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Abstract:  20 

Inland waters occur at a range of spatial scales and can drastically change over time. 21 

Globally, the size distribution of water bodies is skewed heavily towards smaller bodies. Due to 22 

previous mapping techniques, a significant number of these smaller bodies (< 0.1 sq. km) are not 23 

represented in global inland water databases. Generally, inland waters are considered net carbon 24 

sources to the atmosphere and relative to their size, smaller water bodies release more carbon 25 

into the atmosphere than larger bodies. Climate models rarely incorporate carbon cycling from 26 

inland waters. As remote sensing technologies become more accessible, the opportunity to remap 27 

and reevaluate carbon sources from inland waters presents itself. More accurate constraints on 28 

outgassing by inland waters would result in a further constrained global carbon budget. 29 

Using 1 meter resolution hyperspectral imagery that was retrieved over a 10 km × 10 km 30 

region in northern Wisconsin in the summer of 2019, a high-resolution surface water map was 31 

created. Over this same sample period, an array of eddy covariance flux towers was positioned 32 

across different landscape types including permanent and seasonal lakes, as well as within 33 

wetlands. The combination of this dense network of flux towers and outgassing values from 34 

literature allows for average summer fluxes to be extrapolated across the region defined in the 35 

surface water map. Through the comparison of estimates using conventional inland water 36 

databases and this high-resolution surface water map, this study finds that carbon models 37 

underestimate the contribution of surface water to the total regional carbon budget. 38 

 39 

 40 

 41 
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Introduction 42 

In the past few decades, inland waters have been identified as significant contributors to the 43 

global carbon budget (Cole et al. 2007; Raymond et al. 2013; Drake et al. 2018; Harmon 2020). 44 

This has only recently been the case, however, as the influence of inland water carbon cycling 45 

was limited to, initially, closed systems, followed by a period of treating inland waters as 46 

recipients of upstream influences. Today, inland waters are regarded as a considerable 47 

component of the global carbon budget (Tranvik et al. 2018). However, global climate models 48 

(GCMs) lag in their incorporation of inland waters into carbon cycling (Muster et al. 2013). Still 49 

regarded as a passive pipe within GCMs, inland waters are misrepresented, and this 50 

undercounting contributes to the large uncertainty present for the global terrestrial carbon sink 51 

(Cole et al. 2007). Minimizing the land sink uncertainty is essential to the greater goal of 52 

predicting future global greenhouse gas concentrations (Huntzinger et al. 2017). Therefore, 53 

additional effort should be made to incorporate our recent understanding on inland carbon 54 

cycling into GCMs.  55 

Gas transfer theory – The interface between the water surface and atmospheric boundary 56 

layer serves to exchange gas concentrations to reach equilibrium within the boundary region 57 

(MacIntyre et al. 1995). Slightly soluble gases, such as carbon dioxide (CO2) and methane (CH4), 58 

have their exchange across the air-water interface inhibited by the aqueous boundary layer. 59 

Turbulence in the boundary region dominates the ability of slightly soluble gases (Crusius and 60 

Wanninkhof 2003). Gas exchange of CO2 (Fc) can be estimated using the gas transfer velocity (k) 61 

and the gradient between the aqueous CO2 concentration (Cw) and the atmospheric boundary 62 

layer concentration (Ca) modeled by the expression 63 

𝐹! = 𝑘(𝐶" 	− 	𝛼𝐶#) 64 
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where α is the Ostwald solubility coefficient (MacIntyre et al. 1995). Cw is rarely measured in 65 

field campaigns and is difficult to estimate from limnological variables such as alkalinity (Kifner 66 

et al. 2018). Additionally, the gas transfer velocity requires either direct measurements of Fc, Cw, 67 

and Ca, or must be estimated via wind speed. However, for wind speeds less than about 3 m s-1, 68 

which is characteristic of small lakes, the dependence of k on windspeed largely breaks down 69 

(Cole et al. 2010).  70 

 Due to this weakness of estimating gas transfer velocities and measuring CO2 71 

concentrations, the eddy covariance method has seen recent, limited use in measuring fluxes 72 

across the inland air-water interface (Anderson et al. 1999; Vesala et al. 2012). The eddy 73 

covariance method provides a direct, automated sampling regime that involves a relatively more 74 

complicated setup compensated by a reduction in investigator effort throughout a field campaign. 75 

This is unlike the floating chamber method or sampling of atmospheric and aqueous gas 76 

concentrations which require subsequent site visits by the investigator. The eddy covariance 77 

method makes use of the turbulent eddies that transport energy, water, and gases across space 78 

and time. The carbon dioxide vertical flux (𝐹!) can be calculated by the mean covariance 79 

between the deviations of vertical wind (𝑤$) and CO2 mixing ratio (𝐶′) from the mean vertical 80 

wind (𝑤,) and the mean CO2 mixing ratio (𝐶̅), respectively, as the expression 81 

𝐹! = 𝑤$𝐶′...... 82 

where 𝑤$ = 𝑤	 −	𝑤,  and 𝐶′ = 𝐶	 −	 𝐶̅ (Anderson et al. 1999). While eddy covariance theory is 83 

relatively simply, the actual implementation and interpretation is not always as straight forward. 84 

Eddy covariance struggles at low speeds which can be a problem for sheltered, small ponds and 85 

lakes (Kenny et al. 2017). Additionally, eddy covariance theory is based on a homogeneous 86 
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footprint, which is impossible for eddy covariance towers placed on a lake shore and unlikely for 87 

those floating near the terrestrial boundary (Reed et al. 2018; Morin et al. 2018). These 88 

complications require further consideration and care should be taken while interpreting results 89 

from lake situated eddy covariance towers. 90 

Size dependence – Recently gaseous efflux from lakes and ponds have been determined to be 91 

partially a function of size (Downing 2010; Holgerson and Raymond 2016). Smaller water 92 

bodies generally are more supersaturated with respect to CO2 than larger bodies. This is 93 

primarily due to the higher perimeter – area ratio for smaller bodies as well as smaller bodies 94 

generally being shallower (Holgerson and Raymond 2016). A higher perimeter – area ratio 95 

results in increased terrestrial carbon inputs in the form of decaying material through litterfall 96 

and surface runoff. Given the smaller water volume, carbon inputs to small bodies cause greater 97 

saturation than in larger bodies. Additionally, oxygen concentrations are generally lower in 98 

smaller ponds (Crisman et al. 1998; Downing 2010). The negative relationship between 99 

dissolved oxygen and pond CO2 concentrations implies elevated CO2 concentrations in smaller 100 

bodies (Holgerson 2015). As a result, small ponds and water bodies, despite only constituting 101 

8.6% of lake area globally, contribute 15.1% of CO2 emissions and 40.6% of diffusive CH4 102 

emissions (Holgerson and Raymond 2016).  103 

Furthermore, the dominant force driving turbulence at the air-water boundary region varies 104 

by lake size between convection and wind shear (Read et al. 2012). Convection is of increasing 105 

importance for smaller lakes, while wind shear is generally a stronger influence for larger lakes, 106 

likely due to deeper boundary regions. This complicates estimates of k, which have historically 107 

been parametrized through wind speeds (Cole et al. 2010), as this results in a temporal 108 

dependence of k on wind. Convection lags wind shear, therefore, gas transfer estimates for small 109 
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bodies, which are more dependent on convection for turbulence, will be based on the incorrect 110 

temporal signature of wind shear, rather than convection (Read et al. 2012).  111 

Current estimates – Our understanding of both the spatial distribution of inland surface 112 

water, as well as the magnitude of which these bodies emit carbon to the atmosphere has rapidly 113 

increased in the past few decades (Tranvik et al. 2018). Currently, the highest resolution global 114 

inland water database available is the GLObal WAter BOdies database (GLOWABO), remotely 115 

sensed at 14.25 m spatial resolution (Verpoorter et al. 2014). GLOWABO consists of 116 

approximately 117 million lakes totaling 5 × 106 km2 corresponding to 3.7% of Earth’s 117 

nonglaciated land area. All lakes with a surface area of 0.002 km2 are included; Caspian Sea not 118 

included. This dataset is not yet public. However, using the published distributions from 119 

GLOWABO, carbon emissions from lakes have been upscaled using a traditional extrapolation 120 

and a size-productivity weighted approach (DelSontro et al. 2018). The extrapolation approach 121 

following (Downing et al. 2006) yielded global carbon emissions from lakes and impoundments 122 

amounting to 4 C-CO2eq yr-1, while the size-productivity method resulted in 2.3 C-CO2eq yr-1 123 

(95% confidence interval). This size-productivity method is of similar magnitude to 124 

approximately 20% of global fossil fuel CO2 emissions (DelSontro et al. 2018). Given the 125 

rapidly evolving knowledge base, it is not unreasonable to suggest that more progress is to be 126 

made both in regard to the global distribution of inland water and to the global carbon flux from 127 

these bodies. 128 

Methods 129 

CHEESEHEAD19 – The Chequamegon Heterogeneous Ecosystem Study Enabled by a High-130 

density Extensive Array of Detectors 2019 (CHEESEHEAD19, cheesehead19.org) field 131 

campaign, a National Science Foundation project, serves as the parent project for this study 132 



Inland waters & regional carbon budgets 

7 
 

(Butterworth et al. 2021). During the growing season period (late June – late September) of 133 

northern Wisconsin, United States, CHEESEHEAD19 operated across a 10 km × 10 km domain 134 

in the Chequamegon-Nicolet National Forest (Figure 1).  135 

 136 

Figure 1. Map of CHEESEHEAD19 flux towers. Shape indicates land cover type. Color symbolizes net 137 
ecosystem exchange (NEE) over the study period (06/20-09/30/2019). Background is Wiscland2 data. 138 

The primary objectives of CHEESEHEAD19 were to study the atmospheric boundary layer 139 

response to fluxes from a heterogeneous surface, investigate the energy balance closure problem, 140 

and identify issues in scaling surface fluxes. Using one of the world’s highest density networks 141 

of eddy covariance flux towers throughout the observation period, combined with different 142 

profilers, daily radiosonde launches, and aerial imagery during three intensive observation 143 

periods, CHEESEHEAD19 provided data to tackle several scaling problems, including the 144 

scaling of inland water carbon fluxes from the local to, potentially, global scale (Butterworth et 145 

al. 2021).  146 
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Carbon fluxes – Flux towers positioned across the different land cover types are separated 147 

into five categories: Non-Water, Open, River, Vernal, and Wetland. An Open classification 148 

refers to larger, open bodies of water, while the Vernal classification are small, often temporary 149 

bodies. Fluxes are measured at half-hourly intervals. Mean CO2 fluxes are then calculated for the 150 

period June 20th – September 30th, 2019, for each site (Table 1), before being averaged for each 151 

class (Figure 2). As no CHEESEHEAD19 flux towers were positioned over a river ecosystem, a 152 

mean yearly CO2 flux for rivers is taken from (Crawford et al. 2014), who measured CO2 fluxes 153 

using the floating chamber method over four rivers approximately 50 km from the 154 

CHEESEHEAD19 domain during 2012. 155 

 156 

Figure 2. Mean summertime (6/20-9/30) CO2 fluxes. River flux is over an annual period (Crawford et al., 157 
2014). All other values calculated from representative CHEESEHEAD19 flux towers. 158 

Hyperspectral imagery –Hyperspectral imagery was captured over the CHEESEHEAD19 159 

domain from a Cessna 210 at 1400 m AGL across four days (June 26, July 11, August 4, August 160 

30). This study exclusively uses the August 30th, 2019, imagery. With a spectral range spanning 161 

400 – 2500 nm, the HySpex imager (VNIR-1800 and SWIR-384; HySpex, Skedsmokorset, 162 

Norway) provides 1-meter spatial resolution of the domain. The HySpex has a spectral resolution 163 

of 3.26 nm in the Visible and Near-Infrared (400-1000 nm) and 5.45 nm in the Shortwave 164 

Infrared (1000-2500 nm). For the August 30th acquisition, 25 flightlines were mosaiced to create 165 
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a single image over the domain. Flightlines were georeferenced and bidirectional reflectance 166 

distribution function (BRDF) corrected.  167 

 168 

Figure 3. Hyperspectral signatures for ground truths. 169 

HDWI – The Hyperspectral Difference Water Index (HDWI) was created using the 170 

hyperspectral mosaic (Xie et al. 2014). The HDWI takes advantage of the ‘red-edge’ difference 171 

between visible and near-infrared region to separate water from other surface types (Figure 3) 172 

and is calculated as follows 173 

𝐻𝐷𝑊𝐼 = 34 𝑅(𝜆)𝑑𝜆
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Higher HDWI values indicate the surface is more likely to be inundated. Using ground truths 175 

collected during and following the field campaign, HDWI thresholds are iteratively tested to 176 

determine the threshold with the smallest summed errors of omission and commission. Road 177 

buffers are masked out as roads have a similar spectral signature. All pixels above this threshold 178 

value are categorized as Open, while all pixels below the threshold are considered Non-Water.  179 

Results 180 
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Water distributions – Lake distributions and resulting CO2 fluxes are compared to those used 181 

in prominent climate models. One of the most widely used land components of a climate model 182 

is the Community Land Model (CLM). The most recent version, CLM 5.0, utilizes the lake 183 

distribution Global Lakes and Wetlands Database (GLWD) to determine lake hydrography 184 

(Lehner and Döll 2004; Lawrence et al. 2019). Additionally, inundated surfaces are 185 

mathematically modeled as fractions of grid cells. CLM 5.0 includes methane surface fluxes as 186 

the ratio between CO2 and CH4. The HydroLAKES database is used as the lake hydrography for 187 

the Global Lake area, Climate, and Population dataset (Messager et al. 2016; Meyer et al. 2020). 188 

Finally, the National Hydrography Dataset – High Resolution, which provides the hydrography 189 

for the ~500,000 lakes greater than 1 hectare in the LAGOS-US (Spanish for lakes) LOCUS 190 

program (U.S. Geological Survey 2021; Cheruvelil et al. 2021). These three inland water 191 

datasets serve as a basis to compare the HDWI distribution findings from this study (Figure 4).  192 

 193 

Figure 4. Inland waterbody distribution for the CHEESHEAD19 domain. a. Global Lakes and Wetlands 194 
Database; b. HydroLAKES database; c. NHDPlus-HR; d. HDWI from CHEESEHEAD19 hyperspectral imagery, 195 

thresholded at -0.93 196 

The GLWD (Figure 4a) conceptualizes the CHEESEHEAD19 domain as 8.4% dense wetland 197 

(50-100% Wetland) and 92.6% as sporadic wetland (25-50% Wetland). Contrasting wetland 198 

interpretation, the HydroLAKES dataset (Figure 4b) contains six lakes totaling 1.79 km2 within 199 

the CHEESEHEAD19 domain. The NHDPlus-HR (Figure 4c), which builds off HydroLAKES, 200 
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includes the same bodies as HydroLAKES, but also incorporates the 10 m 3DEP digital 201 

elevation model and the WBD hydrologic-unit boundaries (U.S. Geological Survey 2021). For 202 

the CHEESEHEAD19 domain, NHDPlus-HR hosts 54 lakes/ponds covering 1.83 km2 as well as 203 

two creeks and a river covering 0.88 km2. Finally, the HWDI image (Figure 4d) produced from 204 

CHEESEHEAD19 hyperspectral imagery, with a threshold of -0.93, identifies 21.91 km2 as 205 

being covered by surface water. The three hydrographies used in different models range in their 206 

representation of the CHEESEHEAD19 domain from idealizing the entire area as some fraction 207 

of wetland to identifying ~2% of the domain as covered by lakes and river, while this study finds 208 

that water covers approximately ~22% of the domain (Figure 5b). Additionally, the number of 209 

smaller lake bodies is significantly more from this work (Figure 5c). 210 

 211 

Figure 5. a. Mean summertime fluxes extrapolated across CHEESEHEAD domain for each classification 212 
category and dataset. b. Cumulative lake area for each dataset with increasing lake area size. c. Extrapolated fluxes 213 

for lake area bins. When lake Area < 0.1 km2 the Vernal flux is used; when lake Area ≥ 0.1 km2 Open flux is used. 214 

Regional CO2 fluxes – Representative CO2 fluxes extrapolated to each dataset’s hydrography, 215 

where areas that haven’t been classified as water are treated as Non-Water, reveal large 216 
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discrepancies, especially when comparing this work to others (Figure 5a). The GLWD represents 217 

the CHEESEHEAD19 domain as CO2 sinks at all locations. The HydroLAKES and NHD exhibit 218 

small positive fluxes from Open water landcover, however, the inclusion of rivers into the NHD 219 

dataset results in a strong positive flux. Our thresholded HDWI water distribution indicates a 220 

large positive flux from Open water sources. No Vernal fluxes are represented in any dataset 221 

within the domain. Summing land cover classes across each dataset creates a simplified vertical 222 

CO2 budget (Figure 6). Total regional CO2 uptake for the NHD and HDWI datasets are 223 

approximately 120 Mg C less per day when compared to the GLWD and HydroLAKES datasets. 224 

This can primarily be attributed to the inclusion of rivers and small water bodies in the former 225 

datasets. 226 

 227 

Figure 6. Total CO2 flux summed over classification categories for each dataset. 228 

Discussion 229 

Model comparison - Lake carbon dynamics are poorly represented within climate and lake 230 

models and budgets. Higher resolution data results in more positive CO2 fluxes for the 231 

CHEESEHEAD19 domain. Much of the additional surface water area identified from the HDWI 232 

image is associated with bodies smaller than 0.1 km2 (Figure 5c). Additionally, rivers are 233 

significant contributors of CO2 to the atmosphere. Given their turbulent nature, rivers and 234 

streams have much higher gas transfer velocities. Acting as both transporters and emitters of 235 
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carbon, river carbon dynamics require further investigation regarding climate modeling. 236 

However, it is important to remember that CHEESEHEAD19 lacked an eddy covariance tower 237 

with a river-dominated footprint and annual fluxes were used instead of growing season. As 238 

representing lake and surface water distributions appears to be the greatest difficulty for 239 

incorporating inland water carbon cycling into models, further effort and resources should be 240 

expended to create a global high resolution surface water map. As a result, lake rich regions such 241 

as the Northern Highlands Lake District of Wisconsin, adjacent to CHEESEHEAD19, have the 242 

potential to experience drastic changes in our understanding of their carbon budgets.  243 

Implications for human populations – Humanity’s continuing contribution to climate change 244 

has direct impacts on inland water carbon dynamics. As precipitation events become more 245 

extreme, both in terms of heavier rains and droughts, lakes and surface waters will receive 246 

increased surface runoff and will expose carbon rich sediments, respectively, likely increasing 247 

carbon emissions to the atmosphere (Tranvik et al. 2009; Marcé et al. 2019). Likewise, the rapid 248 

temperature changes occurring at high latitudes is resulting in significant glacial retreat and 249 

permafrost melt, exposing thermokarst lakes which are hotspots of carbon emissions, especially 250 

methane (Sepulveda-Jauregui et al. 2015). One of the most direct implications for human 251 

populations is the increasing trend in global eutrophication. Eutrophication has the potential to 252 

cause an additional 1 Pg CO2eq yr-1 to be emitted to the atmosphere, which is approximately 253 

equal to 13% of global fossil fuel consumption (DelSontro et al. 2018). This is especially 254 

concerning as small agricultural ponds, which are supersaturated with carbon, cover about 255 

77,000 km2 globally and are more likely to experience eutrophication (Downing 2010). 256 

Additionally, eutrophication results in oxygen depletion, dead zones, and in some cases, fish 257 

kills, further complicating human - surface water interactions (Peterson et al. 2003). Finally, as 258 
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water stresses escalate in regions of the world, damming of flowing waters has been shown to 259 

dramatically increase carbon emissions (Tranvik et al. 2009). 260 

Conclusion 261 

As stated by Downing et al. (2010), “little things mean a lot,” and this study has continued to 262 

prove that small inland waterbodies are significant components of regional, and likely global 263 

carbon cycling. Because climate change has significant impacts on inland water carbon 264 

dynamics, additional effort should be taken to embody these processes within climate models. 265 

Representing surface water distributions at a high resolution appears to be the main source of 266 

difficulty in properly incorporating these carbon fluxes to the atmosphere. Verpoorter et al.’s 267 

(2014) 14.25 m spatial resolution map likely has promise but has not been publicly released. 268 

Analysis of 1 m resolution imagery over a surface water dense region in northern Wisconsin 269 

indicates inland water hydrography datasets used for modeling oversimplify and under sample 270 

the amount of surface water. 271 
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 393 

Supplementary Materials 394 

Table 1. CHEESEHEAD19 flux towers and their input classification for calculating mean fluxes over the field 395 
campaign. 396 

Ameriflux Site Landcover Classification Mean CO2 
Flux [mol m-2 d-1] 

US-PFa Mixed Forests Not Included  
US-PFb Evergreen Needleleaf 

Forest 
Non-Water -0.172 

US-PFc Deciduous Broadleaf 
Forest 

Non-Water -0.035 

US-PFd Permanent Wetland Wetland -0.142 
US-PFe Water Body Open 0.307 
US-PFf Grassland Non-Water -0.051 
US-PFg Evergreen Needleleaf 

Forest 
Non-Water -0.465 

US-PFh Evergreen Needleleaf 
Forest 

Non-Water -0.182 

US-PFi Deciduous Broadleaf 
Forest 

Non-Water -0.138 

US-PFj Deciduous Broadleaf 
Forest 

Non-Water -0.154 

US-PFk Deciduous Broadleaf 
Forest 

Non-Water -0.268 

US-PFl Deciduous Broadleaf 
Forest 

Non-Water -0.284 

US-PFm Deciduous Broadleaf 
Forest 

Non-Water -0.254 

US-PFn Mixed Forests Non-Water -0.406 
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US-PFo Water Body Vernal 0.144 
US-PFp Mixed Forests Non-Water -0.261 
US-PFq Deciduous Broadleaf 

Forest 
Non-Water -0.298 

US-PFr Permanent Wetland Wetland -0.279 
US-PFs Deciduous Broadleaf 

Forest 
Non-Water -0.363 

US-PFt Evergreen Needleleaf 
Forest 

Non-Water -0.248 

 397 


