical processes modulating temporal pCO2 variability. Given that pCO2 calculated 

from pH-based carbonate equilibria is currently most commonly used to estimate CO2 flux from 

freshwaters, our results imply difficulty in detecting pCO2 variability and change due to climate 

warming. 
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3.7      FIGURES 

Figure 3.1 Relationship between ice cover duration and mean summer water temperature indicates 
significantly warmer temperature due to loss of ice cover (both left panels) however temperature 
increases did not translate to temperature-modulated pCO2 increases (both right panels). The 
statistics for fitted regression lines are in table 3.2. 
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Figure 3.2 Under-ice and springtime pCO2 in relation to ice cover duration in Sparling Lake. 
Cumulative under-ice pCO2 (upper panel), within-year under-ice pCO2 (middle panel), and 
springtime pCO2 predicted from cumulative (open squares) and within year (filled magenta 
circles) pCO2 under-ice data (bottom panel).  
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Figure 3.3 Comparison of springtime error prediction from two approaches (cumulative and 
within-year) to estimating springtime pCO2 from ice records for seven analyzed lakes. RMSEs 
indicate the root mean square errors. 
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Figure 3.4 Relationship between the length of thermal stratification and pCO2 accumulation in 
hypolimnion (left panel), and single-lake relationship with highlighted within-year variability of 
pCO2 in Sparkling Lake (right panel). Filled circles indicted statistically significant relationship 
in three deep lakes (SP, TR, BM). 
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Figure 3.5 The parameter sensitivity of pCO2 calculated from carbonate equilibrium equations 
(pH - magenta line, dissolved inorganic carbon - cyan line, and temperature - blue line in 
comparison with long-term summer pCO2 - black line) in Crystal Lake during warming 
experiment. Shaded region indicates confidence interval after 10000 random and systematic error 
propagation. 
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CHAPTER 4 

Multi-temporal patterns and environmental drivers of CO2 fluxes in lakes and 

reservoirs 

AUTHORS 
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ABSTRACT 

Current emission rates from the aquatic components of the global terrestrial carbon balance are 

highly uncertain owing to the scarcity of direct CO2 flux measurements. Here, we combine high 

temporal resolution eddy covariance CO2 flux data from 19 globally distributed lakes and 

reservoirs representing six climatic zones and wide gradients of nutrient and color to quantify 

empirical emission rates and examine which environmental controls drive patterns and dynamics 

of CO2 efflux at multiple temporal scales. CO2 flux ranged from -1.12 gC m -2 d-1 to 1.69 gC m -2 

d-1, with mean CO2 flux was 0.30 gC m -2 d-1, and did not show spatial variability with latitude,

mean annual temperature and precipitation. Despite differences in lake characteristics in trophic 

state, color, and thermal stratification, most waterbodies showed coherent responses to 

environmental controls at daily to seasonal timescales. Temperature, solar radiation, and wind 

speed were among environmental drivers best predicting CO2 fluxes. Most striking result was a 
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consistent 20-30-day oscillatory CO2 flux pattern across all lakes. Applying a simple upscaling to 

these direct observations, we estimated annual emission rate from lakes and reservoirs at 0.23±0.19 

PgC, 40% less compared to current emission rate for lentic systems. Our results indicate that 

greater temporal sampling from diverse aquatic sites can significantly alter our understanding and 

quantification of lake and reservoir CO2 contribution to global carbon balances. 

4.1      INTRODUCTION 

Despite covering small proportion of Earth’s land [Lehner and Döll, 2004; Downing et al., 2006], 

inland waters have been estimated to emit 1 PgC yr-1 to the atmosphere, an amount nearly equal to 

cumulative anthropogenic carbon release due to net land use change [Ciais et al., 2013]. However, 

this source strength is typically based on limited temporal sampling and thus poorly constrained 

[Ciais et al., 2013]. Depending on the study, lakes and reservoirs CO2 emissions only range from 

0.32 to 0.64 PgC yr-1 at the global scale [Cole et al., 2007; Tranvik et al., 2009; Aufdenkampe et 

al., 2011; Raymond et al., 2013]. To improve assessment of the role of lakes and reservoirs in 

global carbon balances and to evaluate CO2 emissions feedbacks to global change, we make a first 

synthesis of continuous, direct CO2 flux estimates over 19 globally distributed lakes and 

reservoirs.  

Exchange of CO2 at water-air interface reflect net carbon-related processes in the 

waterbody, including direct CO2 uptake [Balmer and Downing, 2011], biological and 

phytochemical mineralization of terrestrially-derived organic carbon [McCallister and del 

Giorgio, 2012], advected soil respiration [Eugster et al., 2003], groundwater inputs [Stets et al., 

2009; McDonald et al., 2013], and internal CO2 production [Weyhenmeyer et al., 2015]. 

Ecosystem respiration exceeds gross ecosystem productivity for most waterbodies [del Giorgio et 

al., 1997; Hanson et al., 2004], therefore inland waterbodies are generally supersturated with CO2 
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and net sources of CO2 to atmosphere [Cole et al., 2007; Tranvik et al., 2009; Raymond et al., 

2013]. Because of tight aquatic-terrestrial linkages, inland waters directly and indirectly integrate 

influences from watersheds [Williamson et al., 2008]. It is postulated that influences on aquatic 

systems will be mediated rather through delivery of solutes from watershed than temperature 

[Sobek et al., 2005; Hanson et al., 2006]. Hence CO2 flux measurements can be used to assess the 

role of inland waters in terrestrial system [Cole et al., 2007; Battin et al., 2009; Raymond et al., 

2013]. To better understand the role of inland of waters in regional and global carbon balances, 

however, we need the reliable estimates of CO2 flux from those ecosystems.  

The major obstacle in reducing uncertainty in global estimates of carbon emissions from 

lakes and reservoirs is scarcity of continuous and direct CO2 measurements [Raymond et al., 

2013]. Current estimates are based only 1% on direct measurements, while the remainder rely on 

extrapolation from point measurements and modelling from carbonate equilibria [Raymond et al., 

2013], which have been shown to grossly overestimate CO2 concentrations, particularly in systems 

with high dissolved organic carbon content [Abril et al., 2015, Golub et al., in review]. Only one 

study synthesizes published direct CO2 measurements in global small ponds to date [Holgerson 

and Raymond, 2016]. However, even these direct CO2 estimates are prone to uncertainties 

attributed to parameterization of gas transfer velocities [Wanninkhof et al., 2009; MacIntyre et al., 

2010].  

In contrast, the eddy covariance (EC) technique is the only method providing direct 

measurements of CO2 exchanges at the water-air interface [Wanninkhof et al., 2009; Aubinet et 

al., 2012], and in combination with measurements of CO2 concentrations, also gas transfer 

velocities [MacIntyre et al., 2010; Heiskanen et al., 2014]. Already several dozens of towers 

provide high resolution measurements of CO2 exchanges over aquatic systems in six climatic 
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zones, though most of these have only published short time records of the observations [Eugster 

et al., 2003; Vesala et al., 2006; Lee, 2014; Shao et al., 2015; Katul et al., 2016]. Therefore, 

synthesis of results from multiple eddy towers over multiple years gives unprecedented 

opportunities for combining high temporal resolution of EC measurements with benefits of space-

for-time substitution over ecosystems in broader geographical scale to compare magnitudes of 

CO2 flux from diverse lakes and reservoirs.  

Time series of CO2 fluxes allow us to investigate which drivers govern CO2 flux at hourly 

to centennial time scales [Hanson et al., 2006; Vesala et al., 2006; Perga et al., 2016]. At shorter 

time scales, air-water CO2 flux is hypothesized to be regulated through kinetic forcing on gas 

transfer velocities (including wind shear, convection, waves, rain, bubbles, fetch [Cole and 

Caraco, 1998; Wanninkhof et al., 2009; MacIntyre et al., 2010; Vachon and Prairie, 2013], and 

thermodynamic forcing on ΔpCO2 (the difference between pCO2 in air and water), including 

ecosystem metabolism, irradiance, temperature, mixing, and transport, [Hanson et al., 2006; Atilla 

et al., 2011; Yvon-Durocher et al., 2012; Mammarella et al., 2015]. The regulators of CO2 

concentrations at longer timescales include climate, nutrients and organic carbon delivery [Hanson 

et al., 2006; Maberly et al., 2013; Finlay et al., 2015; Perga et al., 2016].  

Moreover, the same driver may affect different physical, chemical and biological processes 

at different time scales [Hanson et al., 2006], and the importance of different drivers and their 

contribution to CO2 flux change over time [Sturtevant et al., 2015; Perga et al., 2016]. The 

ecosystem-scale CO2 feedbacks also may significantly vary depending on nutrient, color, 

connectivity with landscape, waterbody morphometry [Blenckner, 2005; Webster et al., 2008]. 

Finally, the impact of global threats, such as eutrophication, climate change, invasive species, 

building water infrastructures [Smith, 2003; Lehner et al., 2011; Attermeyer et al., 2016], 
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additionally affects freshwater systems and interacts with “natural” environmental controls. 

Therefore, temporarily-resolved observations to inform mechanistic models [Hasler et al., 2016] 

are urgently needed to improve our understanding of multi-temporal CO2 ecosystem feedbacks to 

biotic and abiotic factors and to predict future trajectories of change.  

In view of limited understanding of meteorological controls of air-water CO2 exchange in 

freshwater ecosystems, we synthesize the eddy covariance from globally distributed 19 lakes and 

reservoirs. We asked: How do observed diurnal and seasonal patterns of CO2 flux vary by lake 

and meteorological characteristics? What consistent climatic and biotic drivers best predict 

ecosystem level CO2 responses? How does full temporal sampling of all hours and seasons 

influence estimates of global net evasion of CO2 from inland lakes and reservoirs compared to 

published indirect approaches? By answering these questions, we can improve our predictive 

understanding on responses of CO2 emission from aquatic systems to environmental drivers at 

multiple time scales. 



84 

4.2      MATERIAL AND METHODS 

Study sites 

We analyzed multi-temporal patterns of air-water CO2 exchange and environmental drivers across 

globally-distributed 19 sites with direct eddy covariance flux towers. The sites included 13 lakes 

and 6 reservoirs, and were characterized in terms of morphometric type, nutrient and dissolved 

organic carbon concentrations, and climatic zones whenever possible (Fig. 4.1, Table 4.1). Most 

sites were located between 40-68°N of latitude, which coincides with the largest area of Earth’s 

land surfaces covered with lakes. To our knowledge this study is the first large-scale synthesis of 

direct CO2 observations in lakes and reservoirs.  

Eddy covariance data 

The eddy covariance (EC) technique directly measures air-water exchange of CO2, H2O, energy, 

and momentum. It does not disturb the water-air interface and captures all sources of turbulent gas 

exchange across a lake flux footprint (i.e., an upwind area “seen” by the tower). EC flux is 

computed as a products of the mean air density and the covariance between turbulent fluctuations 

of mixing gas ratio and vertical wind speed [Aubinet et al., 2012]. The measurements were 

generally measured at 10 Hz frequencies which were further integrated into half-hourly averages 

of ecosystem carbon dioxide, water vapor, and energy fluxes by site principle investigators (PIs). 

Raw data processing, quality screening, flux computation was performed by PIs according to 

methodologies applicable to each site. Although no standard data processing protocol for 

freshwater systems has been developed yet, the reliable flux computation procedures developed 

for terrestrial systems over nearly three decades were applied [Baldocchi, 2014], significantly 

reducing cross-site flux uncertainty due to methodological differences. Length of time series 
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reported varied from a few days to several year-long observations, however most data 

were collected over multiple (up to seven) open water periods (Table S4.1).  

Data were further harmonized to the same data format and units, screened for fetch, and 

de-spiked. The number of daytime and nighttime observations retained varied across sites but with 

on average data gaps comprised 69% (daytime) and 73% (nighttime) of time series (Table 

S4.1). The largest gaps were due to excluding out-of-lake tower footprints or sensors 

malfunctioning. Tower footprints (i.e., an upwind areas visible to tower instruments) were 

calculated using two dimensional model [Kljun et al., 2015] to estimate lake surface area 

contributing to half-hourly flux measurements (at least >80% lake surface area within 

footprint) or observations were excluded based on prevailing wind direction provided by PIs. 

We applied a consistent approach to gap-fill climatic (air temperature, incoming solar 

radiation, photosynthetically active radiation, wind speed, friction velocity, relative humidity, 

barometric pressure, net radiation, vapor pressure deficit) and in-water (water temperature at 0m 

and 1m depths, partial pressure of CO2) variables across all sites using an enhanced look up table 

(LUT) approach [Reichstein et al., 2005] using REddyProc package (https://www.bgc-

jena.mpg.de/bgi/index.php/Services/REddyProcWebRPackage). To gap-fill sensible and latent 

heat, and CO2 fluxes, we first tested two approaches: LUT modified for our purposes and artificial 

neural network (ANN, [Morin et al., 2014]). In LUT approach, we used wind speed, air 

temperature, and incoming solar radiation to gap-fill CO2 flux. In ANN approach, we included 

variables of fuzzy diurnal and seasonal cycles, three decomposed signals of NEE with highest 

spectral energies, and all climatic variables with statistically significant relationship with the flux 

[Papale and Valentini, 2003; Morin et al., 2014]. The ANN algorithm could iteratively choose 

variables, consequently each lake had different sets of variables used to gap-fill. Because we 
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modified LUT source code for our purposes we could not estimate uncertainty and biases due to 

gap-filling, however it has previously been noted that the LUT approach tends to overestimate 

annual flux values [Franz et al., 2016]. The average root-mean-square-error in ANN approach 

accounted for 0.35 µM m -2 s-1. Single-site uncertainty estimate are in table S4.1. Although 

both approaches generally led to similar magnitudes and patterns of fluxes, LUT approach 

resulted in a smaller number of end-gaps and always used the same variables for gap-fill 

across all sites. Therefore, we used LUT to gap-fill fluxes as it also proved to be suitable in 

other limnetic sites [Shao et al., 2015; Franz et al., 2016] but used the ANN results to interpret 

potential drivers. Linear interpolation was used to gap fill reminder gaps.  

Auxiliary data 

Global distribution and surface area of lakes and reservoirs for CO2 flux upscaling were obtained 

from Global Lakes and Wetlands Database (GLWD, [Lehner and Döll, 2004]). Data levels 1 and 

2 of GLWD contains lakes and reservoirs >0.10 km2. Ice-free days were estimated from mean 

annual air temperature, air temperature amplitude, and latitude following equations 4 and 5 

[Weyhenmeyer et al., 2011]. Monthly bias-corrected CRU-NCEP gridded temperature and 

precipitation data for year 2010 were produces as part of Multi-scale Synthesis and Terrestrial 

Model Intercomparison Project [Wei et al,. 2014]. Monthly values were aggregated into annual 

values.  

Data analysis 

To identify time scales with largest spectral energies in CO2 flux and environmental controls, we 

used continuous wavelet transform (CWT) with the Morlet wavelet to decompose signals. The 

wavelet was applied as bandpass filter to the time series, which was then stretched in time by 
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varying its scale and normalizing it to have unit energy [Grinsted et al., 2004]. The CWT is useful 

in extracting features from noisy geophysical time series [Grinsted et al., 2004]. It also suitable 

for nonstationary data which are frequent in ecological systems [Cazelles et al., 2008]. The Morlet 

wavelet is well localized both in scales and frequencies [Grinsted et al., 2004]. Because Morlet 

wavelet is sensitive to edge effects at both ends of time series [Cazelles et al., 2008], we used 

symmetrical zero padding to extend signals. However, it is impossible to totally eliminate the edge 

effect, and therefore areas outside of coin of influence should not be taken into account [Cazelles 

et al., 2008]. Another limitation of using CWT is a length of eddy covariance measurements, 

typically over an open water season, which limits CWT detection ability from monthly (in case of 

shorter time series) to half a yearly time scales. Consequently, we focused the analysis here on 

hourly, daily, weekly, monthly, and seasonal timescales.  

We examined which environmental driver controls CO2 flux at multiple timescales using 

robust non-linear regression at half-hourly time scale (binned and un-binned) and wavelet 

coherence at hourly to seasonal timescales. This technique detects time-localized oscillations 

common to two signals and is a measure of correlation in time frequency space [Grinsted et al., 

2004]. Gaussian quadratic least-squares fit was used to derive equation to estimate CO2 efflux 

along latitude. 

4.3      RESULTS 

Spatial patterns of CO2 flux 

The distribution of daily sums of net ecosystem exchange of CO2 (NEE) for open water seasons 

showed a range of patterns and magnitudes across the study lakes (Fig. 4.2). Average daily 

emission for all water bodies ranged from -1.12 gC m-2 d-1 to 1.69 gC m -2 d-1 with the average 

daily NEE of 0.30 gC m -2 d-1across all lakes. A vast majority of lakes released carbon to 
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atmosphere during an open water season. One lake, Lake Erie, was on average sink of carbon with 

average NEE accounting for -0.12 gC m -2 d-1. Three other lakes, Lake Mendota and Lake Taihu 

(both eutrophic), and Lake Villasjon (humic with submerged vegetation) were on average near-

neutral, slightly above equilibrium with atmosphere. The largest carbon emissions were in a humic 

boreal lake (Lake Kuivajarvi, 0.68 g C m -2 d-1) and two reservoirs: tropical Nam Theun2 (1.10 gC 

m -2 d-1) and temperate Maneesward (0.74 g C m -2 d-1). When daily CO2 fluxes were divided by 

lake groups, low-to-moderate productivity, high productivity, humic, and reservoirs waterbodies 

outgassed on average 0.24, 0.12, 0.39, and 0.47 gC m -2 d-1, respectively.  

Almost all lakes showed high NEE variability during an open water season. While majority 

of water bodies had mean NEE corresponding to the peak of highest probability NEE (mode), 

some of the lakes (like Lake Taihu or Lake Kuivajarvi) exhibited an apparent bimodal distribution 

with mean flux falling between two peaks. Fifteen out of nineteen (80%) lakes sequestered 

atmospheric CO2 at some point of an open water season, regardless of lake trophic state.  

Table 4.2 compares cumulative NEE over a common summer period (199-342 day of 

year), a 36 period with overlapping observations for a majority (n=16) of the sites. Seasonal 

cumulative values ranged from -4.6 gC m -2 36 days-1 in shallow with submerged vegetation Lake 

Villasjön to 28.6 gC m -2 36 days-1 in Reservoir Maneswaard. Most water bodies released CO2 to 

atmosphere over this period, on average 12.67 gC m -2 36 days-1 or 10.94 gC m -2 36 days-1 

(after averaging within-site interannual variability). Higher NEE relative to summer average 

were found in reservoirs and humic lakes, while smaller fluxes were found in productive lakes. 

Although Lake Taihu was a highly productive lake, over the 36-day common period, it emitted 

CO2 comparable in magnitude to the mean CO2 flux.  
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Mean daily NEE across for 36-day period was 333 mgC m -2 day-1 across lakes and 

ranged from -174 mgC m -2 d-1 to 772 mgC m -2 d-1 (Table 4.2). Again, lower CO2 flux 

magnitudes were observed in eutrophic and unproductive water bodies, while larger in humic 

lakes and reservoirs. These CO2 flux averages were higher or lower relative to open water 

averages (Fig. 4.2) depending on the lake. Daytime hourly flux magnitudes were, on average, 

45% lower relative to nighttime hourly flux (Table 4.2).  

We observed no linear pattern of NEE along latitude or to gradients of mean annual 

precipitation or mean annual air temperature (Fig. 4.3), indicating an importance of lake-specific 

characteristics in modulating ecosystems’ response to climatic drivers. The only obvious pattern 

was that emissions between 30-40°N and >62°N were lower relative to CO2 flux in 50-60°N.  

Temporal patterns: Diurnal cycle 

When diurnal NEE variations are compared for each month, we found consistent patterns 

of daytime minima and nighttime mixima except for the flushing reservoir Estmain (Fig. 4.4). 

Estmain Reservoir had the highest NEE during the day. The amplitude of midday NEE drawdown 

varied across lakes and across open water season. In August, for example, the highest diurnal 

uptake was in productive lakes Zarnekow and Mendota, at 1.34 and 0.88 µM m -2 s-1, respectively. 

The smallest diurnal drawdown was in a humic lake (Valkea-Kotinen), 0.15 µM m -2 s-1. In fall 

months, the diurnal variability generally decreased and patterns were irregular among lakes. 

Moreover, NEE showed little or no mid-day drawdown in September in deep, stratified lakes 

(Mendota and Valkea-Kotinen). In October, small midday dips were observed in almost all 

waterbodies. Despite predominant effect of lake metabolism at daily timescales, a clear trend of 

gradually increasing NEE during water-warming months was observed in almost all lakes.  
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Temporal patterns: Seasonal cycle 

Seasonal variations were pronounced and dominant across of lakes and reservoirs (Fig. 4.5). Most 

water bodies are net sources of carbon to atmosphere thought the open water season. Across all 

lakes, NEE ranged from -0.3 gC m -2 d-1 to 0.6 m -2 d-1 in spring, while in the fall, NEE ranged from 

0 gC m -2 d-1 to 1 gC m -2 d-1. Like in diurnal cycle, there is a gradual increase (reduced sink, 

increased emission) of NEE across open water season. 

In additional to variation across seasons, regular oscillations at 20-30 day intervals were 

present in all time series. In waterbodies with vegetation, NEE oscillated around a mean of -0.2 

gC m -2 d-1 (Lake Villasjon) and 0.5 gC m -2 d-1 (Reservoir Zarnekow) until late August, when daily 

emissions nearly doubled in Reservoir Zarnekow and Lake Villasjon switched from sink of carbon 

to source of carbon. NEE in deep lakes (Lake Valkea-Kotinen and Lake Mendota) also reached 

emission maxima in late summer/early fall but gradually decreased towards the end of season, 

reaching values comparable to the seasonal average.  

Drivers of lake CO2 flux 

Half-hourly time scale 

Scatterplots of half-hourly observations of NEE and drivers for an open water season were very 

scattered and generally showed no or weak relationships (data not shown). To reduce scatter from 

noise and secondary drivers, NEE data were binned in intervals, whereby fitted lines revealed 

several NEE responses to micrometeorological drivers (Fig. 4.6). Among all environmental 

controls, water-air temperature difference (ΔT) best correlated with NEE, explaining on average 

58% of binned NEE variability. Of these regressions, shallow lakes showed a higher r2 than deeper 

lakes. Air temperature was a better predictor of NEE variability (average r2 was 0.36) than water 
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temperature (0.08). Net radiation (Rnet), latent heat (LE), and water-air vapor pressure deficit 

(VPD) were also among the most consistent controls of NEE, explaining on average 55%, 44%, 

and 42% of variability, respectively. Wind speed (U) and friction velocity (U*) explained on 

average 29% and 17% of NEE variability. Influx of photosynthetically active radiation (PAR) 

poorly correlated with binned NEE, excluding the productive reservoir with emergent vegetation. 

For six sites having water pCO2 data, the water-air pCO2 difference (ΔpCO2) was an important 

driver of NEE, with r2 ranging from 0.05 in Lake Merasjarvi to 0.74 in Lake Valkea-Kotinen. 

Figure 6 shows highly variable sensitivity to drivers among sites and incoherent latitudinal gradient 

of these sensitivities. In many cases, binned NEE also often had nonlinear responses to 

environmental drivers. 

Multi-temporal drivers based on wavelet coherence 

Environmental controls again showed inconsistent patterns with NEE at timescales longer than 

daily across all lakes (Fig. 4.7). At daily timescale, temperature-related variables showed highest 

spectral energies (i.e., variability), with air temperature (Tair) having highest coherence with CO2 

flux, followed by ΔT (not shown because it mirrors Tair), sensible heat (H) and water temperature 

(Tw). All these variables also showed high coherence one with another (>0.7). While signals of 

CO2 and Tair in lakes Zarnekow and Tamnaren had strongest coherence across open-water season, 

it had little or no coherence in Estmain Reservoir and Lake Erie. Among wind and shear driven 

drivers, NEE and u* and U (not shown) signals showed transient and alternating periods of high 

and low coherence, indicating a temporal oscillation to wind driven CO2 emissions in most lakes, 

except throughout the open-water season in Zarnekow Reservoir, which was consistently coherent. 

Among potential signals of biotic interaction, the strongest and most coherent relationship 

of NEE with LE was in waterbodies with emergent and submerged macrophytes, suggesting 
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photosynthetic control of CO2 uptake. In deeper lakes, the coherence between NEE and LE was 

more transient, with consistent high coherence period confined to late August and September. 

Similar to LE, the strongest NEE coherence with PAR was in shallow productive lakes with 

vegetation (Zarnekow and Tamnaren, and Villasjon until October). Except Lake Erie, PAR was 

an important driver in all lakes with periods of high and low coherence. Only three lakes had 

continuous ΔpCO2 data, and those lakes showed alternating periods of high and low coherence 

with CO2 flux. Water level in Zarnekow Reservoir highly correlated with CO2 signal during 

summer. 

At longer temporal timescales, the coherence between CO2 flux and environmental drivers 

varied by lakes and time periods of open water season (Fig. 4.7). At weekly to monthly time scales, 

highly coherent episodes were infrequent relative to daily time scale. NEE coherence with 

temperature-related variables were more frequent in shallower lakes (Villasjon, Tamnaren, 

Douglas). At seasonal time scale, Tair became incoherent to NEE signal in contrast to more 

coherent signals of ΔT and LE (Fig. 4.7). Water level was consistently coherent with NEE signal 

Zarnekow Reservoir. Lake productivity indicators, PAR and ΔpCO2, were coherent with NEE in 

productive lakes Erie and Mendota, however over different parts of the open water season. 

4.4      DISCUSSION 

We used a time-for-space approach to estimating carbon emission from 19 ecosystems 

representing diverse ecosystems types. By subsetting our study sites to only those with multiple 

seasons of eddy covariance (EC), we are able evaluate the reliability of previous indirect and 

infrequently sampled based estimates of CO2 flux. Though the total number of study lakes is small, 

the total number of independent observations is significantly larger relative to more “traditional” 

limnological studies. Major findings and implications are discussed below. 
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Human-made waterbodies emit more carbon than lakes 

Consistent with earlier studies, CO2 flux magnitudes from reservoirs were larger 

than natural lakes (Fig. 4.2, Table. 4.2). The mean daily NEE in a young tropical reservoir Nam 

Theun 2 were nearly twice as high as fluxes in reservoirs in other climatic zones. Our estimates 

for tropical reservoirs agreed with another EC study [Guérin et al., 2007], though were 35% 

higher [Barros et al., 2011] or 320% lower [St. Louis et al., 2000] than others. Tropical 

reservoirs had higher CO2 emissions likely because of higher temperature-mediated 

mineralization raters, higher organic content relative to mid- and high latitude waterbodies, 

thermally enhanced gas transfer velocities, water level fluctuations, short residence times 

[Guérin et al., 2007; Roland et al., 2010; Barros et al., 2011; Polsenaere et al., 2013; Franz et 

al., 2016].  

NEE observed by eddy covariance from reservoirs in other climatic zones range from three 

times lower [St. Louis et al., 2000] to 40% higher [Barros et al., 2011] of those indirect 

estimates reported in the literature. The largest discrepancies between our and published 

estimates were for boreal Eastmain Reservoir where maximum daily flux (2.6 times higher than 

mean flux) was 0.43-1.5 fold lower than published values for the same reservoir [Teodoru 

et al., 2011]. These differences were likely because of different surface area sampled 

(the reservoir has large patchiness of pre-flooding area with large emission differences, 

[Teodoru et al., 2011]), decline of emissions with reservoirs aging [Barros et al., 2011], flux 

overestimation when using chamber measurements [Eugster et al., 2003], and limited 

number of chamber samples compared to continuous sampling by the tower. It is worth 

noting that [St. Louis et al., 2000] study was used to upscaling fluxes from reservoirs [Raymond et 

al., 2013], indicating one likely source of flux biases in contribution of reservoirs to global efflux 

from lakes and reservoirs.  
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Our eddy covariance daily CO2 flux magnitudes for lakes were in agreement with indirect 

measurements for ponds <100 km2 [Holgerson and Raymond, 2016] and fluxes derived from pH, 

DIC for US waterbodies [McDonald et al., 2013]. However, CO2 fluxes calculated from pH, ALK 

for Swedish lakes were nearly twice higher than for Scandinavian lakes in our data set 

[Weyhenmeyer et al., 2015] and a few times lower relative to CO2 fluxes derived from pH, DIC 

for Finnish lakes [Rantakari and Kortelainen, 2005]. Though this is not a comprehensive flux 

magnitudes revision, the differences in CO2 estimates highlight a core difficulty in synthesizing 

NEE across methods for global upscaling.  

Reconciling NEE estimates with other CO2 flux measurements 

That said, there is good reason to believe that flux tower approaches can be a viable method 

for estimating lake CO2 fluxes more continuously and reliably than chambers. Simultaneous 

measurements of CO2 using eddy covariance (EC) with indirect methods (chamber or models of 

surface renewal and boundary layer) showed good agreement between flux estimates [Eugster et 

al., 2003; Vesala et al., 2006], though other studies found flux underestimation [Jonsson et al., 

2008; Podgrajsek et al., 2014a; Xiao et al., 2014] or overestimation [Eugster et al., 2003; Guérin 

et al., 2007] of eddy covariance compared to indirect methods, while others showed variable 

periods of agreement and disagreement [Podgrajsek et al., 2014a]. Largest discrepancies tend to 

be found between EC and floating chamber measurements [Eugster et al., 2003; Podgrajsek et al., 

2014a], where chambers typically overestimate CO2 flux. Continued analysis of multi-method flux 

estimation is critical to detecting biases and factors contributing to flux discrepancies.  

Although majority of published eddy covariance studies are included in this study, we 

found our re-analyzed the NEE estimates agreed with literature estimates for some lakes [Vesala 

et al., 2006; Jonsson et al., 2008; Huotari, 2011], but were larger [Eugster et al., 2003; Podgrajsek 
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et al., 2014b; Shao et al., 2015; Franz et al., 2016] or smaller [Franz et al., 2016], indicating that 

consistent post-processing of data and protocols for doing so are essential to move forward on 

aquatic eddy covariance. Here, we applied a consistent post-processing and gap-filling approach 

across all lakes in this study, therefore, we attribute discrepancies in daily CO2 flux estimates to 

different periods being compared (i.e., summer, monthly, convective or stratified periods), gap-

filling approached, statistics (i.e., ranges, median, means), and interannual variability in time series 

covering multiple seasons.  

Reconciling aquatic and terrestrial latitudinal gradients of climatic data 

The lack of linear latitudinal, mean annual precipitation and temperature gradients were 

likely attributed to ecosystem differences and their effect on fluxes. Although latitudinal gradient 

of CO2 emission is useful in assessing the impact of climate as latitude integrates multiple 

variables like annual insolation, air temperature, precipitation, ice-cover duration [Blenckner, 

2005], we found a quadratic relationship with latitude in our lakes, with highest emissions between 

50-62°N (Fig. 4.2-4.3). Previous studies found declining CO2 fluxes or aquatic pCO2 (a proxy of

CO2 flux) with latitude in lakes and/or reservoirs [Alin and Johnson, 2007; Marotta et al., 2009; 

Barros et al., 2011] or cubic relationship in ponds [Holgerson and Raymond, 2016]. While 

temperature-mediated C mineralization rates were highest in tropics [Kosten et al., 2010; Barros 

et al., 2011] and pCO2 increased with temperature [Marotta et al., 2009; Barros et al., 2011; 

Kosten et al., 2014], another study found a negative relationship with pCO2 and CO2 flux [Alin 

and Johnson, 2007]. Since pCO2 should increase with temperature increases, confounding factors 

like lake productivity [Alin and Johnson, 2007], overridden the latitudinal temperature effect on 

CO2 flux.  
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Lack of linear latitudinal gradient of CO2 flux could also be attributed to incomplete 

representation of lake types in major climatic zones. Therefore, highest emissions fall between 50-

62°N latitude where most humic lakes and reservoirs were located (Fig. 4.2-4.3). It also reflected 

overrepresentation of US/Canada and Scandinavian sites and largely underrepresentation of 

subtropical and tropical lakes, not mentioning lack of any lakes from Southern Hemisphere.  

Lake nutrient – color content indicates NEE sign and magnitude 

Unlike latitude, lake trophic status and humic contents were better in explaining differences 

in CO2 flux waterbodies (Fig. 4.2, Table 4.2). Eutrophic waterbodies had reduced CO2 efflux (or 

even influx of CO2) relative to unproductive or humic lakes, similarly to CO2 flux studies [Riera 

et al., 1999; Hanson et al., 2004; Balmer and Downing, 2011]. For example, net autotrophic lakes 

sequestered CO2 with median carbon uptake of -77 mgC m -2 d-1 while net heterotrophic lakes 

emitted at 253 mgC m -2 d-1 in boreal lakes [Bogard and del Giorgio, 2016]. Eddy covariance 

studies also showed that humic lakes emit 2-3 times more CO2 than unproductive lake and up to 

6 times more than productive lake [Vesala et al., 2006; Jonsson et al., 2008; Huotari et al., 2011; 

Podgrajsek et al., 2015]. Therefore, the nutrient-color paradigm [Williamson et al., 1999; Webster 

et al., 2008] appears to key to characterize lake NEE. 

Since nutrients stimulate primary production and DOC sustains ecosystem respiration, 

unsurprisingly lake biotic characteristics played a dominant role in modulating diurnal cycles of 

CO2 flux magnitudes (Fig. 4.4). Here, we found that most lakes coherently showed NEE decrease 

(CO2 uptake or reduced emission) during the day, with the highest uptake was in a productive 

reservoir with emergent macrophytes (Fig. 4.4). Nighttime NEE increased due to bacterial CO2 

production. Despite significant CO2 flux reduction due to photosynthesis in majority of 

waterbodies, all waterbodies remained net heterotrophic (Fig. 4.4) suggesting that respiration 
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exceeded primary productivity, even in productive waterbodies with significant coverage of 

emergent macrophytes. Although recent studies argue that net autotrophic lakes also evade CO2 

to atmosphere [McDonald et al., 2013; Bogard and del Giorgio, 2016], eddy covariance measured 

CO2 above lake surface, and hence, reflected net excess of ER over GPP [Aubinet et al., 2012].  

Only shallow Lake Villjason with submerged macrophytes was a net sink of carbon during 

the summer months (Fig. 4.5). Also, Zarnekow Reservoir with emergent macrophytes showed the 

highest diurnal CO2 drawdown. Several EC studies hypothesized small CO2 sinks to presence of 

macrophytes [Anderson et al., 1999; Xiao et al., 2014; Lohila et al., 2015; Franz et al., 2016] 

although only [Franz et al., 2016] addressed this issue only. These effects might have significant 

effects of CO2 exchange in on-shore towers, which footprints cover mostly littoral zones.  

In contrast to all waterbodies, flushing Estmain Reservoir showed daytime increases and 

nighttime increases, although those increases were low across entire growing season (Fig. 4.4). 

We hypothesize these increases might be due to water level fluctuation and stirring CO2 -rich 

sediments (near on island tower) and/or temperature-mediated respiration increases. However, 

additional observations are needed to verify our hypotheses.  

A few lakes had muted diurnal amplitudes during fall, primarily in seasonally stratified 

lakes, Valkea-Kotinen and Mendota (Fig. 4.4). We attribute them to fall turnover bringing CO2-

rich waters from hypolimnion by convective mixing, typically occurring in late September/early 

October [Vesala et al., 2006]. We saw an earlier “fall mixis footprint”, which was likely due to 

upwellings of hypolimnetic waters to epilimnion due to wind shear forcing on thermocline [Ojala 

et al., 2011]. We still observed diurnal cycles in October, probably due to delivery of nutrients and 

accelerated algal blooms, though the amplitude was generally smaller than in spring and summer. 
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The CO2-rich upwellings imply lake morphometric characteristics can additionally 

modulate CO2 flux responses to meteorological drivers (Fig. 4.4-4.5). Two deep lakes, for 

example, did not show diurnal CO2 uptake in September (Fig. 4.4), and CO2 flux increased in this 

month (Fig. 4.6), which was likely attributed to fall mixis. During convective mixing, CO2-rich 

and nutrient-rich waters were brought to surface enhancing CO2 efflux [Riera et al., 1999]. 

Shallow lakes also had more cooling events relative to deeper lakes over the open water season 

coinciding with CO2 fluxes (Fig. 4.7), and significantly contributing to annual CO2 efflux [Liu et 

al., 2016]. Space-for-time studies indicate that lake-specific characteristics like lake area, 

catchment:lake area ratio, mean depth explain nutrient and humic concentration differences 

between lakes [Webster et al., 2008], and which in turn, may affect thermocline depth [Fee et al., 

1996] and sensitivity to hydrological inflows [Weyhenmeyer et al., 2015]. An interplay of physical 

and biotic interactions certainly created extremely dynamic ecosystem CO2 patterns in lentic 

systems. 

Temperature is the strongest driver of lake seasonal NEE variation 

We noted that gradual increase of NEE until end of August coinciding with warming of surface 

water temperature (Fig. 4.4-4.5) and temperature-mediated increases of pCO2 and CO2 flux. 

Because thermodynamic forcing on ΔpCO2 is also affected by biology, mixing, and transport 

[Wanninkhof et al., 2009], the temperature effect can be overridden by other effects. In contrast, 

regular oscillations at 20-30-day frequencies observed (Fig. 4.5) might be due to trophic cascades, 

when declines in phytoplankton biomass followed zooplankton biomass increases [Sommer et al., 

2011] likely affected the GPP:ER ratio and CO2 exchange at water-air interface. Moreover, 

frequent phytoplankton biomass fluctuations might be due to upwellings of CO2 -rich and nutrient-

rich water to epilimnion induced by wind-induced internal waves [Evans et al., 2008]. Though 
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these findings require additional observations and models, our findings are consistent with regular 

temperature and pCO2 signals oscillations observed in deep and shallow lakes [Atilla et al., 2011; 

Pannard et al., 2011; Heiskanen et al., 2014].  

Few consistent drivers in other timescales 

High scatter and inability to detect strong relationship of un-binned NEE with 

environmental drivers, indicate significant multi-temporal multi-driver relationships of NEE that 

require a modeling approach. However, a few consistent relationships stand out. Binned wind 

speed explained 0 to 96% of binned NEE variability with average of 36% (Fig. S4.1), and indicate 

variable but consistent positive dependencies of wind and CO2. The wind speed and CO2 flux 

relationship may change with degree of thermal stratification [Heiskanen et al., 2014], warming 

or cooling seasons [Read et al., 2012] and diurnal timescales. Interestingly, the relationship to 

friction velocity (U*) showed lower coherence despite being a dominant physical control of CO2 

exchange at air-water interface because of its relationship to near-surface turbulence [Wanninkhof 

et al., 2009]. The EC technique can suffer from advective flows in periods of low u*, making 

comparison in those periods less reliable. In low wind conditions, waterside convection can 

contribute to fluxes, furthering masking wind speed relationships [MacIntyre et al., 2010; 

Mammarella et al., 2015; Podgrajsek et al., 2015].  

We also found sub-daily NEE variation dominated by diurnal cycle of solar radiation and 

temperature. We observed large differences in summer daytime and nighttime CO2 fluxes across 

lakes (Table 4.2) and across months (Fig. 4.4), suggesting potential for ΔT to control NEE at 

diurnal cycle. Because of high thermal capacity of water and small Tw diurnal fluctuations, Tair 

mainly contributed to temperature difference between water and air, and hence daytime warming 

and nighttime cooling. However, this temperature effect on CO2 flux might be overridden by 

lake 
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metabolism and lead to spurious relationships with temperature [Alin and Johnson, 2007], and 

perhaps nonlinearities. Photosynthetic CO2 uptake dominated diurnal cycles in majority of lakes 

(Fig. 4.4), leading to strong NEE and PAR (a proxy of lake productivity) coherence, particularly 

in waterbodies with macrophytes (Fig. 4.7).  

Lastly, the diurnal signals of latent heat (LE) and NEE showed high coherence (Fig. 4.7) 

in many waterbodies. In Zarnekow reservoir with substantial contribution of emergent 

macrophytes to tower footprints, stomatal conductance control of photosynthesis in response to 

fluctuations of vapor pressure deficit may be the primary factor that links the two [Stoy et al., 

2005]. LE is also an indicator of water-side buoyancy flux [Imberger, 1985], influencing gas 

transfer velocity. Therefore, it is possible LE and NEE to show coherence during lake convective 

mixing periods in boreal lakes [Eugster et al., 2003; Heiskanen et al., 2014; Podgrajsek et al., 

2015] or low wind, high insolation conditions in tropical reservoirs [Polsenaere et al., 2013]. Large 

pulses of CO2 also occur during synoptic events, when heat is released from waterbodies and 

thermocline tilting induced intrusion of CO2 -rich waters from hypolimnion [Liu et al., 2016].  

Potential long lagged impact on NEE 

Seasonal timescale of NEE correspond to annual solar cycle, biological processes and 

spring/fall mixis events [Hanson et al., 2006; Sturtevant et al., 2015], which strongly vary by 

climatic region and latitude. Unlike in shorter time scales, Tair became unimportant variable in 

explaining CO2 flux variability across all lakes (Fig. 4.7). During lake cooling, the rates of heat 

release stored in water column depends not only on autumn weather but also on lake volume. 

Therefore, large water bodies like Lake Superior have six-month time lag to start releasing heat 

[Blanken et al., 2011]. The importance variables related to heat loss at seasonal scale, LE in lakes 

Eastmain and Mendota and ΔT in Zarnekow and Mendota, also seem to at least partly support this 
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hypothesis as Zarnekow is a shallow reservoir. Moreover, temperature control at seasonal and 

annual timescales over dissolved inorganic carbon in North temperate lakes is attributed to controls 

over mixis events and suppressing biotic processes during cold season [Hanson et al., 2006].  

Precipitation however had no explanatory power of CO2 flux variability across all lakes 

(with precipitation data) and at any time scale, despite importance of rain on (+) gas transfer 

velocities [Guérin et al., 2007; Wanninkhof et al., 2009] and delivery of OC and IC from watershed 

[Stets et al., 2009; Weyhenmeyer et al., 2015]. One of the possible explanation is that raindrops 

interferes with sonic anemometer-thermometry measurements used in eddy towers, causing data 

gaps during rain events [Aubinet et al., 2012]. Therefore, pulses of CO2 during and after storms 

[Ojala et al., 2011; Vachon and del Giorgio, 2014] might be missed in EC time series. Finally, 

lakes are considered to integrate precipitation effects of CO2 flux through indirect effects like 

delivery of carbon and nutrients from catchments than from precipitation itself [Williamson et al., 

2008; Tranvik et al., 2009]. Such effects are likely to unveil at longer temporal scales, from annual 

to decadal [Hanson et al., 2006].  

Implications for upscaling CO2 fluxes 

Assuming all waterbodies with surface area >0.10 km2 (total surface area, 2582600 km2, 

[Lehner and Döll, 2004]) emitted mean CO2 flux (0.30 gC m -2 d-1) over ice-free season, we 

estimated that carbon evasion from lakes and reservoirs in the Northern Hemisphere (which has 

significantly more lakes than the Southern Hemisphere) was 0.23±0.19 Pg C yr-1, 0.09 Pg C yr-1 

(40%) less than current global estimate (Fig. 4.8, Raymond et al., [2013]). In our calculations, we 

included diurnal CO2 flux cycle and ice-cover duration but excluded 418409 km2 of lakes in 0.01-

0.1 km2 bin which are not reported in the global database and lakes south of the equator. If we 

instead assume year-round CO2 emissions and scale up for an estimate of smaller waterbodies, do 
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we get a value comparable to Raymond’s value of 0.33 Pg yr-1. Previous CO2 emission rates 

accounted for 0.14 PgG yr-1 [Cole et al., 1994], 0.39 PgG yr-1 [Cole et al., 2007], 0.32 PgG yr-1 

[Duarte et al., 2008], 0.44 PgG yr-1 [Marotta et al., 2009], 0.53 PgG yr-1 [Tranvik et al., 2009], 

0.64 PgG yr-1 [Aufdenkampe et al., 2011]. 

Although most recent global CO2 efflux estimate [Raymond et al., 2013] and our estimate 

are incomparable, our empirical CO2 flux rates highlight large mismatch between empirical and 

CO2 flux mostly modelled from carbonate equilibria (pH and alkalinity/dissolved inorganic 

carbon) and approximated gas transfer velocities. With more direct CO2 observations from a wider 

range of ecosystem types, the CO2 source strength from inland waters will likely be re-evaluated. 

Our global emission estimate from lakes >10 ha outgasses nearly 12% (1.7 PgC yr-1) and 5% (4.3 

PgC yr-1) of net inland flux without and without anthropogenic fluxes [Ciais et al., 2013], 

respectively.  

Including temporal consideration in CO2 flux estimation and upscaling may also affect the 

emission rates from freshwaters. We observed large variance over time within lakes of any trophic 

state (Fig. 4.2). Depending on the time of the season, humic lakes were classified as sink of CO2 

while highly productive lakes were classified as sources of carbon. Most upscaling studies rely on 

point-in-time measurements in fair-weather conditions during the day, potentially leading to biased 

flux estimates [Alin and Johnson, 2007; Liu et al., 2016; Wik et al., 2016]. Moreover, most studies 

exclude diel cycles of CO2 which might underestimate global carbon balances by 42% [Liu et al., 

2016]. However, our global estimate was lower despite including understudied diurnal and 

seasonal cycles. 

Study limitations 
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Eddy covariance suffers for a range of random and systematic error [Aubinet et al., 2012]. Random 

error dominated half hourly averages of CO2 flux, with error magnitudes ranging from 26% in 

humic lakes [Mammarella et al., 2015] to 40% in eutrophic lake (data not shown) despite smaller 

CO2 fluxes. High random error likely masked regression at short-time scales. Further, systematic 

errors due to gap filling was large and ranged from 0.12-0.73 µM m -2 s-1(Table S4.1), which 

biases comparisons of flux magnitudes. Around 10% uncertainty of CO2 flux attributed to gap 

filling in Lake Erie [Shao et al., 2015].  

Current observations of NEE over lake are mostly limited to an open water season therefore 

wavelet analysis and wavelet coherence analyzes were limited to up to 3 to 6 months for majority 

of lakes. Due to challenges of collecting winter data with eddy covariance technique, we 

unfortunately have year-round data for three ice-covered lakes. However, even in this case, 

measurements are limited. Some researchers have dealt with wintertime measurement challenges 

by placing flux towers on the lake shore. This introduced an additional problem with nighttime 

CO2 advection from catchments and flux contamination [Eugster et al., 2003]. Even towers located 

in the middle of lake can be affected by CO2 advection [Eugster et al., 2003; Morin et al., 2014]. 

The contribution of advected air to annual CO2 lake budgets is unknown but can be substantial. 

Although eddy covariance technique is a mature technique for terrestrial systems 

[Baldocchi et al., 1996; Law et al., 2002], the use of this technique over inland waters is relatively 

new. Consequently, researchers studying limnetic systems still have not developed a standard 

protocol for making measurements and post-processing procedures using eddy flux towers. It is 

also plausible that many corrections developed for terrestrial systems might not be suitable for 

freshwater systems.  
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Additionally, more attention should be paid to ecosystem characteristics themselves as 

many sites lacked water temperature strings, and DO and pCO2 measurements which significantly 

limited data interpretation. Given lakes have two boundary layers affecting the water-air interface 

(from above and from below), the knowledge on in-water biotic and abiotic drivers are essential 

toward improving mechanistic understanding of processes driving NEE in freshwater systems. In 

fact, lake prosses likely dominate atmospheric forcing in NEE variability [Aubinet et al., 2012]. 

Therefore, eddy covariance measurements should also be accompanied with basic chemical (like 

pH, TP, DOC), ecological (plant community types and coverage) and morphometric (depth within 

footprint) measurements to inform site-characterization. Also, having in-water pCO2 

measurements are essential for deriving gas transfer velocities and improving k parameterizations, 

which is particularly important for limnologists upscaling point-in-time measurements. 

Finally, like any synthesis project, we synthesized already existing data from ad hoc 

locations rather than carefully designed space-for-time substitution studies. Therefore, future eddy 

covariance studies should put more effort to include lake types and from regions that 

underrepresented represented in this data set to reduce uncertainty in flux estimation. 

4.5      CONCLUSIONS 

To better evaluate the role of lakes and reservoirs in global carbon balances at multiple time scales, 

we conduct first synthesis of continuous, direct CO2 flux estimates over 19 globally distributed 

lakes and reservoirs. Our results indicate that despite consistent midday photosynthetically-driven 

CO2 drawdown at diurnal time scale, most lakes were net heterotrophic and source of CO2 to 

atmosphere. Seasonally integrated CO2 fluxes, unlike terrestrial ecosystems, were insufficiently 

explained by climatic patterns of annual temperature and precipitation means. Instead, waterbody 

productivity, color, and management were the key indicators of CO2 flux sign and magnitude. 
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Despite of all ecosystem differences and high seasonal variability, CO2 flux showed consistent 20-

30-day oscillatory patterns across all lakes. While temperature, solar radiation, and wind speed

best predicted ecosystem level CO2 flux responses, waterbody characteristic such as lake nutrient-

color contents, macrophyte communities, and morphometry significantly modulated CO2 flux 

responses to climatic drivers. However, these responses were time scale dependent with 

importance of drivers shifting over time and often confounded with other factors. Our results imply 

significant multi-temporal multi-driver relationships with NEE that require a modeling approach 

to separate drivers’ contribution towards CO2 flux variability. Moreover, including diurnal and 

seasonal cycles and ice phenology resulted in 40% lower up-scaled CO2 fluxes than global CO2 

efflux determined from indirect, point-in-time measurements. According to our global efflux 

estimates, lakes and reservoirs outgassed nearly 12% of net inland flux. We expect that with more 

empirical, continuous data and from more diverse aquatic ecosystems, the global CO2 emissions 

from lakes and reservoirs and their contribution to global carbon balances will require re-

evaluation.  
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4.6      TABLES 

Table 4.1 Site List and their climatic and limnological characteristics 

Site 
No. 

Site Name Lake Description Latitude 
[decimal °] 

Longitude 
[decimal °] 

Climatic Zone1 

25 L. Toolik Unproductive, medium 
DOC, deep 

68.37 -149.36 Cool continental 

6 L. Långa Harrsjön Unproductive, medium
DOC, deep 

68.21 19.02 Cool continental 

7 L. Villasjön Shallow, humic, 
submerged vegetation 

68.21 19.03 Cool continental 

1 L. Pallasjärvi Clearwater, 
oligotrophic, shallower 
parts of a deep lake 

68.01 24.12 Cool continental 

5 L. Merasjarvi Medium DOC, low 
productivity, deep 

67.31 21.59 Cool continental 

13 L. Daring n/a 64.51 -111.36 Cool continental 
16 L. Valkea-Kotinen Humic, productive,

deep 
61.14 25.03 Cool continental 

15 L. Kuivajärvi Humic, unproductive, 
deep 

60.47 23.51 Cool continental 

12 L. Tamnaren Shallow, productive, 
submerged vegetation 

60.08 17.16 Temperate 
continental 

23 R. Zarnekow Eutrophic, shallow, 
emergent vegetation, 
high DOC (formerly 
peatland) 

53.52 12.53 Temperate 
continental 

14 R. Estmain Flushing reservoir, 
humic 

52.07 -75.55 Cool continental 

4 R. Maneswaard n/a 51.56 5.37 Temperate 
Oceanic 

3 R. Ilzendoorn n/a 51.54 5.31 Temperate 
Oceanic 

2 L. Douglas Mesotrophic, low 
DOC, deep 

45.34 -84.41 Humid 
continental 

19 L. Mendota Eurtrophic, deep, 
moderate DOC 

43.04 -89.24 Humid 
continental 

18 L. Erie Eutrophic, shallow 
basin, 

41.47 -83.11 Humid 
continental 

17 R. Ross Barnett Deep, productivity 32.26 -90.01 Humid 
subtropical 
climate 

9 L. Taihu Eutrophic, shallow 31.16 120.15 Humid 
subtropical 
climate 

8 Nam Theun 2 Deep, high DOC 17.59 104.57 Tropical moist 

1 According Koppen climate classification 
2 Annual values derived from monthly averages for year 2010 and do not always match year of 
measurements 
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Table 4.2 Comparison of summer NEE sums for a period between 199 - 234 day of year, daily totals, 

daytime and nighttime fluxes 

Site No. Site Name NEE EC 
Sums 
[gC m -2 36 day-1] 

NEE Daily Total 
[mgC m -2 d-1] 
Mean ±1SD 

NEE 
Daytime flux 
[mgC m -2 hr-1] 
Mean ±1SD 

NEE 
Nighttime flux 
[mgC m -2 hr-1] 
Mean ±1SD 

25 L. Toolik  7.5  209±54  7.0±9.3 11.1±10.4 
7 L. Villasjön -6.3 -174±92 -12.1±8.8 -0.5±9.7
1 L. Pallasjärvi 8.8 245±78 6.7±5.8 15.2±6.7
5 L. Merasjarvi 9.3 257±70 8.6±5.4 13.7±5.7
13 L. Daring 1.0 27.2±38 -4.0±5.4 8.3±6.9
16 L. Valkea-Kotinen 21.3 (2003)

24.4 (2004)
14.0 (2005)
8.6 (2006)
21.9 (2007)

591±113
679±278
390±226
238±357
609±64

23.5±5.5 
24.2±16.8 
12.6±11.0 
9.3±16.2 
22.8±3.9 

26.3±5.6 
34.0±10.8 
21.3±12.7 
10.7±15.7 
29.0±7.2 

15 L. Kuivajärvi 26.4 (2011)
20.3 (2012)

734±123
567±218

30.8±8.4 
23.3±9.8 

30.3±6.1 
29.0±14.0 

12 L. Tamnaren 6.2 (2011)
12.6 (2012)

174±83
350±96

 4.9±5.4 
 9.7±6.8 

10.5±6.3 
22.1±8.2 

23 R. Zarnekow 12.1 (2013)
14.4 (2015)

337±356
400±140

3.2±20.0 
2.4±20.8 

29.2±24.3 
36.7±19.1 

14 R. Estmain 14.7 (2008)
19.6 (2009)
20.1 (2011)
13.6 (2012)

409±225
545±198
557±88
378±108

16.9±10.6 
18.1±10.5 
24.8±6.4 
14.5±6.1 

17.1±13.1 
25.5±11.3 
20.8±7.9 
15.5±7.4 

4 R. Maneswaard 27.8 772±209 34.8±13.0 28.4±16.9 
3 R. Ilzendoorn 15.8 439±150 15.6±17.0 22.0±11.8 
2 L. Douglas 14.1 (2013)

8.8 (2014)
393±166
245±146

12.4±14.1 
 9.9±13.3 

22.0±12.4 
10.6±15.6 

19 L. Mendota 4.9 (2012)
5.0 (2014)
7.8 (2015)

274±136
108±128
245±145

 4.6±13.5 
-2.8±12.0
5.3±12.9

21.0±15.0 
17.9±15.5 
14.2±14.8 

18 L. Erie 1.7 (2012)
-0.18 (2013)

  46±130 
-5.1±185

-0.2±3.3
0.1±5.2

-0.4±3.3
0.0±5.0

9 L. Taihu 11.9 (2012) 332±217 17.6±9.3 8.5±17.5
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Figure 4.4 Mean diurnal course of net ecosystem exchange in eight representative for dataset water bodies 

during an open water season. Line represents 6-hour moving average. Site labels indicate: HMDL – humic 

meromictic deep lake (L. Valkea-Kotinen); HSVL – humic shallow with submerged vegetation lake (L. 

Villasjön); MDL – mesotrophic deep lake (L. Douglas); ESVL – eutrophic shallow lake with submerged 

vegetation (L. Tamnaren); ESL – eutrophic shallow lake (L. Erie, shallow western basin); EDL – eutrophic 

deep lake (L. Mendota); FR – flushing reservoir (R. Estmain); ESEVR – eutrophic shallow reservoir with 

emergent vegetation (R. Zarnekow) 

Months 
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Figure 4.5 Seasonal patterns of net ecosystem exchange in eight water bodies presented in fig. 4.4. Line 

represent 10-day moving average. Site labels indicate: HMDL – humic meromictic deep lake (L. Valkea-

Kotinen); HSVL – humic shallow with submerged vegetation lake (L. Villasjön); MDL – mesotrophic deep 

lake (L. Douglas); ESVL – eutrophic shallow lake with submerged vegetation (L. Tamnaren); ESL – 

eutrophic shallow lake (L. Erie, shallow western basin); EDL – eutrophic deep lake (L. Mendota); FR – 

flushing reservoir (R. Estmain); ESEVR – eutrophic shallow reservoir with emergent vegetation (R. 

Zarnekow) 
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Figure 4.6 Coefficients of determination (r2) of NEE with binned environmental drivers for each site. Sites 
were ordered according to latitude, from Artic (top) to subtropical (bottom) climatic zones. Site 
identification numbers are in Table 1. Gradient of colors from blue (no correlation) to yellow (perfect 
correlation) indicates increasing r2 values from 0-1.  
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Figure 4.7 Multi-temporal wavelet coherence of Tair and ecosystem NEE during an open water season. 

Region outside of cone of influence indicates insignificant relationship. Site labels indicate: (A) humic 

meromictic deep lake (L. Valkea-Kotinen); (B) humic shallow with submerged vegetation lake (L. 

Villasjön); (C) mesotrophic deep lake (L. Douglas); (D) eutrophic shallow lake with submerged vegetation 

(L. Tamnaren); (E) eutrophic shallow lake (L. Erie, shallow western basin); (F) eutrophic deep lake (L. 

Mendota); (G) flushing reservoir (R. Estmain); (H) eutrophic shallow reservoir with emergent vegetation 

(R. Zarnekow)  
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Figure 4.7 continued. Multi-temporal wavelet coherence of friction velocity and ecosystem NEE during 

an open water season. Region outside of coin of influence indicates insignificant relationship. Site labels 

indicate: (A) humic meromictic deep lake (L. Valkea-Kotinen); (B) humic shallow with submerged 

vegetation lake (L. Villasjön); (C) mesotrophic deep lake (L. Douglas); (D) eutrophic shallow lake with 

submerged vegetation (L. Tamnaren); (E) eutrophic shallow lake (L. Erie, shallow western basin); (F) 

eutrophic deep lake (L. Mendota); (G) flushing reservoir (R. Estmain); (H) eutrophic shallow reservoir with 

emergent vegetation (R. Zarnekow)  
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Figure 4.7 continued. Multi-temporal wavelet coherence of photosynthetically active radiation and 

ecosystem NEE during an open water season. Region outside of coin of influence indicates insignificant 

relationship. Site labels indicate: (A) humic meromictic deep lake (L. Valkea-Kotinen); (B) humic shallow 

with submerged vegetation lake (L. Villasjön); (C) mesotrophic deep lake (L. Douglas); (D) eutrophic 

shallow lake with submerged vegetation (L. Tamnaren); (E) eutrophic shallow lake (L. Erie, shallow 

western basin); (F) eutrophic deep lake (L. Mendota); (G) flushing reservoir (R. Estmain); (H) eutrophic 

shallow reservoir with emergent vegetation (R. Zarnekow)  
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Figure 4.7 continued. Multi-temporal wavelet coherence of ΔpCO2 and ecosystem NEE during an open 

water season. Region outside of coin of influence indicates insignificant relationship. Site labels indicate: 

(A) humic meromictic deep lake (L. Valkea-Kotinen); (D) eutrophic shallow lake with submerged

vegetation (L. Tamnaren); (F) eutrophic deep lake (L. Mendota).
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Figure 4.7 continued. Multi-temporal wavelet coherence of water level and ecosystem NEE during an 

open water season. Region outside of coin of influence indicates insignificant relationship. Site label 

indicate: (H) eutrophic shallow reservoir with emergent vegetation (R. Zarnekow) 

H 
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Figure 4.8. Global model of CO2 emission along latitude (red line), ice-covered days (cyan), and lake 

surface area (brown, upper panel); Latitudinal contribution of CO2 efflux (red, bottom panel) and 

cumulative emissions by latitude (black, bottom panel) with propagation of uncertainty. Red dots indicate 

previous C estimates. 



120 

T
ab

le
 S

4.
1.

 S
ite

 li
st

 w
ith

 s
ea

so
na

l d
at

a 
co

ve
ra

ge
 a

nd
 p

er
ce

nt
ag

e 
of

 v
al

id
 a

nd
 g

ap
 fi

lle
d 

flu
xe

s, 
an

d 
un

ce
rta

in
ty

 e
st

im
at

es
 a

ttr
ib

ut
ed

 to
 g

ap
-f

ill
in

g 

us
in

g 
ar

tif
ic

ia
l n

eu
ra

l n
et

w
or

k.
 N

ig
ht

tim
e 

flu
xe

s w
er

e 
as

si
gn

ed
 w

he
n 

sh
or

tw
av

e 
ra

di
at

io
n 

w
as

 <
10

 W
 m

 -2
. 

Si
te

 N
um

be
r 

Si
te

 N
am

e 
W

at
er

 
Bo

dy
 

Ty
pe

 
Ye

ar
 

St
ar

t D
ay

 
En

d 
D

ay
 

N
EE

m
is

si
ng

 
ob

se
rv

at
io

ns
 

U
nc

er
ta

in
ty

 

D
ay

 [%
] 

N
ig

ht
 [%

] 
R

2  
[u

ni
tle

ss
] 

R
M

SE
 

[µ
M

 m
 -2

 s
 -2

] 
1 

Pa
lla

sj
är

vi
 

La
ke

 
20

13
 

19
9 

29
3 

71
 

77
 

0.
29

 
0.

21
 

2 
D

ou
gl

as
 

La
ke

 
20

13
 

15
8 

26
1 

45
 

64
 

0.
18

 
0.

45
 

2 
D

ou
gl

as
 

La
ke

 
20

14
 

14
4 

28
6 

52
 

63
 

3 
IJ

ze
nd

oo
rn

 
R

es
er

vo
ir 

20
12

 
10

8 
28

2 
80

 
86

 
0.

14
 

0.
68

 
4 

M
an

es
w

aa
rd

 
R

es
er

vo
ir 

20
10

 
14

0 
30

6 
88

 
88

 
0.

12
 

0.
65

 
5 

M
er

as
ja

rv
i 

La
ke

 
20

05
 

16
7 

28
5 

06
 

08
 

0.
43

 
0.

15
 

6 
St

or
da

le
n 

LH
 

La
ke

 
20

09
 

17
1 

18
6 

64
 

80
 

0.
41

 
0.

12
 

7 
St

or
da

le
n 

VL
 

La
ke

 
20

12
 

15
4 

36
6 

90
 

89
 

0.
61

 
0.

31
 

7 
St

or
da

le
n 

VL
 

La
ke

 
20

13
 

00
1 

19
6 

82
 

88
 

8 
N

am
Th

eu
n2

 
R

es
er

vo
ir 

20
08

 
13

6 
13

6 
na

 
na

 
0.

32
 

0.
25

 
8 

N
am

Th
eu

n2
 

R
es

er
vo

ir 
20

09
 

14
1 

14
9 

60
 

63
 

8 
N

am
Th

eu
n2

 
R

es
er

vo
ir 

20
10

 
07

0 
08

1 
79

 
77

 
8 

N
am

Th
eu

n2
 

R
es

er
vo

ir 
20

11
 

07
1 

07
4 

44
 

26
 

9 
Ta

ih
u 

La
ke

 
20

12
 

13
6 

36
5 

91
 

97
 

0.
46

 
0.

45
 

9 
Ta

ih
u 

La
ke

 
20

13
 

00
1 

08
7 

92
 

98
 

12
 

Ta
m

na
re

n 
La

ke
 

20
10

 
25

7 
30

6 
23

 
29

 
0.

38
 

0.
23

 
12

 
Ta

m
na

re
n 

La
ke

 
20

11
 

07
0 

36
0 

75
 

77
 

12
 

Ta
m

na
re

n 
La

ke
 

20
12

 
15

1 
25

7 
47

 
49

 
13

 
D

ar
in

g 
La

ke
 

20
06

 
14

1 
23

6 
86

 
94

 
0.

48
 

0.
16

 
14

 
Ea

st
m

ai
n 

R
es

er
vo

ir 
20

08
 

1 
36

5 
87

 
90

 
0.

51
 

0.
27

 
14

 
Ea

st
m

ai
n 

R
es

er
vo

ir 
20

09
 

3 
36

3 
88

 
89

 
14

 
Ea

st
m

ai
n 

R
es

er
vo

ir 
20

11
 

4 
36

2 
86

 
90

 

4.8      APPENDIX II 



14
 

Ea
st

m
ai

n 
R

es
er

vo
ir 

20
12

 
2 

26
1 

88
 

88
 

15
 

Ku
iv

aj
är

vi
 

La
ke

 
20

10
 

22
6 

28
5 

57
 

62
 

0.
46

 
0.

29
 

15
 

Ku
iv

aj
är

vi
 

La
ke

 
20

11
 

15
2 

30
4 

70
 

73
 

15
 

Ku
iv

aj
är

vi
 

La
ke

 
20

12
 

16
4 

33
2 

73
 

71
 

16
 

Va
lk

e a
-K

ot
in

en
 

La
ke

 
20

03
 

11
7 

32
5 

89
 

91
 

0.
71

 
0.

19
 

16
 

Va
lk

ea
-K

ot
in

en
 

La
ke

 
20

04
 

10
9 

34
4 

93
 

95
 

16
 

Va
lk

ea
-K

ot
in

en
 

La
ke

 
20

05
 

09
7 

32
3 

94
 

95
 

16
 

Va
lk

ea
-K

ot
in

en
 

La
ke

 
20

06
 

11
2 

36
5 

96
 

97
 

16
 

Va
lk

ea
-K

ot
in

en
 

La
ke

 
20

07
 

09
3 

31
4 

95
 

96
 

16
 

Va
lk

ea
-K

ot
in

en
 

La
ke

 
20

08
 

14
7 

35
5 

n/
a 

n/
a 

16
 

Va
lk

ea
-K

ot
in

en
 

La
ke

 
20

09
 

10
8 

18
1 

n/
a 

n/
a 

17
 

R
os

s 
Ba

rn
et

t 
R

es
er

vo
ir 

20
07

 
23

6 
34

8 
25

 
29

 
0.

28
 

0.
40

 
18

 
Er

ie
 

La
ke

 
20

12
 

00
2 

36
6 

09
 

11
 

na
1  

N
a 

18
 

Er
ie

 
La

ke
 

20
13

 
00

1 
36

5 
12

 
13

 
19

 
M

en
do

ta
 

La
ke

 
20

12
 

03
1 

36
6 

90
 

96
 

0.
25

 
0.

73
 

19
 

M
en

do
ta

 
La

ke
 

20
13

 
00

1 
36

5 
91

 
95

 
19

 
M

en
do

ta
 

La
ke

 
20

14
 

00
1 

36
5 

90
 

96
 

19
 

M
en

do
ta

 
La

ke
 

20
15

 
00

1 
30

3 
89

 
96

 
23

 
Za

rn
ek

ow
 

R
es

er
vo

ir 
20

13
 

13
4 

36
5 

70
 

73
 

0.
50

 
0.

49
 

23
 

Za
rn

ek
ow

 
R

es
er

vo
ir 

20
14

 
1 

36
5 

68
 

69
 

23
 

Za
rn

ek
ow

 
R

es
er

vo
ir 

20
15

 
1 

36
5 

67
 

70
 

25
 

To
ol

ik
 

La
ke

 
20

12
 

17
3 

23
4 

17
 

41
 

0.
47

 
0.

22
 

1  N
EE

 g
ap

 fi
lle

d 
us

in
g 

LU
T 

(R
ei

ch
st

ei
n 

et
 a

l.,
 2

00
5)

 a
do

pt
ed

 to
 g

ap
-f

ill
 e

dd
y 

flu
xe

s, 
no

 u
nc

er
ta

in
ty

 e
st

im
at

es
 a

re
 a

va
ila

bl
e 

121



122 

Figure S4.1 Relationship between net ecosystem exchanges of CO2 with binned wind speed for each site. 

Colors indicate different sites located along latitudinal 10-degree intervals.  
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CHAPTER 5 

CONCLUSIONS 

5.1.      Why temporal variability matters? 

The overarching goal of this dissertation is to address the lack of temporal consideration in air-

lake exchanges of CO2 at time scales ranging from hours to decades. Knowing of the CO2 fluxes 

is critical for balancing lake carbon budgets [Hanson et al., 2004; Bennington et al., 2012; 

Weyhenmeyer et al., 2015] and assessing lake ecosystems roles in the regional and global carbon 

balances [Cole et al., 2007]. However, current regional and global CO2 efflux estimates from 

lakes and reservoirs reflect a statistic view, where fluxes are mainly inferred from point-in-time 

measurements [Tranvik et al., 2009; Ciais et al., 2013; Raymond et al., 2013]. Consequently, 

temporal CO2 flux variability and governing processes remain understudied and predicting future 

responses of flux to environmental changes is significantly hindered [Phillips et al., 2015; Hasler 

et al., 2016]. Moreover, understanding processes governing short-term CO2 flux variability is 

essential to understanding processes influencing gas exchanges at longer temporal timescales. 

Including temporal resolution also allows us to establish if the CO2 flux variability is within the 

natural ranges of variation or has significantly changed over time [Magnuson, 1990]. Uncertainty 

in CO2 flux estimation contributes to already uncertain future CO2 efflux predictions from lakes 

and reservoirs. 

To address knowledge gaps related to uncertainty of CO2 estimates, limited availability 

of direct, multi-site and multi-temporal CO2 observations, and incomplete understanding of 

factors governing temporal variability in CO2 flux from lakes and reservoirs, I combined the 
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analysis of CO2 fluxes and their drivers at the short time scale (hourly-seasonal) using eddy 

covariance observations together with longer time scale drivers (seasonal-decadal) using 

synthesis of long-term lake chemistry observations and application of the traditional boundary 

layer techniques.  

5.2       Key findings for estimating CO2 in lakes and reservoirs 

Chapter 2 evaluated uncertainties attributed to pCO2 estimation using carbonate 

equilibria. The results show that systematic errors dominate random errors in pCO2 calculations, 

and given all sources of error, the historical observations of carbon system parameters are 

unlikely to provide robust estimates of mean or temporal trends in pCO2. These findings are 

troubling, as carbonate equilibria to date are the most commonly used method of estimating CO2 

flux from freshwater systems and assessing the role of aquatic ecosystems in regional and global 

carbon balances. We argue that direct measurements are the appropriate way to constrain CO2 

evasion estimates from heterogenous freshwater systems.  

Chapter 3 explored ice feedbacks on interannual pCO2 variability in seven lakes in 

northern Wisconsin. We find that although declining ice cover significantly increases epilimnetic 

and hypolimnetic water temperature, these increases do not correspond to temperature-mediated 

pCO2 increases. Ice duration and length of thermal stratification prove to be poor indicators of 

springtime and fall pCO2 because of biogeochemically dynamic waters below ice (winter) and 

thermocline (summer). We also demonstrate that even extreme warming events remain 

undetected when pCO2 is estimated from pH-based carbonate equilibria. Our results imply an 

interplay of biotic and abiotic factors affecting pCO2 variability and therefore should be 

considered together. Moreover, we are rather unlikely to detect pCO2 variability and change in 
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response to climate warming. These results add additional sources of uncertainty to reported in 

Chapter 2 to already overall high uncertainty CO2 fluxes. 

Chapter 4 attempts to rectify the issue of lack of continuous, direct CO2 measurements in 

freshwater systems by synthesizing published and unpublished eddy covariance flux 

observations from 19 globally distributed lakes and reservoirs. Advances in eddy covariance 

technique improves our temporal sampling capability of freshwater ecosystems. In contrast to 

terrestrial ecosystems, we find higher variability of temporal patterns of CO2 flux and a lack of 

relationship with latitudinal gradients of annual means of precipitation and temperature. Lake 

CO2 fluxes show consistent dependencies with temperature, solar radiation, and wind speed, 

however ecosystem level CO2 responses are regulated by lake littoral and pelagic productivity, 

color, and presence/absence of thermal stratification. All representative lakes showed 

surprisingly coherent CO2 flux oscillations in sub-monthly time scales. When we up-scaled CO2 

flux, despite including diurnal cycle, high springtime/fall CO2 emissions, and uncertainty of flux 

towers, we find that current global CO2 fluxes derived from carbonate equilibria are in 

comparison overestimated by 40%. Therefore, the lake and reservoir CO2 contribution to global 

balance balances will require continual refinement as more high temporal and low uncertainty 

observations are added to the database.  

Chapters 2-4 focused on key aspects of our question on drivers and uncertainties in 

temporal variability in lake CO2 cycle, with a focus on lake-atmosphere exchanges. The work 

together showed the role of systematic and random errors (Chapter 2), theoretical assumptions 

combined with methodological limitations (Chapter 3), and sampling uncertainty and high 

temporal variability (Chapter 4), all of which highlight the overall limited understanding of 

controls over CO2 exchanges in freshwater systems. It was striking how existing indirect 
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(carbonate) and direct (eddy fluxes) are prone to diverse sources of errors, and how often these 

are ignored in flux estimation. Comparing eddy fluxes from waterbodies representing different 

trophic states, morphometric, and climatic conditions showed that NEE coherently responded to 

some environmental drivers, despite all ecosystem differences. Probably most surprising finding 

was overall high contribution of in-lake processes to CO2 flux dynamics at air-water interfaces 

compared to forcings affecting in fluxes from atmosphere. 

5.3       Implications for understanding the roles of lakes in regional and global carbon cycles 

Overall, major contributions of this research were: 

1. Conducting a comprehensive analysis of empirical error propagation through three

carbonate equilibria and in four chemically heterogenous lake groups. To my knowledge,

this is the first random error analysis for freshwaters. The results highlight these sources

of error are non-negligible and should be considered in data analysis and results

interpretation in the case of estimating pCO2 from carbonate equilibria.

2. Error analysis coupled with model simulations highlighted overall high uncertainty of

long-term pCO2 trends, low sensitivity pCO2 to even extreme warming events, and

inability to separate temperature from other biogeochemical effects on pCO2 calculated

from carbonate equilibria. All these results imply significantly reduced applicability of

using water chemistry data for estimating pCO2 in freshwaters, despite a wide

availability of such data.

3. Highlighting the limited direct and indirect ice effects on understudied interannual

variability of pCO2 in lakes, and the unclear CO2 flux responses to disappearing ice

cover.
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4. Expanding eddy flux analysis beyond short-term, single-site analysis over freshwater

waterbodies. The NEE comparisons highlight cross-site similarities and dissimilarities of

NEE in terms of flux sign and magnitudes and flux sensitivities to environmental drives.

Underrepresented ecosystems types are highlighted, potentially providing guidance on

selecting tower locations.

5. Providing an open source data product containing 25 eddy flux towers with

meteorological and in-lake data for limnologist and micrometeorologists studying various

aspects of air-water NEE.

5.4 Future work 

My dissertation research showed high uncertainty attributed to CO2 estimation from 

carbonate equilibria. Therefore, I would focus future research on direct CO2 observations and 

further exploration of eddy flux dataset. The proposed future research themes are highlighted 

below. 

Like any correlative statistical approaches, the wavelet coherence approach did not 

identify which physical and biological processes drive exchanges of CO2 at the air-water 

interface. While I first examined the variables with potential relevance for CO2 flux in lakes, I 

found that most micrometeorological variables exhibited high coherence with NEE because of 

strong diurnal and seasonal cycles attributed to influx of solar radiation. I would remove solar 

cycles from timescales ranging from diurnal to seasonal and re-run wavelet coherence on 

anomalies of environmental variables and CO2 flux to distinguish environmental drivers 

governing NEE variability from spuriously correlating variables. I would also include the time-

lag analysis as lagged responses to drivers in aquatic systems are likely as indicated in Chapter 4. 
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The wavelet-based analysis mentioned above does not consider multiple drivers affecting 

CO2 fluxes. I would couple the wavelet analysis with an information theory approach described 

by [Sturtevant et al., 2015] to quantify drivers’ contribution to CO2 flux variability at multiple 

time scales. To my knowledge, such approach has never been applied to freshwater systems.  

In Chapter 4, I show consistent seasonal patterns of net ecosystem exchanges across all 

lakes with regular oscillations over the entire open water season. I hypothesized that these 

oscillations were related to trophic cascades and/or internal waves affecting metabolic balances 

and CO2 fluxes. To test these hypotheses, I would use high resolution lake temperature profiles 

to calculate stratification indices and waterside shear/convection, and in-water dissolved oxygen 

and carbon dioxide data to calculate metabolic balances (and differences between these two 

methods). I would also attempt to partition NEE into its components, gross primary production 

and ecosystem respiration to gain insight regarding biological controls over temporal NEE 

variability. Several sites in eddy flux dataset contain such information.  

Finally, as I showed in Charter 3 and 4, the modeling approach is necessary to improve 

our mechanistic understanding of processes governing CO2 flux variability. General lake and 

community land models rarely include biogeochemical modules for inorganic carbon cycle and 

were not tested on small lakes. I would use eddy fluxes to evaluate either of these models and 

verify mechanistic processes underlying and/or how lakes ecosystems affect and are affected by 

climate.  
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