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Abstract:	

The	physical	processes	of	heat	exchange	between	lakes	and	the	surrounding	atmosphere	are	
important	in	simulating	and	predicting	terrestrial	surface	energy	balance.	While	one-
dimensional	lake	models	have	been	used	in	predicting	environmental	changes	in	ice	dynamics	
and	water	temperature,	little	work	has	been	done	on	identifying	drivers	of	model	uncertainty	in	
heat	fluxes	at	multiple	time	scales.	These	heat	fluxes	play	a	large	role	in	the	physical	process	of	
ice	growth	and	decay	on	the	lake	surface,	as	well	the	influence	that	the	lakes	have	on	the	
regional	climate.	We	evaluated	a	pair	of	one-dimensional	lake	models,	FLake	and	GLM,	to	
compare	modeled	latent	and	sensible	heat	fluxes	against	observational	data	collected	by	an	
eddy	covariance	tower	during	a	one-year	period	in	2017,	using	Lake	Mendota	in	Madison,	
Wisconsin	as	our	study	site.	While	our	initial	hypothesis	identified	transitional	periods	of	ice	
cover	as	a	leading	source	of	model	uncertainty,	we	instead	found	that	the	models	failed	to	
account	for	a	large	growth	in	upward	latent	heat	fluxes	that	occurred	from	late	August	into	late	
December,	a	pattern	which	was	confirmed	by	a	second	eddy	covariance	tower	on	the	southern	
shore	of	the	lake.	Our	results	ultimately	showed	that	one-dimensional	models	are	effective	in	
predicting	sensible	heat	fluxes	but	are	considerably	less	sensitive	to	latent	heat	fluxes	than	the	
observed	relationships	of	latent	heat	flux	to	environmental	drivers.	These	results	can	be	used	to	
focus	future	improvement	of	these	lake	models	especially	if	they	are	to	be	used	for	surface	
boundary	conditions	in	regional	numerical	weather	models.		

	

Introduction:	

Lakes	influence	both	physical	and	chemical	changes	to	climate	at	regional	special	scales	and	
time	scales	varying	from	days	to	hundreds	of	years.	At	short	time	scales	(hours	to	days),	lakes	
play	in	important	role	in	driving	the	surface	energy	balance	as	the	lake	surface	creates	a	region	
of	lower	albedo,	more	moisture,	and	lower	roughness	relative	to	land,	leading	to	greater	
surface	heat	uptake,	stronger	latent	heat	fluxes,	and	increases	the	surface	wind	speeds	(Thiery	
et	al.	2014).	At	longer	time	scales	(seasons	to	years),	the	lake	annual	ice	cover	varies	with	



changing	surface	temperature,	which	in	turn	plays	a	role	in	long-term	climate	feedbacks	
including	carbon	cycling.	Climate	effects	of	reduced	lake	ice	have	not	been	well	studied,	
however	two	observations	have	been	made.	The	first	is	that	reduced	lake	ice	allows	for	greater	
evaporation	in	winter	and	greater	snowfall	due	to	lake	effect	snow.	The	second	is	an	increased	
emission	of	greenhouse	gases.	Lake	ice	cover	is	assumed	to	act	as	a	barrier	that	prevents	
greenhouse	gasses	from	escaping	until	the	ice	is	thawed,	however	greenhouse	emissions	would	
continue	throughout	winter	without	sufficient	ice	cover	to	hinder	emissions	(Brown	and	
Duguay,	2010).	In	addition,	ice	and	snow	cover	mitigates	the	ability	of	lakes	to	serve	as	carbon	
sinks	during	the	winter	months	(Tranvik	et	al.	2009).		

Lakes	have	received	considerable	attention	for	their	role	in	regional	carbon	cycles.	In	
comparison	to	the	surrounding	land,	lakes	are	stronger	drivers	of	carbon	cycling	(Algesten	et	al.	
2004).	The	total	carbon	storage	of	lakes	on	a	global	scale	is	estimated	at	approximately	60%	of	
the	carbon	concentration	of	the	oceans	(Cole	et	al.	2007),	and	lakes	are	estimated	to	emit	
approximately	0.3	Pg	of	carbon	per	year	(Raymond	et	al.	2013).	Lakes	are	also	strong	methane	
emitters	which	can	influence	climate	at	regional	scales	(Krinner	2003).	

The	increased	attention	given	to	lakes	had	given	greater	incentives	for	appropriate	means	to	
study	lakes.	A	growing	number	of	lakes	now	have	in	situ	data	often	provided	by	eddy	
covariance	flux	towers,	which	are	able	to	measure	carbon	dioxide	emissions	from	over	water	
(Miller	et	al.	2010)	and	assign	CO2	fluxes	by	means	of	covariance	between	fluctuations	in	CO2	
and	turbulent	vertical	wind	velocity	over	the	surface	(McGillis	et	al.	2001).	Eddy	flux	
measurements	have	also	been	used	to	identify	variation	in	evaporation	(Lenters	et	al.	2005)	
and	the	surface	energy	balance	of	lakes	(Rouse	et	al.	2003)	over	annual	timescales.	The	second	
means	of	lake	analysis	is	by	means	of	modeling,	which	has	received	subsequent	attention	for	
the	ability	to	predict	future	ice	dynamics	due	to	climate	forcings	(Yao	et	al.	2014).	These	models	
have	been	tested	against	observational	data	primarily	for	aquatic	variables	and	have	produced	
acceptable	predictions	of	water	temperature	for	a	study	done	in	Africa	(Thiery	et	al.	2014)	as	
well	as	a	global	study	involving	32	different	lakes	(Bruce	et	al.	2018).	Less	work	however	has	
been	done	on	analyzing	model	uncertainty	on	lake-atmosphere	interactions	on	shorter	
timescales	where	climatological	changes	can	be	neglected.		

Our	analysis	seeks	to	identify	a	possible	source	of	model	uncertainty	in	the	predicting	the	
surface	energy	balance	over	a	lake.	In	mid-latitude	lakes,	transitional	periods	of	surface	freezing	
at	night	and	melting	during	the	day	can	create	month-long	periods	of	changing	ice	cover,	which	
complicates	the	latent	heat	transfer	due	to	significant	variability	in	ice	presence.	Spatial	
variability	in	sensible	heat	flux	can	also	ensue,	as	the	ice	creates	a	buffer	which	hinders	lake-
atmosphere	interactions.	The	limited	attention	given	to	observational	ice	thickness	in	the	
model	input	leads	us	to	believe	that	these	transitional	periods	could	lead	to	significant	model	
bias	in	both	latent	and	sensible	heat	fluxes	in	comparison	to	periods	of	no	ice	cover	or	total	ice	
cover.	For	communities	such	as	Madison,	Wisconsin,	where	lakes	cover	a	significant	amount	of	
the	surface,	these	heat	fluxes	could	act	as	drivers	of	weather	at	a	mesoscale.	Therefore,	



inefficient	model	predictions	in	these	latent	and	sensible	heat	fluxes	could	have	detrimental	
impacts	on	the	ability	of	these	one-dimensional	models	to	be	utilized	for	forecasting	purposes.	
Our	study	seeks	to	ascertain	whether	or	not	these	transitional	periods	are	in	fact	periods	of	
greater	than	average	model	uncertainty	in	predicting	sensible	and	latent	heat	fluxes.		

Methods:	

Observational	data	for	the	years	of	2012-2016	were	supplied	by	means	of	an	eddy	covariance	
flux	tower	on	the	Picnic	Point	(PP)	peninsula	on	the	western	shore	of	Lake	Mendota.	The	flux	
tower	is	equipped	with	a	CSAT3	LI7500	three	dimensional	sonic	anemometer,	which	uses	three	
pairs	of	transducers	to	calculate	magnitude	and	direction	of	both	horizontal	and	vertical	wind,	
and	determines	sensible	and	latent	heat	fluxes	by	means	of	eddy	covariance.	The	tower	
measures	temperature	and	relative	humidity	with	a	Rotronic	temperature	and	humidity	sensor.	
The	data	was	gap	filled	by	means	of	marginal	distribution	sampling	(REddyProc	package,	Lasslop	
et	al.,	2010)	so	as	to	be	continuous	throughout	the	one-year	period.		

The	Lake	Mendota	buoy	is	deployed	over	the	deepest	part	of	the	lake	(43.0995,	-89.4045)	and	
is	equipped	with	a	thermistor	string	which	gives	temperature	measurements	from	the	surface	
to	20m	depth.	Data	collection	occurs	every	minute	(Reed	et	al.	2018).	

Solar	radiation	was	observed	on	the	top	of	the	nearby	Atmospheric,	Oceanic	and	Space	
Sciences	Building	using	a	pyranometer.	However,	much	of	these	data	were	missing	for	the	end	
of	2017,	and	for	this	time	period	we	used	solar	radiation	data	collected	from	the	NOAA	SOLRAD	
station	at	Dane	County	Regional	Airport	for	the	yearly	solar	radiation	data,	as	our	analysis	
showed	little	variability	in	solar	radiation	between	the	lake	and	nearby	airport.	In	addition,	the	
eddy	flux	tower	did	not	measure	longwave	radiation,	and	so	we	made	use	of	the	SOLRAD	
station	to	supply	longwave	radiation	as	well.		

The	two	models	were	supplied	with	input	data	from	the	flux	tower	measurements,	using	solar	
radiation	data	from	the	nearby	SOLRAD	site.	The	GLM	model	required	an	input	of	air	
temperature,	shortwave	and	longwave	radiation,	relative	humidity,	wind	speed,	and	rain	
accumulated.	The	flux	towers	supplied	all	the	input	information	except	for	solar	radiation	and	
longwave	radiation,	which	was	recorded	by	the	nearby	SOLRAD	station.	This	information	was	
compiled	into	a	single	spreadsheet	with	hourly	input	data	taken	in	by	the	model.		

The	model	also	took	in	a	text	file	with	information	regarding	lake	geography,	such	as	inflows	
and	outflows,	water	column	temperature,	latitude	and	longitude,	and	elevation.	This	parameter	
file	is	input	into	the	model	at	the	beginning	as	opposed	to	in	the	form	of	an	hourly	timeseries,	
and	so	we	applied	the	same	input	parameter	file	as	used	in	prior	modeling	experiments	by	
Dugan	et	al	(in	prep).	Our	aim	was	to	fix	these	variables	as	constant	and	instead	focus	on	the	
atmospheric	dynamics	as	the	primary	forcing	for	the	surface	energy	balance.		

The	FLake	model	took	a	similar	set	of	input	variables	to	the	GLM	model	and	thus	we	used	the	
same	input	data	for	the	shared	variables.	Shortwave	radiation,	air	temperature,	and	windspeed	



were	all	supplied	with	the	same	hourly	input	data	for	the	FLake	model	as	we	used	for	the	GLM	
model.	The	FLake	model	also	asked	for	two	unique	inputs:	vapor	pressure,	and	cloudiness	
fraction.	Air	humidity	in	mb	was	obtained	by	means	of	the	Clausius-Clapeyron	equation	
𝑒"(𝑇) ≈ 611.2exp	( /0.102

23456.7
)	to	obtain	the	saturation	vapor	pressure	𝑒"	in	Pa	using	the	flux	

tower	recorded	temperature	T.	We	subtracted	the	recorded	vapor	pressure	deficit	from	the	
flux	tower	to	obtain	the	vapor	pressure.	The	other	unique	input,	cloudiness,	was	estimated	as	a	
ratio	of	the	observed	solar	radiation	to	modeled	solar	radiation	by	means	of	the	equations	for	
potential	solar	radiation	given	by	Campbell	and	Norman	(1998).	The	ratio	was	adjusted	to	
remove	infinite	values,	negative	values,	and	values	greater	than	1	to	arrive	at	an	approximate	
number	to	represent	the	cloudiness,	with	1	meaning	complete	cover	and	0	meaning	no	clouds.	
Future	work	using	observed	cloudiness	should	be	conducted	to	ensure	accuracy	of	our	
methods.		

Our	initial	goal	was	to	do	hourly	comparisons	of	the	latent	and	sensible	heat	fluxes	between	the	
two	models	and	the	observational	data.	However,	GLM	model	outputs	daily	averaged	heat	
fluxes,	while	the	FLake	model	output	hourly	heat	fluxes.	To	resolve	this	issue,	a	MATLAB	daily	
averaging	code	was	written	to	average	every	24	cells	of	data	from	the	FLake	and	flux	tower	to	
obtain	daily	averaged	heat	fluxes,	these	daily	averaged	heat	fluxes	were	then	compared	against	
the	GLM	output.		

For	water	temperature,	both	models	provided	hourly	output	but	had	different	depths.	For	the	
FLake	model,	we	were	only	able	to	perform	comparisons	for	the	surface	water	temperature.	
With	the	GLM	model	however,	we	analyzed	data	at	several	depths	and	compared	those	
temperatures	against	the	buoy	data	to	try	to	identify	water	temperature	differences	as	a	
possible	source	of	model	uncertainty	in	predicting	latent	heat	fluxes.		

Transitional	periods	were	identified	using	the	AOSS	building	rooftop	camera	video	archive	in	
conjunction	with	the	Wisconsin	State	Climatology	(WSC)	ice	cover	archive.	Dates	during	which	
the	videos	showed	empirical	evidence	of	ice	cover	variations	throughout	the	day	were	
considered	to	be	transitional	periods,	and	these	time	periods	were	the	ones	used	when	we	
tested	for	ice	transition	as	a	source	of	model	uncertainty.	Periods	of	“ice-on”	and	“ice-off”	were	
given	by	the	dates	of	freezing	and	melting	on	the	WSC	ice	cover	website.			

	

Results:	

	

Seasonal	cycle	of	climate	and	surface	energy	fluxes	

Temperature	and	solar	radiation	both	followed	expected	and	covarying	annual	cycles,	with	
similar	days	of	max	values.	Over	2017,	surface	air	temperatures	were	predominantly	sub-
freezing	until	mid-March,	though	in	February	a	short	spike	in	surface	temp	was	observed	during	



which	the	temperatures	were	about	15	degrees	C.	Max	surface	temperature	occurred	during	
the	span	of	June	through	September	and	peaked	in	early	September.	Solar	radiation	had	a	
similar	trend	but	was	shifted	slightly	earlier,	such	that	the	max	solar	radiation	value	occurred	in	
June	and	decreased	from	late	June	through	December.	A	slight	increase	in	solar	radiation	was	
observed	at	the	very	end	of	December	and	is	reflected	by	a	relative	maxima	at	the	start	of	the	
timeseries	at	the	start	of	January	(Figure	1).		

Wind	speed	and	relative	humidity	followed	less	pronounced	trends.	Max	wind	speed	was	
observed	in	February	but	didn’t	follow	an	obvious	pattern	throughout	the	year.	Spring	and	
summer	wind	speeds	were	smaller	than	fall	and	winter.	The	maximum	observed	wind	speed	
was	slightly	above	7	ms-1,	however	most	of	the	days	had	average	wind	speeds	of	less	than	1	
ms-1.	Relative	humidity	followed	a	somewhat	sinusoidal	trend	with	peaks	in	April	and	October.	
There	was	greater	variance	in	the	data	during	winter	and	spring	and	had	less	variation	in	
summer	and	early	fall	(Figure	1).		

A	steady	increase	in	the	sensible	heat	flux	from	the	lake	to	the	atmosphere	was	observed	from	
late	January	to	December.	The	very	beginning	of	January	had	high	sensible	heat	fluxes	of	over	
50	Wm-2.	The	SH	slowly	decreased	to	negative	by	mid-February,	and	fluctuated	about	0	until	
early	June,	at	which	point	the	sensible	heat	fluxes	steadily	increased.	The	peak	sensible	heat	
fluxes	were	observed	in	November	and	December,	during	which	the	sensible	heat	fluxes	were	
greater	than	150	Wm-2.	A	slight	drop	occurred	in	late	November,	when	the	sensible	heat	flux	
was	negative,	however	it	then	rapidly	jumped	up	150	Wm-2	after	lake	mixing	(Figure	2).		

The	latent	heat	fluxes	followed	a	similar	trend,	though	the	observed	LE	was	only	negative	for	a	
very	brief	time	in	late	February.	Following	that	brief	time	of	negative	LE,	the	observed	latent	
heat	flux	ascended	to	over	100	Wm-2	in	the	following	month,	before	dropping	down	to	below	
50	Wm-2.	The	latent	heat	fluxes	grew	more	quickly	than	did	the	sensible	heat	flux.	The	most	
noteworthy	feature	of	the	observed	latent	heat	fluxes	was	the	large	increase	that	occurred	in	
late	September,	when	the	latent	heat	flux	grew	from	just	above	100	Wm-2	to	about	275	Wm-2.	
The	LE	value	remained	near	this	value	until	late	November	when	it	dropped	down	to	below	100	
Wm-2	(Figure	2).	This	period	of	high	latent	heat	fluxes	illustrated	considerable	interactions	
between	the	lake	and	the	surrounding	boundary	layer	and	likely	contributed	to	considerable	
amounts	of	moisture	deposition	in	the	atmosphere.		

Model	simulations	of	surface	fluxes	and	lake	thermal	state	

Between	the	two	models,	the	FLake	model	had	better	agreement	with	the	observational	fluxes.	
The	large	latent	heat	fluxes	in	early	January	observed	by	the	flux	tower	were	also	captured	by	
the	FLake	model,	though	the	model	predicted	latent	heat	fluxes	twice	in	magnitude.	
Additionally,	like	the	observational	data,	the	FLake	model	captured	the	steady	increase	in	
sensible	heat	fluxes	in	early	summer,	though	slightly	overestimated	the	observational	fluxes.	
Additionally,	both	the	FLake	model	and	the	flux	tower	recorded	the	largest	sensible	heat	fluxes	



in	November	and	December,	with	the	observational	data	being	nearly	three	times	as	large	in	
November	and	about	twice	as	large	in	December.		

The	Flake	model’s	greatest	period	of	uncertainty	was	from	Day	25	to	Day	115,	during	which	the	
observational	sensible	heat	fluxes	were	negative	while	the	FLake	model	predicted	almost	
positive	heat	fluxes.	As	seen	by	the	boxplot	(Figure	2)	the	median	value	for	the	observed	
sensible	heat	flux	during	2017	was	approximately	10	Wm-2,	with	the	FLake	model	
overpredicting	the	median	and	the	GLM	model	underpredicting	the	model.	The	FLake	model	
predicted	a	75th	percentile	very	similar	to	that	of	the	observed	data,	but	like	the	median	it	
overpredicted	the	value	of	the	25th	percentile.	The	box	plot	reveals	that	75%	of	the	GLM	
sensible	heat	fluxes	spanned	a	much	smaller	range	than	either	the	FLake	or	the	observational	
data	and	boasted	extreme	outliers	above	the	75th	percentile.	The	largest	value	for	the	GLM	
sensible	heat	fluxes	was	small	compared	to	the	max	values	of	both	the	FLake	model	and	the	
observational	data.		

Much	like	the	sensible	heat	fluxes,	the	GLM	model	was	worse	than	the	FLake	model	at	
predicting	latent	heat	fluxes	when	compared	to	the	PP	tower	data.	For	the	majority	of	the	
timeseries,	the	observational	latent	heat	fluxes	were	larger	in	magnitude	than	the	FLake	or	
GLM	models.	During	the	months	of	January	through	April,	the	FLake	model	predicted	four	time	
periods	during	which	the	latent	heat	fluxes	were	negative,	however	the	observational	data	only	
agreed	with	one	of	those	periods.	The	FLake	model	had	the	greatest	certainty	during	the	
summer	months,	when	it	predicted	a	similar	trend	of	increasing	latent	heat	fluxes	to	what	was	
observed	by	the	data,	though	it	also	underestimated	the	heat	flux	magnitudes.	The	period	in	
September	when	the	observational	latent	heat	fluxes	spiked	upwards	was	predicted	by	the	
FLake	model,	but	to	a	much	smaller	degree.	During	the	early	fall	latent	heat	spike,	the	
observational	max	was	near	330	Wm-2	while	the	FLake	max	was	only	about	160	Wm-2.		

Compared	to	the	observational	data	and	the	FLake	model,	the	GLM	model	underpredicted	the	
latent	heat	fluxes	by	a	large	margin	for	the	majority	of	2017.	The	rate	of	increasing	heat	fluxes	
for	2017	was	much	slower	for	the	GLM	model	than	it	was	for	the	FLake	model	or	the	
observational	data.	During	the	months	of	late	spring	through	summer,	the	GLM	model	
predicted	latent	heat	fluxes	~70	fewer	Wm-2	than	the	observational	data,	and	it	failed	to	predict	
the	latent	heat	flux	spike	that	occurred	in	the	fall.	During	the	time	when	the	observational	data	
showed	latent	heat	fluxes	of	over	300	Wm-2,	the	GLM	model	only	predicted	a	latent	heat	flux	of	
more	than	100	Wm-2	and	did	not	show	a	consistently	large	heat	flux	from	the	lake	to	the	
atmosphere.	The	discrepancy	between	the	models	and	the	observational	data	is	further	seen	in	
the	box	plot	of	the	annual	latent	heat	fluxes.	The	median	latent	heat	flux	of	the	observational	
data,	approximately	75	Wm-2,	was	just	about	the	value	of	the	75th	percentile	for	the	FLake	plot	
and	was	larger	than	the	upper	whisker	for	the	GLM	plot.	In	fact,	the	entire	interquartile	range	
for	the	observational	data	was	larger	than	the	75th	percentile	for	the	GLM	data,	showing	an	
underestimation	of	the	latent	heat	fluxes.		



We	compared	the	FLake	model	to	the	buoy	water	temperature	data	for	surface	water	
temperature	during	the	period	of	buoy	deployment	from	May	11,	2017	to	November	12,	2017	
(Figure	3).	GLM	water	temperature	was	plotted	against	the	buoy	data	and	the	FLake	model	at	
the	surface	and	plotted	against	just	the	buoy	data	for	depths	of	three,	five,	and	eight	meters.	
Both	models	overpredicted	surface	temperature,	with	the	FLake	model	being	high	biased	and	
never	having	a	lower	daily	surface	water	temperature	than	observations.	The	GLM	surface	
temp	had	less	high	bias,	but	generally	had	surface	water	temperatures	of	a	few	degrees	higher	
than	observations.	For	the	water	temperatures	beneath	the	surface,	the	GLM	model	again	had	
larger	temperature	vales	than	did	the	buoy,	however	this	trend	persisted	until	the	start	of	
August,	at	which	point	observed	temperatures	were	larger	than	GLM	temperatures	for	the	
duration	of	the	timeseries	at	all	three	depths.		

To	test	for	drivers	of	model-observation	differences,	we	evaluated	sensitivity	of	fluxes	to	
drivers,	plotted	as	bin	averages	of	temperature	and	relative	humidity	against	latent	and	
sensible	heat	fluxes	for	the	ice-on,	ice-off,	and	transitional	periods	(Figures	4-6).	For	the	
comparison	between	latent	heat	flux	and	temperature,	the	observed	data	showed	the	greatest	
variation	with	increasing	temperature	for	the	ice-off	and	transitional	periods	(Figure	6),	while	
the	FLake	model	was	most	sensitive	to	changing	temperatures	for	the	ice-on	period	(Figure	4).	
The	GLM	model	was	the	least	sensitive	for	all	three	time	periods.	The	exact	same	pattern	was	
seen	for	the	comparison	of	sensible	heat	flux	versus	temperature:	FLake	output	was	most	
sensitive	during	ice-on,	the	observation	data	was	most	sensitive	during	ice-off	and	transition,	
and	the	GLM	model	was	always	least	sensitive.		

The	comparison	of	latent	and	sensible	heat	fluxes	against	relative	humidity	showed	less	obvious	
relationships,	however	the	trends	were	roughly	the	same	as	for	the	temperature	sensitivity.	
The	FLake	model	was	most	sensitive	during	the	ice-on	period,	the	observational	data	was	most	
sensitive	during	the	ice-off	and	transition	periods,	and	the	GLM	model	was	consistently	the	
least	sensitive.		

Discussion	

Our	results	suggest	that	the	models	are	a	reliable	tool	for	simulating	sensible	heat	fluxes	over	
lakes	for	an	annual	period,	however	lower	reliability	was	found	for	latent	heat	flux.	Primarily,	
the	models	fail	to	explain	the	large	latent	heat	fluxes	observed	during	the	early	fall	months	by	
the	Picnic	Point	flux	tower.	In	order	to	explain	the	underestimation	of	heat	fluxes	by	the	
models,	and	possibly	the	cause	of	the	spike	in	latent	heat	fluxes,	we	have	considered	two	
possible	forcings	for	the	increased	energy	transport	which	require	future	testing	to	verify	as	
causes	for	large	heat	fluxes.	The	first	is	the	possibility	of	upper	atmospheric	effects	driving	
either	strong	upward	vertical	motion	or	a	large	gradient	in	air	moisture	content.	The	strong	
upward	vertical	motions	could	be	explained	by	synoptic	causes	such	as	cyclogenesis,	divergence	
of	the	adiabatic	wind	from	acceleration	in	upper	geostrophic	flow,	or	frontogenesis	(Martin,	
2006).	Analysis	of	upper	atmospheric	phenomena	during	the	period	of	strongest	latent	heat	
fluxes	could	be	used	to	identify	possible	synoptic	features	which	may	be	driving	stronger	latent	



heat	fluxes	at	the	surface.	One	of	particular	interest	is	atmospheric	stability,	which	has	been	
identified	as	the	cause	for	similar	autumnal	maxes	in	latent	heat	flux	over	Great	Slave	Lake	in	
Canada	(Rouse	et	al.	2003).	Neither	Flake	or	GLM	can	reliably	incorporate	these	kinds	of	
synoptic	effects	during	their	calculations,	which	rely	exclusively	on	averaged	surface-layer	
gradients	(Mironov,	2008;	Hipsey	et	al.	2014).		

A	second	possibility	involving	lake	biology	likely	would	not	explain	in	entirety	the	spike	in	latent	
heat	fluxes	but	may	offer	insight	into	a	possible	secondary	mechanism	for	increased	energy	
transport.	During	the	lake	stratification	periods	of	late	May	until	late	October,	the	lake	
experiences	a	bloom	in	blue-green	algae,	which	changes	the	lake	color	(Fallon	and	Brock,	1980).	
From	a	simple	thermodynamics	perspective,	the	shortwave	radiative	absorptivity	of	an	object	is	
related	to	its	visible	color,	and	hence	changing	the	lake	color	the	amount	of	absorbed	and	
reflected	radiation	(Petty,	2006).	Previous	studies	have	found	evidence	suggesting	that	
phytoplankton	populations	can	influence	physical	lake	processes	by	means	of	increased	surface	
absorptivity	driving	higher	surface	temperatures	and	extra	loss	of	energy	due	to	heat	fluxes	
(Jones	et	al.	2005).	A	comparison	of	heat	fluxes	to	phytoplankton	populations	in	the	lake	could	
show	a	similar	trend	in	Lake	Mendota,	which	would	help	to	explain	some	of	the	larger	than	
modeled	heat	fluxes.		

Our	working	hypothesis	was	that	the	period	of	greatest	model	bias	would	be	during	the	
transitional	periods	between	no	ice	cover	and	complete	ice	cover.	Analysis	of	the	boxplots	of	
these	individual	times	indicates	that	it	was	the	transitional	period	which	had	the	greatest	model	
uncertainty	for	the	latent	heat	fluxes	for	both	the	FLake	and	GLM	model.	However,	this	
interpretation	is	in	part	due	to	the	fact	that	the	transitional	time	period	only	lasted	for	about	a	
month,	while	the	ice-off	period,	during	which	we	observed	the	huge	spike	in	observational	heat	
flux,	lasted	10	months	and	thus	the	effect	of	the	discrepancy	between	models	and	
observational	data	during	the	latent	heat	spike	was	mitigated	by	the	large	amount	of	similar	
data	between	models	and	the	flux	tower	outside	of	that	time	period.		

Both	the	FLake	and	GLM	models	have	shown	to	be	reliable	for	predicting	lake	characteristics	
such	as	water	temperature	and	thermocline	depth,	however	these	models	are	less	reliable	on	
predicting	lake-atmospheric	interactions,	in	part	due	to	their	relative	simplicity.	Both	FLake	and	
GLM	are	1-dimensional	models	and	focus	primarily	on	surface	atmospheric	conditions.	While	
this	has	been	proven	to	be	an	acceptable	means	of	analysis,	model	improvement	could	be	
made	to	consider	more	atmospheric	conditions	such	that	upper	atmospheric	dynamics	may	be	
factored	into	calculations	of	lake-atmosphere	interactions,	which	are	driven	not	only	by	the	
surface	energy	balance.		

As	we	have	not	yet	identified	the	direct	cause	of	the	high	latent	heat	fluxes	in	mid-fall,	we	
cannot	diagnose	precisely	the	source	of	the	model	uncertainty	and	what	the	models	need	to	fix	
to	improve	their	prediction	of	surface	heat	fluxes.	However,	as	we	have	outlined,	biological	
factors	such	as	the	algae	blooms	and	tropospheric	dynamics	such	as	stability	and	vertical	
motion	are	not	included	in	the	models	and	therefore	may	play	a	role	in	the	model	uncertainty.	



Prior	work	on	the	surface	energy	balance	at	Great	Slave	Lake	found	similar	results	to	those	of	
this	study.	The	observations	of	that	experiment	suggested	that	the	surface	radiation	balance	
does	not	control	the	turbulent	heat	fluxes	on	a	daily	basis,	rather	during	the	summer	when	the	
air	is	stable,	the	absorbed	solar	radiation	is	large	and	the	sensible	and	latent	heat	fluxes	are	
small.	The	opposite	becomes	true	as	the	lake	approaches	freezing,	during	which	the	air	is	
unstable,	the	absorbed	solar	radiation	is	small,	and	both	the	sensible	and	latent	heat	fluxes	are	
maximized.	A	similar	trend	is	shown	for	the	evaporation	rates,	which	are	maximized	just	before	
freezing.	The	author	suggests	that	the	lake	is	capable	of	storing	the	absorbed	radiation	from	
summer,	which	creates	a	large	gradient	in	energy	during	fall	and	winter	and	drives	the	strong	
sensible	and	latent	het	fluxes	(Rouse	et	al.	2003).	

Though	we	cannot	acutely	identify	the	direct	sources	of	the	model	uncertainty,	we	can	identify	
a	few	trends	that	we	observed	during	the	year	of	data	collection.	First,	the	GLM	model	
considerably	underestimates	the	surface	heat	fluxes	during	the	entire	year.	Particularly	during	
the	spring	and	summer	months,	the	GLM	only	predicts	latent	heat	fluxes	topping	50	Wm-2	

twice,	while	the	observational	latent	heat	fluxes	are	never	less	than	50	Wm-2	and	regularly	
exceed	100	Wm-2.	The	trend	can	be	seen	for	the	sensible	heat	fluxes	as	well,	during	which	the	
GLM	sensible	heat	fluxes	are	primarily	close	to	0	Wm-2,	with	the	observational	heat	fluxes	being	
closer	to	20	Wm-2.		

Our	analysis	of	the	sensitivities	suggested	that	the	transitional	periods	did	not	show	a	
significant	amount	of	model	uncertainty	in	comparison	to	the	ice-on	or	ice-off	periods.	The	
GLM	model	was	consistently	less	sensitive	to	changes	in	temperature	or	latent	heat	fluxes	
during	all	three	time	periods,	though	fluctuations	in	both	latent	and	sensible	heat	fluxes	were	
greater	for	the	GLM	model	during	the	transitional	period	when	compared	to	changes	in	relative	
humidity.	The	FLake	model	had	a	similar	sensitivity	trend	as	the	observational	data	for	the	
latent	heat	fluxes	compared	to	the	relative	humidity,	however	the	variations	for	the	FLake	
fluxes	were	generally	smaller	than	those	of	the	observational	data.	The	sensitivity	of	both	
models	was	greatest	during	the	transitional	periods,	however	they	still	showed	less	variation	
than	the	observational	data	for	changes	in	both	relative	humidity	and	temperature.		

The	results	of	our	sensitivity	tests	suggest	that	the	transitional	period	was	not	the	dominant	
source	of	model	uncertainty.	The	models	showed	more	variability	in	the	heat	fluxes	but	were	
still	less	sensitive	than	the	observational	data.	The	FLake	model	was	the	most	sensitive	for	both	
fluxes	against	both	relative	humidity	and	temperature	during	the	ice-on	periods,	suggesting	
that	perhaps	the	model	overestimates	lake-atmosphere	interactions	during	periods	of	total	ice	
cover.		

	

Conclusion	

Our	investigation	into	a	possible	source	of	model	uncertainty	yielded	results	that	indicate	our	
original	hypothesis	of	transitional	periods	being	dominant	source	of	model	uncertainty	failed	to	



account	for	significant	year-round	bias	in	surface	energy	balance.	The	sensitivity	of	both	
sensible	and	latent	heat	fluxes	to	changes	in	relative	humidity	and	temperature	was	greatest	
for	the	two	models	during	the	transitional	periods,	however	the	observational	data	was	also	
the	most	sensitive	during	transitional	periods,	and	the	discrepancies	between	model	output	
and	observational	data	were	not	significantly	greater	during	transitional	periods	than	ice-on	or	
ice-off	periods.	The	models	do	appear	to	be	able	to	handle	much	of	the	dynamics	occurring	
during	variable	ice	cover	when	simulating	the	surface	energy	balance.		

Though	our	original	hypothesis	was	falsified,	we	did	discover	a	significant	period	of	model	
uncertainty,	the	period	of	large	latent	heat	fluxes	in	early	fall.	The	models	fail	to	predict	this	
spike	in	latent	heat	flux,	leading	to	the	greatest	period	of	model	uncertainty	for	the	latent	heat	
fluxes.	These	latent	heat	fluxes	could	drive	considerable	evaporation	and	precipitation.	Further	
work	should	be	conducted	to	determine	the	weather	effects	that	these	massive	latent	heat	
fluxes	have	and	mechanisms	that	explain	this	large	shift	in	flux.	

Though	the	latent	heat	fluxes	were	poorly	simulated	over	this	time	period,	the	models	were	
better	at	calculating	sensible	heat	fluxes.	Both	the	FLake	and	GLM	models	predicted	trends	in	
sensible	heat	fluxes,	though	they	often	underestimated	the	magnitude	of	the	heat	fluxes.	The	
GLM	model	in	particular	underestimated	both	latent	and	sensible	heat	fluxes,	suggesting	a	
need	for	fine-tuning	the	surface	energy	balance	parameters	of	the	model.		

We	have	identified	two	possible	sources	of	external	parameters	that	the	models	do	not	
incorporate	which	could	explain	the	underestimation	of	heat	fluxes,	and	possibly	the	spike	in	
heat	fluxes	seen	in	fall	by	the	Picnic	Point	tower.	The	first	is	upper	atmospheric	influences	
which	drive	stronger	surface	heat	fluxes,	by	means	of	lower	atmospheric	stability	or	upward	
vertical	motion.	The	second	is	biological	effects	due	to	algae	blooms	which	occur	during	
stratification	periods	and	alter	the	absorption	of	radiation	by	the	lakes.	While	including	upper	
atmospheric	observations	into	a	one-dimensional	model	would	be	difficult,	a	surface	
alternative	would	be	to	estimate	stability	by	means	of	the	Richardson	Flux	Number	(Holton	and	
Hakim,	2013).	As	for	a	biological	component	of	the	models,	further	research	should	be	
conducted	to	see	what	effect	the	algae	blooms	have	on	year-long	surface	heat	fluxes	to	
determine	how	much	of	a	difference	between	observational	data	and	modeled	data	they	
provide.		

Analysis	of	model	uncertainty	in	the	surface	energy	balance	is	still	an	ongoing	area	of	research,	
though	improvement	of	heat	flux	calculations	at	small	time	scales	can	in	turn	improve	model	
reliability	for	predicting	future	ice	cover	and	carbon	fluxes.	Prior	work	using	the	limnology	
tower	has	shown	that	the	fall	spike	in	latent	heat	flux	is	not	an	aberrant	event,	rather	it	is	an	
annual	occurrence.	Improving	model	calculations	to	account	for	these	observational	trends	will	
yield	benefits	not	only	for	surface	thermodynamics,	but	the	understanding	of	lakes	and	the	
success	of	lake	models	overall.		
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Figure	1:	(clockwise	from	top	left)	Picnic	Point	surface	air	
temperature	for	2017;	NOAA	SOLRAD	solar	radiation	for	
2017;	Picnic	Point	surface	air	wind	speed;	Picnic	Point	
surface	relative	humidity	for	2017	



	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	2:	(clockwise	from	top	left)	Picnic	Point	and	model	
latent	heat	fluxes	for	2017;	Picnic	Point	and	model	sensible	
heat	fluxes	for	2017;	Boxplot	of	2017	Picnic	Point	and	
modeled	sensible	heat	fluxes;	Boxplot	of	2017	Picnic	Point	
and	modeled	latent	heat	fluxes	

Figure	3:	(By	row,	left	to	right)	Boxplot	of	2017	ice-on	Picnic	Point	and	modeled	latent	
heat	fluxes;	Boxplot	of	2017	ice-on	Picnic	Point	and	modeled	sensible	heat	fluxes;	
Boxplot	of	2017	ice-off	Picnic	Point	and	modeled	latent	heat	fluxes;	Boxplot	of	2017	ice-
off	Picnic	Point	and	modeled	sensible	heat	fluxes;	Boxplot	of	2017	transition	Picnic	Point	
and	modeled	sensible	heat	fluxes;	Boxplot	of	2017	transition	Picnic	Point	and	modeled	
sensible	heat	fluxes	



	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	3:	Buoy	and	modeled	surface	temperatures	from	May	
12,	2017	to	Nov	11,	2017.	The	cyan	star	corresponds	to	the	
day	during	which	the	spike	in	latent	heat	flux	was	observed	
by	the	Picnic	Point	tower		



	 	

	 	
	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	4:	(clockwise	from	top	left)	Picnic	Point	and	model	bin	
averaged	latent	heat	fluxes	vs	surface	air	temperature	for	
2017	ice-on;	Picnic	Point	and	model	bin	averaged	sensible	
heat	fluxes	vs	surface	air	temperature	for	2017	ice-on;	Picnic	
Point	and	model	bin	averaged	sensible	heat	fluxes	vs	relative	
humidity	for	2017	ice-on;	Picnic	Point	and	model	bin	
averaged	latent	heat	fluxes	vs	relative	humidity	for	2017	ice-
on	



	 	

	 	
	

	

	

	

	

	

	

	

	

	

	

	 	

	

Figure	5:	(clockwise	from	top	left)	Picnic	Point	and	model	bin	
averaged	latent	heat	fluxes	vs	surface	air	temperature	for	
2017	ice-off;	Picnic	Point	and	model	bin	averaged	sensible	
heat	fluxes	vs	surface	air	temperature	for	2017	ice-off;	Picnic	
Point	and	model	bin	averaged	sensible	heat	fluxes	vs	relative	
humidity	for	2017	ice-off;	Picnic	Point	and	model	bin	
averaged	latent	heat	fluxes	vs	relative	humidity	for	2017	ice-
off.	Note	no	significant	regression	was	found	for	the	latent	
heat	vs	temperature	plot	



	 	

	 	
	

	

	

	

	

	

	

	

	

	

	

	 	

	

	

Figure	6:	(clockwise	from	top	left)	Picnic	Point	and	model	bin	
averaged	latent	heat	fluxes	vs	surface	air	temperature	for	
2017	transition;	Picnic	Point	and	model	bin	averaged	sensible	
heat	fluxes	vs	surface	air	temperature	for	2017	transition;	
Picnic	Point	and	model	bin	averaged	sensible	heat	fluxes	vs	
relative	humidity	for	2017	transition;	Picnic	Point	and	model	
bin	averaged	latent	heat	fluxes	vs	relative	humidity	for	2017	
transition.	Note	no	significant	regression	was	found	for	the	
latent	heat	vs	temperature	plot,	latent	heat	vs	relative	
humidity	plot,	or	sensitive	humidity	vs	relative	humidity	plot.		


