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Abstract 

Surface-atmosphere exchanges of energy, water vapor, and chemical materials are key indicator 

climate variables for studying the impact of the terrestrial biosphere response to changes in 

climate and land-surface feedbacks. For decades, eddy-covariance observations have been used 

extensively to monitor these surface-atmosphere exchange and to better understand ecosystem 

functioning, climate impact, and the carbon cycle.   

However, two challenges, the location bias and energy imbalance, prevent eddy-covariance data 

from accurately sampling the regional scale of land surface processes and the corresponding 

atmospheric responses. These two challenges have limited our ability to better benchmark Earth 

system models and land surface remote sensing with eddy-covariance data, and to better 

constrain parameterizations for modeling the atmosphere, landscape and urban ecology. 

Previous studies suggested these two challenges can be mitigated by applying upscaling 

methods and by adding multiple towers over the regional domain.  

In this dissertation, I ask three key questions: Is it possible to rectify location bias, by extending 

the application of the environmental response function (ERF) upscaling method, from the 

airborne eddy-covariance to tower eddy-covariance measurements? Can ERF close energy 

budget in eddy-covariance observations by resolving the not-easy-measured storage flux and 

vertical advection flux? How does ERF perform compared to previous scaling approaches using 

one or multiple towers? 

My dissertation has developed and evaluated a novel upscaling approach, ERF, for tower-based 

eddy-covariance observations. The method enables mapping surface-atmosphere exchanges to 

the regional scale by utilizing tower flux footprint variation over heterogeneous surfaces at 

high spatiotemporal resolution. In an application using a real tower site over a heterogeneous 

surface, I found ERF enables improving sensible and latent heat flux low bias by 21% by 
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detecting and resolving mesoscale eddies and storage flux. Compared to previous upscaling 

methods and adding more towers, ERF has advantages in reducing observation requirements 

by 80%, and in enabling flux decomposition into component fluxes at high spatio-temporal 

resolution. As a result, ERF resolves long-standing footprint bias and energy imbalance 

problems in observing net surface-atmosphere exchange from eddy-covariance flux towers. 

These results have significant applications for advancing model-data fusion, remote sensing 

applications, and boundary layer studies. 
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1 Introduction  

In this chapter, I provide an overview of the motivation, challenges, and relevant literature for 

this dissertation (Sect. 1.1). The background of eddy-covariance technique is described in Sect. 

1.2. Lastly, I give an overview of the whole dissertation (Sect. 1.3). 

1.1 Motivation 

How terrestrial biosphere responds to climate changes is one of the most important scientific 

and societal questions facing humanity. The uncertainty of this question remains one of the 

largest sources of uncertainty in climate projections because ecosystems can act as either carbon 

sinks (photosynthesis) or carbon sources (respiration, decomposition, mortality, combustion), 

and provide climate feedbacks through latent heat fluxes, albedo, surface roughness, and water 

cycling (Friedlingstein et al., 2014). Given recent and projected climate changes, the need to 

monitor and understand terrestrial response continues to increase from the perspective of the 

food and water security (Suni et al., 2015).  

As the linkage of energy cycle, water cycle, and carbon cycle between the atmosphere and 

ecosystems, sensible heat, latent heat and carbon fluxes serve as the central hub to study the 

impact of climate on ecosystems and land-atmosphere feedbacks. Sensible heat, latent heat and 

carbon fluxes have been directly, continuously, and extensively monitored by the eddy-

covariance technique across contrasting eco-climate regions (Metzger, 2017). Now eddy-

covariance observations, such as those collected by AmeriFlux and National Ecological 

Observatory Network (NEON), have become available at unprecedented temporal duration and 

distributed spatial extents (Novick, et al., 2018). Near continuous (hourly/half-hourly) data on 

exchanges of carbon, water, heat and momentum are collected across North America and many 
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locations (Metzger, 2017). The longest running towers are now approaching three decades of 

observations (Baldocchi, 2008). This drives eddy-covariance to be one of the most important 

dataset to sample land surface at regional scale and study land-atmosphere interactions, e.g. 

detection of localized CO2 sources (Schwandner et al., 2017), ecosystem sensitivity to 

temperature, dryness, and change of phenology (Wolf et al., 2017; Desai, 2014; Mahecha et al., 

2017; Tang et al., 2014). 

However, eddy-covariance data have been prevented from accurately sampling the regional 

land surface domain by two challenges, location bias (Sect. 1.1.1) and energy balance non-

closure (Sect. 1.1.2). 

1.1.1 Challenge I: The location bias 

The first challenge stems from footprint bias. This footprint, the surface that influences a flux 

measurement over an ensemble Reynolds' averaged flux, not only varies rapidly in time, but is 

also limited within 10‒1–101 km2 around the tower, which is two to three orders smaller than 

the regional scale relevant to landscale ecology or Earth system model grids (Figure 1). Real 

ecosystems are heterogeneous in many respects and on many scales. Thus, the flux footprint 

cannot represent the actual control volume mass balance. The flux tower footprint can be also 

quite variable on daily (Xu et al., 2017a), seasonal (Kim et al., 2018), and inter-annual 

timescales, leading to the situation where one surface type is likely observed more frequently 

at one time than another (Metzger, 2017). Hence, any observed dynamics or potential trends 

may be quite different only because of sampling a different source area (e.g., Griebel et al., 

2016; Montaldo and Oren, 2016; Morin et al., 2017; Metzger 2017). Moreover, not only 

turbulent flux, each vertical profile observation used to calculate storage flux has its own 

footprint, resulting in an influence area that increases with measurement height. This can be 

another source of location bias in flux tower observations especially at hourly resolution 
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(Schmid 1997; Raupach et al., 1988; Xu et al., 2017a). As a practical workaround, flux 

observations are often filtered e.g. by stationarity and turbulent mixing tests for periods that 

more likely fulfill these assumptions.  

 

Figure 1. Fast and large variations in flux footprint with time at the AmeriFlux Park Falls tall 

tower at 122 m measurement height during 2011 July 27th (a) 18:01–18:06, (b) 18:39–18:44, (c) 

18:54–18:59, superimposed over smoothed MODIS land surface temperature over 25´25 km2, 

demonstrating the location bias between the individual tower measurement and targeted regional 

scale, 25´25 km2 (Xu et al., 2017a). 

Beyond data filtering, to address to address the location bias, two main scaling approaches, 

process-based and data-driven approaches, have been utilized for scaling tower-observed 

surface-atmosphere exchange in space and time, each subject to specific limitations. Purely 

process-based scaling (Wang et al., 2006; Desai et al., 2008, 2010; Xiao et al., 2011) relies on 

prescribed mechanistic relationships, oftentimes based on laboratory calibrations and far-

reaching assumptions, such as functional steady-state and closure of energy or water balances. 

Purely data-driven scaling (Xiao et al., 2014, 2008; Hutjes et al., 2010) minimizes the number 

of assumptions employed by inferring relationships among observations directly from the 

available data, but are limited in model robustness and predictive performance, in particular for 

discrete predictions with substantial intra-class variability (Prueger et al. 2012; Wang et al., 

2006). Among many data-driven methods, machine-learning techniques, such as artificial 
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neutral network (Sulkava, 2011; Papale and Valentini, 2003) and model tree ensemble (Jung et 

al., 2010), have been used to regress atmospheric fluxes against surface properties. However, 

due to a lack of sample size, the temporal resolution of these approaches is typically aggregated 

to daily to monthly timescales, and cannot provide information on the diurnal cycle. Further 

consideration of transient footprint bias is usually neglected in either case. 

More recently, environmental observations have become available at unprecedented spatial, 

temporal and spectral resolutions (e.g., Damian et al., 2014; Kampe et al., 2011; Musinsky et 

al. 2013). While enabling new insights into ecosystem functioning, such data also requires re-

thinking scaling methodologies (e.g., Antonarakis et al., 2014; Hilker et al., 2013; Kobayashi 

et al., 2012). The environmental response function (ERF) approach is a scaling algorithm that 

combines data-driven and process-based approaches to the sub-hourly timescale, and provides 

temporally and spatially resolved flux grids (Metzger et al., 2013). Thus far, the ERF approach 

has been developed with and utilized for aircraft-based eddy-covariance measurements in the 

spatial domain (Metzger et al., 2013). In Chapter 2, we develop and test an ERF approach for 

tower-based flux observations to solve this long-standing location bias. 

1.1.2 Challenge II:Energy Balance Non-closure  

Scaling for flux towers is further complicated by the surface energy balance closure problem. 

Energy balance closure refers to an observed pattern that, at almost all sites, the observed 

turbulent sensible and latent heat fluxes are always 10–30% less than the sum of incoming 

available energy (net shortwave and long wave radiation minus ground heating), when expected 

to be zero at long term scale, e.g. multiple-years (Foken et al., 2011).  

𝑅 =
𝐻 + 𝐿𝐸
𝑄( − 𝑄*

= 0.7~0.9 (3) 
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where R is energy balance ratio, which is the sum of sensible heat flux H and latent heat flux 

LE divided by the net radiation QS minus the ground heat flux QG. 

 

Figure 2. from Mauder et al (2008), a hypothesized source of “missing energy” arises from land 

surface heterogeneity developing stationary mesoscale eddies in a convective boundary layer.  

One main reason is that low-frequency mesoscale flux contributions are hidden in the advection 

term (Eqn. 1, term VII), and inherently not captured by eddy-covariance technique as suggested 

and agreed by an increasing number of analyses (e.g. Finnigan, 2003; Kanda et al., 2004; Foken 

2008; Eder et al., 2015). Atmospheric structures, i.e., turbulent organized structures (Kanda et 

al., 2004; Finnigan 2003) and/or secondary circulation associated with surface heterogeneity 

(Figure 1, Schlegel et al., 2014; Eder et al., 2015), can cause low-frequency mesoscale flux 

contributions. Turbulent organized structures are thermal-driven open cells (Eder et al, 2015; 

Wilczak and Tillman, 1980) or, in case of background wind, horizontal rolls (Drobinski et al., 

1998; Maronga and Raasch, 2013) and typically have timescales larger than the averaging time 

of the eddy-covariance (Sakai et al., 2001; Foken et al., 2006) and horizontal length scales of 

1.5 times the boundary-layer height (Kaimal et al., 1976; Liu et al., 2011). Foken, (2008) 

pointed that eddy-covariance flux towers tend to under-sample warm convective areas, and 

over-sample cold areas, which can also contribute as part of the “missing” energy. 

Atmospheric storage flux (Eqn. 1, term 1) does have a diurnal cycle and influences energy 

closure at hourly or finer temporal scale, despite of its small averaged magnitude over daily 
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timescale (Leuning et al., 2012). Especially in the case of tall towers, storage beneath the 

turbulent flux measurement height can comprise a substantial amount of the actual surface-

atmosphere exchange at hourly resolution. Moreover, the flux footprint of turbulent flux 

measured at the tower top is mismatched with footprint of storage flux measured below, which 

is a potential source too (Schmid 1997).  

For other possible sources, systematic studies on contributions to this problem have ruled out 

measuring errors in turbulent flux, radiation (Kohsiek et al., 2007), and ground heat (Liebethal 

et al., 2005; Frank et al., 2013; Horst et al., 2014; Liu et al., 2011), since they are not at the 

sufficient magnitude to close energy balance all the time at all locations. The energy consumed 

by photosynthesis is very small too (2-3%). While lack of full observation of horizontal 

advection has been shown to contribute to some of this closure (e.g., Aubinet et al., 2010; Barr 

et al., 2013; Nakai et al., 2014; Zitouna-Chebbi, 2012), it should not have a systematic direction 

that would lead to lack of closure at all sites.  

Solutions to the energy balance closure problem are even less developed, as mesoscale eddies 

and storage term are hard to measure. Previous studies found that adding more towers (Steinfeld 

et al., 2007; Mauder et al., 2008) or expanding averaging time (Finnigan 2003; Kanda et al., 

2004) can include mesoscale eddies in eddy-covariance measurements to help close energy 

budget (Kanda et al., 2004; Eder et al., 2015). In Chapter 3 and 4, I tested how many towers are 

enough to close the energy budget over regional scale heterogeneous surface, and how wavelet 

based flux methods and ERF upscaling can reduce observation requirement, while still 

adequately closing the energy budget. 
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1.2 Background on Eddy Covariance 

Before giving the overview of the researches (Sect. 1.3) that I have done to address the 

abovementioned two challenges, this section gives a background of the main tool used in this 

dissertation: eddy-covariance technique.  

Eddy-covariance flux towers are usually built 2–100 meters higher than research surface, e.g. 

forests, croplands, and urban, immediately above the roughness sublayer where shear stress is 

the dominant source of eddy transport. At the top of one flux tower mounted sonic anemometer 

and inferred gas analyzer (IRGA). Sonic anemometer measures potential temperature, wind 

speed u, v and w with respect to the Cartesian coordinates x, y, and z at 10 Hz or 20 Hz (Figure 

3). IRGA measures CO2 and H2O concentration at the same frequency with sonic anemometers. 

Some towers are installed with advanced spectrometers measuring CH4 concentration 

concentration continuously at high frequency. The underlying principle of eddy-covariance 

measurements is that when the wind flow passes by the tower, the tower is continuously 

measuring eddies, as if the tower is moving to measure eddies, assuming the eddies won’t 

change too much during the time period they are passing by the tower (Taylor Hypothesis; 

Taylor 1938). The net surface-atmosphere exchange (NSAE) out of the control volume (Figure 

4) can be derived using mass conservation and makes use of the Reynolds decomposition of 

relevant terms (Foken and Nappo, 2008, Stull, 1988) in the Navier-Stokes equation (Eqn. 1).  



 

 

8	

     

Figure 3 US-Park Falls WLEF very tall tower (left plot) in North Wisconsin with sonic 

anemometers (top one in the right plot) and inferred gas analyzers (IRGA, bottom one in the left 

plot) mounted at 30 m, 122 m, and 396 m. 

 

Figure 4 Cartesian control volume over a homogeneous surface patch (Finnigan et al., 2003). The 

coordinate axes are aligned with the mean wind vector. 
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where X is a scalar quantity such as temperature, H2O or CO2 mixing ratios; u, v and w are 

along-, cross-, and vertical wind speeds with respect to the Cartesian coordinates x, y, and z; t 

is time, and dz,m is the measurement height. The overbars indicate a time average and primes 

denote turbulent fluctuations. Term I in Eqn. 1 is the rate of change of X in the vertical column 

below the sensor, equivalent to storage. Terms II–IV are turbulent fluxes, and terms V–VII 

represent advection through the layer between the surface and sensor.  

Given steady state (𝜕/𝜕𝑡=0), term I cancels from Eqn. 1. Term I is considered to be small only 

over the full diurnal cycle, but can be significant over shorter time intervals. Assuming 

horizontal homogeneity (𝜕/𝜕𝑥=0, 𝜕/𝜕𝑦=0) implies equal horizontal inflow and outflow at 

opposite faces of a control volume (Fig. 2), and cancels horizontal turbulent flux (terms II–III, 

Eqn 1) and advection (terms V–VI, Eqn 1) from Eqn. 1. Furthermore, neglecting subsidence or 

convection (𝑤≡0) cancels term VII from Eqn. 1, and hence only term IV remains.  

Using dimensional analysis and similarity numbers it can be shown that the eddy covariance 

𝑤′𝑋′ is constant (non-dimensional) or weakly linear with height in the atmospheric surface layer 

to within approximately 10% (e.g., Foken, 2008). When all above conditions hold true, the total 

flux is then equal to the tower-measured half-hourly/hourly turbulent flux, which is the 

covariance of vertical wind speed and the interest scalar at half hour or an hour time scale: 

𝑁𝑆𝐴𝐸 = 	𝑤′𝑋′ (2) 

The source area or the upwind area seen by the eddy-covariance sensors is called footprint, 

which is a function of tower height, wind speed, wind direction, surface roughness, etc. It is 

worth noticing that the footprint is temporally changing with the change of shear production by 

changes in above ground wind speed and direction. The footprint covers different ecosystems 

simultaneously, e.g. wetlands and forests. Flux footprint is defined as the source area or upwind 
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area of the exchange/flux measured by the instruments at the top of the flux tower, which 

theoretically is infinite in length, but typically defined by the cumulative influence of the first 

90-99% depending on the area of interest sought. The footprint is controlled by tower height, 

mean wind speed gradient, surface shear stress, wind direction, surface roughness, cross-wind 

speed, and etc. (Finnigan et al., 1996; Horst, 1979). For example, in a free-convective situation 

with weak winds or wind shear, , the footprint of the flux measurement is essentially a fixed 

area below the tower scaling with size of overturning eddies. While with a strong wind speed 

from east, the footprint locates at the far east side of the tower. Footprint is a critical concept in 

this work and for micrometeorology observations in general, as it determines the source area of 

flux measurements and hence help understand the surface property attributions of flux 

measurements.  

1.3 Overview of this dissertation 

This dissertation touches on three key questions: 

1) Is it possible to rectify location bias, by extending the application of the environmental 

response function (ERF) upscaling method, from the airborne eddy-covariance to tower 

eddy-covariance measurements?  

2) Can ERF close energy budget in eddy-covariance observations by resolving the not-

easy-measured storage flux and vertical advection flux?  

3) How does ERF perform compared to previous scaling approaches using one or multiple 

towers? 

Chapter 2–4 target on these three questions separately. Chapter 2 develops the environmental 

response functions (ERFs) upscaling method for eddy-covariance tower measurements to 

project turbulent flux maps at regional scale and hourly temporal resolution. Further, it assesses 
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the uncertainty budget of ERF, and evaluates decomposed fluxes against other independent 

observations and estimates of regional flux from pervious upscaling methods.  

Chapter 3 further develops tower-ERF approach to expand its application to not only turbulent, 

but also vertical advection and storage flux, for the first time practically implements ERF to 

retrieve “virtual control volume (VCV)” net surface-atmosphere exchange, tests the 

assumptions made in theoretical ERF-VCV, and explores the hypothesis that ERF-VCV-

rectified net surface-atmosphere exchange can resolve “storage flux” and “vertical advection” 

issues.  

Chapter 4 tests and validates ERF approach in an LES experiment with known heterogeneous 

surface forcing, compares the performance of ERF with a traditional EC approach of adding 

multiple towers in perspectives of rectifying location bias, closing energy budget, and spatial 

pattern retrieval.  

Major findings from Chapters 2–4 and directions for future research are summarized in 

Chapter 5.  
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2 Upscaling tower-observed turbulent exchange at fine spatio-temporal 

resolution using environmental response functions1 

Keywords: Upscale; eddy-covariance; regional flux map; land-atmosphere interaction; 

footprint bias; fine spatio-temporal resolution 

Highlights: 

• Environmental Response Function (ERF) maps surface-atmosphere exchanges.  

• ERF is capable of upscaling tower eddy covariance observations to regional scale.  

• The regional flux maps de-bias the footprint variation in tower observations. 

• ERF provides unprecedented spatio-temporal attribution and resolution.  

2.1 Introduction

Earth system models (ESMs) have been developed and are widely used to understand impacts 

of global climate change (Le Quéré et al., 2012, 2013, 2014; Dufresne et al., 2013; Collins et 

al., 2011). However, uncertainty in the Earth’s surface energy budget and terrestrial carbon 

cycle are found to be a dominant constraint for robust climate projections. For example, the 

uncertainty in terrestrial CO2 fluxes can lead to variations of a few hundred ppm in atmospheric 

CO2 concentration and several degrees in projected surface temperature (Arora et al., 2013). 

ESMs benefit from evaluation against direct continuous ecosystem observations of 

sensible/latent heat, water vapor and CO2 exchange (Schwalm et al., 2010; Xiao et al., 2012; 

Williams et al., 2009). However, comparing observations to models requires careful 
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consideration of the observation uncertainty and representativeness of observations for the 

model grid scale. Here, we test a specific approach for improving representativeness and 

estimating corresponding uncertainty of eddy-covariance (EC) flux tower observations of 

carbon, water, and heat fluxes. 

Eddy-covariance observations of these fluxes have been increasingly used to constrain model 

uncertainty, because they, in theory, provide reliable spatially distributed and temporally 

continuous observations of surface-atmosphere exchanges (Bonan et al., 2011; Baldocchi et al., 

2001). Parameter sensitivities in photosynthetic rates, respiration allocation, and temperature 

sensitivity of decomposition in models can, in principle, be constrained by flux tower 

observations (Dietze et al., 2014), especially when autocorrelation of time series are taken into 

account (Desai et al., 2010, 2014). Recently, large model-to-tower syntheses, as part of the 

North American Carbon Program, have found limitations in modeled spring phenology 

(Richardson et al., 2012), light use efficiency (Schaefer et al., 2012), and drought sensitivity 

(Schwalm et al., 2010). 

A fundamental challenge for this kind of model-data comparison is the scale mismatch between 

a small-scale, spatially non-uniform EC flux footprint and the typically larger-scale gridded, 

continuous predictions made in simulations. The flux measurement footprint typically 

represents a small fraction (e.g., <10%) of the model grid cell in most ESMs, and the location 

of this fraction changes with time. Any transient bias that occurs from changes in sampled 

characteristics with time can bias model-data comparison. For example, respiration flux 

chambers demonstrate considerable spatial variability (Jacinth and Lal, 2006). Recent analysis 

has shown that consideration of footprint for scaling chamber emissions can significantly 

improve comparison of EC to chamber-scaled fluxes (Budishchev et al., 2014). For EC fluxes, 

many sites have differing preferred wind magnitude and directions at daytime versus nighttime, 
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making flux observations at daily scale a mix of diurnal cycle and change of flux footprint. 

Methods to account for this transient footprint bias could aid in removing a potentially large 

source of systematic uncertainty for EC flux towers.  

Two main scaling approaches, process-based and data-driven approaches, have been utilized 

for scaling tower-observed surface-atmosphere exchange in space and time, each subject to 

specific limitations. Purely process-based scaling (Wang et al., 2006; Desai et al., 2008, 2010; 

Xiao et al., 2011) relies on prescribed mechanistic relationships, oftentimes based on laboratory 

calibrations and far-reaching assumptions, such as functional steady-state and closure of energy 

or water balances. Purely data-driven scaling (Xiao et al., 2014, 2008; Hutjes et al., 2010) 

minimizes the number of assumptions employed by inferring relationships among observations 

directly from the available data, but are limited in model robustness and predictive performance, 

in particular for discrete predictions with substantial intra-class variability (Prueger et al. 2012; 

Wang et al., 2006). Among many data-driven methods, machine-learning techniques, such as 

artificial neutral network (Sulkava, 2011; Papale and Valentini, 2003) and model tree ensemble 

(Jung et al., 2010), have been used to regress atmospheric fluxes against surface properties. 

However, due to a lack of sample size, the temporal resolution of these approaches is typically 

aggregated to daily to monthly timescales, and cannot provide information on the diurnal cycle. 

Further consideration of transient footprint bias is usually neglected in either case. 

The environmental response function (ERF) approach is a scaling algorithm that combines data-

driven and process-based approaches to the sub-hourly timescale, and provides temporally and 

spatially resolved flux grids (Metzger et al., 2013). The principle underlying ERF is to extract 

the relationship between observed biophysical drivers and ecological responses using machine 

learning, with explicit consideration of sub-hourly flux footprint variation. Provided 

sufficiently good calibration, the resulting ERF in conjunction with spatio-temporally explicit 
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grids of biophysical surface properties can be used for upscaling the surface-atmosphere 

exchange into larger target areas. Thus far, the ERF approach has been developed with and 

utilized for aircraft-based EC measurements in the spatial domain (Metzger et al., 2013). 

The present study develops and tests an ERF approach for tower-based flux observations, based 

on the measurements from the AmeriFlux Park Falls WLEF very tall tower in North Wisconsin, 

USA during July and August 2011. We ask: 

(i) Is it possible to map, based on turbulent fluxes from a very tall tower, spatio-

temporally explicit flux fields covering a 20×20  km2 regional domain with 

acceptable uncertainty (<20%, corresponding to a frequently observed energy 

imbalance (Foken 2008; Stoy et al., 2013))? 

(ii) How do ERF-scaled fluxes compare to alternative approaches, e.g. process-based 

and data-driven upscaling methods, and what are the prospects of using ERF-scaled 

fluxes for improving ESMs? 

(iii) What are the limitations and where is potential for improvement of the current ERF 

algorithm? 

In this paper, we first introduce the climate, biophysical properties in the study area and 

footprint composition of WLEF (Sect. 2.2.1). The methodology of ERF scaling approach and 

associated uncertainty algorithm are described in Sect. 2.2.2 and Sect. 2.2.3. We present the 

extracted ERFs, scaled flux grids and the associated uncertainty budget in Sect. 2.3.1, 2.3.2 and 

2.3.3, separately. A comparison of ERF scaling approach and its outcomes with in-situ 

measurements and other scaling approaches is performed in Sect. 2.3.4. In Sect. 5.2, we give a 

prospect for model-data comparison improvement with ERF scaling approach. Lastly, the 

current limitations of ERF scaling approach and potential improvements are discussed in Sect. 

2.3.6, and conclusions in Sect. 2.4. 
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2.2 Materials and methods 

2.2.1 Study area and data acquisition 

The 447-m tall WLEF television tower (45.9 °N, 90.3°W) is located in the Mississippi River 

Basin in the Park Falls Ranger District of the Chequamegon-Nicolet National Forest, Wisconsin, 

USA (Fig. 5). Small elevation changes, on the order of 20 m, create a mixed landscape of 

wetlands and upland forests. Previous studies (Desai et al., 2008, 2015) have indicated that the 

footprint climatology samples a landscape that is representative of much of the Upper Midwest 

U.S. forested region, and the proportions of wetland and forest sampled are representative of 

the average wetland/forest coverage in the entire National Forest. The surrounding forest 

canopy has approximately 70% deciduous and 30% coniferous trees, and a mean canopy height 

of 20 m. The whole region was heavily logged around the beginning of the 20th century, similar 

to many forests in the north central United States. Soils are sandy loam and are mostly glacial 

outwash deposits. The site has an interior continental climate with cold winters and warm 

summers. 

Observations used in this study include tower-measured meteorological state variables and 

turbulent exchanges, as well as surface properties from satellite remote sensing. Tower-based 

10 Hz observations were chosen from 27th July to 20th August 2011 for WLEF at 30 m and 

122 m levels. For turbulent sensible heat flux (H), this study utilized 30 m and 122 m EC 

measurements, but for latent heat (LE) and CO2 flux only the 122 m data were used due to poor 

quality of measurements at the lower level. The flux footprint fetch was 0.1–0.8 km and 2–5 km 

for 30 and 122 m height measurement at 90% cumulative level (Figure 6a), respectively. During 

the study period, the dominant land cover types within the flux footprint of 122 m measurement 

level were woody wetlands (44%), deciduous forest (25%), and mixed forest (9%). Other land 

cover types (e.g. grassland, cropland) contributed less than 5%.  
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Dry mole fraction of CO2 and water vapor were measured by a closed-path infrared gas analyzer 

(LI-COR, Inc. Lincoln, USA, LI-6262). Fast response wind speed and air temperature were 

derived from a collocated sonic anemometer (Applied Technogies., Inc. Seattle, USA, ATI 

Type K). Reference air temperature and relative humidity were also measured (Vaisala, Inc. 

Louisville, USA, HMP45C). Additional measurements at the surface included the barometric 

air pressure (Vaisala, Inc. Louisville, USA, PT101B) and the incoming photosynthetic active 

radiation (PAR) (LI-COR, Inc. Lincoln, USA, LI-190 Quantum Sensor).  

Land surface temperature (LST) and enhanced vegetation index (EVI) were chosen as the 

biophysical surface drivers to approximate the spatial variation in the target domain following 

Metzger et al. (2013). These spatially explicit environmental drivers were acquired from 

Moderate Resolution Imaging Spectroradiometer (MODIS) data products. 250 m 16-day 

interval MOD13Q1 (V005) EVI and 1000 m 8-day daytime MYD11A2 (V005) daytime LST 

were used. Atmospheric boundary layer (ABL) height, 𝑧G, was obtained by linear interpolation 

into one-minute interval from the North American Regional Reanalysis (NARR) 3-hourly data 

produced by National Oceanic and Atmospheric Administration (NOAA). 

An independent validation was established using EC observations over the same study period 

from a nearby Ameriflux tower site, Willow Creek (WCr) at the 30 m level.  Willow Creek is 

located 21 km southeast to WLEF-TV site in the upland mature deciduous forests of the 

Chequamegon-Nicolet National Forest (Figure 1). The surrounding stand is relatively 

homogeneous within 0.6 km of the tower. Common geomorphological features of the upland 

areas include southwest-trending drumlins, slightly elevated ground moraines and poorly 

drained depressions. These secondary stands are conversions from the old-growth hemlock-

hardwood forests to sugar maple-aspen-yellow birch forests. Data and associated uncertainty 

were calculated using the methodology in Cook et al., (2004). The uncertainty of WCr 
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observations was calculated as the standard deviation of the measured fluxes measured for a 

sliding window of +/- 5 days and +/- 1 hour of the current timestamp, when the meteorological 

conditions must also be sufficiently similar. In order to detect the systematic difference between 

WCr-measured and ERF-projected fluxes, Deming regression was used (Ripley and Thompson, 

1987), to account for random uncertainty of both observations and projections by assigning a 

weight to each data inversely proportional to its error variance. 

2.2.2 Environmental response functions (ERF) approach 

We adapted the ERF scaling procedure for tower EC measurements based on the airborne ERF 

scaling approach described in Metzger et al., (2013). The underlying principle of ERF is to 

utilize high-frequency (minute to minute) footprint variation to extract the relationship between 

high-frequency flux response and appropriate spatial or temporal drivers, e.g. meteorological 

forcings and surface ecological properties, and then utilize the extracted relationship for spatio-

temporal mapping to the whole domain, where possible. Consider the metaphor of the Blind 

Man and the Elephant: the tower (“the blind man”) can describe only one part of “the elephant” 

of ecosystem fluxes at a time, namely those fluxes that arise from the flux footprint influence 

area. If the “elephant” were stationary, then over time, the time-varying footprint would allow 

the tower to map fluxes without any scaling approach needed. However, in our case the 

“elephant” moves and changes its behavior, e.g. with the diurnal cycle. Thus, ERF is a data-

assimilation approach that attempts to recover the whole picture of “the moving elephant” using 

snapshots of varying parts of “the elephant” over space and time.  

Key processing steps in ERF included: i) quantifying wavelet-decomposed turbulent flux 

response and footprint-weighted environmental drivers of each flux observation (Sects. 2.2.2.2–

2.2.2.3, Fig. 8); ii) extracting ERFs between flux responses and drivers using machine learning 

(Sect. 2.2.2.4, Fig. 9, Fig. 10); iii) projecting turbulent exchange grids over the target area based 
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on extracted ERFs and key drivers in each grid cell (Sect. 2.2.2.4, Fig. 7). Our routines were 

developed in GNU R version 3.1 (R Development Core Team, 2012). Algorithm code and 

examples are being developed for a public repository. 

Initially, we determined appropriate time and space-scales for aggregation (Sect. 2.2.1). Next, 

high-rate (one-minute) turbulent exchange was calculated using wavelet discretization for 

tower-based measurements permitting inclusion of transporting scale up to 40 min (Sect. 

2.2.2.2). The corresponding environmental drivers included two types: temporally explicit 

meteorological variables and spatially resolved land surface properties (Sect. 2.2.3). Lastly, 

ERFs was extracted and used for projection in Sect.2.2.2.4. 

2.2.2.1 Scale considerations 

We determined a suitable averaging window for meteorological variables and fluxes as a trade-

off between random error and temporal resolution. On the one hand, the random error of a flux 

is inversely proportional to the square root of the averaging time period (e.g. Lenschow and 

Stankov, 1986). On the other hand, a high temporal resolution ensures that the spatio-temporal 

variability of drivers and responses is captured as complete as possible in the ERF training 

dataset (Fig. 7). For this purpose we estimated vertical and horizontal transit times: Based on 

convective velocity, the transit times for a surface emission to reach a measurement level are 

8.5±7.5 s and 83±74 s for the 30-m and 122-m measurement levels, respectively. Next, based 

on column-average horizontal velocity, it took 187±40 s for an emission from a patch the size 

of one characteristic surface length scale (411 ± 88	m, e.g. Strunin et al., 2004) to flow through 

the tower. With a much longer averaging window, the tendency increases for an observed flux 

to be a blended signal from different surface patches. On this basis, an averaging window of 

five minutes was found to be a feasible compromise between random error (Table 1) and spatio-

temporal resolution. 
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2.2.2.2 Wavelet discretized turbulent exchange 

Before wavelet discretization and meteorological state variable calculation, several 

preprocessing steps were performed building on Metzger et al., (2013): (i) Thresholding for 

physically unfeasible values and de-spiking after Brock (1986) and Starkenburg et al., (2015); 

(ii) Planar fit rotation (Wilczak et al., 2001) of the 10 Hz wind data; (iii) Time delay correction 

using maximum correlation; (iv) Point-by-point conversion of sonic temperature to air 

temperature based on Schotanus et al. (1983).  

With consideration of transporting scales up to 40 min, EC data were processed to obtain fluxes 

at a one-minute interval following the approach of Metzger et al. (2013) which used a 

continuous wavelet transform (Torrence and Compo et al., 1998). In the turbulent flux 

calculation, flux contributions beyond the cone of influence was considered, because only by 

this, the difference between standard EC method and wavelet cross-scalogram was within a few 

percent and avoided biasing the results. Thereafter, a correction for high-frequency spectral loss 

following Ammann et al. (2006) was directly applied to the wavelet cross-scalograms, 

respectively. In praxis, according to Sect. 2.2.2.1, time series of flux observations were 

integrated over the cross-scalograms over a five-minute window and the window was moved 

one-minute forward in time for each observation. The instrument detection limit for fluxes is 

estimated after Billesbach (2011) in wavelet cross-scalogram, and random and systematic 

statistical errors of turbulent sampling were calculated after Lenschow and Stankov (1986) and 

Lenschow et al. (1994). 

A list of criteria were implemented to select reliable flux observations for subsequent steps: i) 

Stationarity and integral turbulence characteristic tests helped avoid observations that do not 

fulfill fundamental assumptions on EC (Foken, 2008b, Table 4.2, usability for long-term 

measurements when test result within 250% of model); ii) To omit potential decoupling and 
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periods of large below-sensor storage fluxes, 𝑢∗ > 0.2	𝑚	𝑠PQ was used to select H at 30 m and 

122 m levels, H > −20 W m-2 at 30 m was used to select fluxes at 122 m, and 𝑤∗ > 0.8	𝑚	𝑠PQ 

was used to select LE and CO2 flux to avoid bias from gas exchange with large storage fluxes, 

since w* has a negative relationship with storage flux in this study. In result, qualifying sensible 

heat flux observations spanned the entire diurnal cycle, mainly because data from both, 30-m 

and 122-m level were available. For LE and CO2, only daytime data remained. 

2.2.2.3 Land surface and meteorological state variables 

Meteorological variables measured by towers provided high temporal resolution, but are of 

limited spatial representativeness. On the other hand, remote sensing data products could 

provide spatially resolved land surface properties, but are of limited temporal resolution. Here, 

we combined these two complementing types of drivers, and used them to explain the temporal 

and spatial variation of turbulent exchange response.  

After preprocessing steps mentioned in Sect. 2.2.2.2, meteorological variables were calculated 

by averaging a centered time-frequency window of five minutes in time. For each subsequent 

observation, the window moves one minute forward in time (i.e. four minutes overlap with the 

preceding observation). 

All remote sensing data were mosaicked, reprojected and cut into the 20 km × 20 km predefined 

target area centered around the tower. EVI and LST at 100 m target resolution were obtained 

by bilinear interpolation. EVI and LST were temporally downscaled to one-hour interval by 

linear interpolation. Surface properties are more responsible for spatial variability of the 

response surface in the machine learning algorithm, while meteorological drivers, e.g. solar 

azimuth, are more responsible for the diurnal cycle and temporal variability of the response. 

Also considering the long temporal repeat interval (8/16 day) of remotely-sensed surface 

properties, we chose to use linear interpolation so as to avoid adding artificial diurnal cycle of 
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surface properties. The uncertainty generated from the unaccounted spatial and temporal 

variation within the measured spatial and temporal resolution (e.g. 1 km and 8 day) was 

addressed in the uncertainty budget (Sect. 2.2.3, Table 1(iii)).  

For each flux observation, the corresponding land surface drivers were quantified by 

convolving the spatially-explicit driver (e.g. LST) with a footprint weight matrix. For this 

purpose we used the footprint parameterization of Kljun et al. (2004) in combination with a 

crosswind distribution (Metzger et al. 2012). The inputs of the resulting parameterization 

included standard deviation (sd) of the cross-wind 𝜎S, sd of the vertical wind 𝜎T, 𝑢∗, roughness 

length 𝑧:, measurement height 𝑧U, of which, 𝜎S 𝜎T, 𝑢∗ were directly obtained from the tower. 

𝑧: was calculated after Businger et al. (1971) in the form of Högström (1988) with displacement 

height set as 13 m, which is 2/3 of the mean tree height around the site. 

2.2.2.4 Environmental response function extraction and projection 

ERFs were generated by machine learning with observed turbulent exchange (response) and 

footprint-weighted biophysical surface properties and meteorological states (drivers). Building 

on Metzger et al. (2013), we used boosted regression trees as machine learning technique, which 

is based on categorization and regression. It produces a composite model through combining 

many local models that are regressed at dividing points of the categorization (Zhou, 2012). The 

extracted ERFs were then summarized in equidistant response-sensitivity plots (Cacuci, 2003), 

which show the driver-response relationships stored in the ERF (Fig. 5). In each plot, the ERF 

was evaluated with random combinations of drivers drawn from uniform distributions, and the 

response was aggregated for each driver individually. The contribution of each driver to 

explained variance was determined from the reduction of R2 when removing one driver at a 

time. 
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In terms of driver selection, solar azimuth angle, relative measurement height within boundary 

layer, temperature and water vapor gradients between surface and atmosphere were important 

environmental effects controlling the observed fluxes. To explain the diurnal cycle and solar 

radiation, we included cos(azi) and sin(azi), where azi denotes the solar azimuth angle. cos(azi) 

describes how high the sun is when it is up. Besides, during nighttime, cos(azi) changes its 

magnitude to indicate midnight or near sunset/sunrise, while solar zenith angle always remains 

0. sin(azi) can distinguish mornings (<180°) and afternoons (>180°), when solar zenith angle 

cannot. The combination of zenith angle and azimuth angle would be useful to express seasonal 

dynamics over longer periods. Here, the study period is too short to consider such seasonal 

dynamics, and the zenith angle is not included as a driver. Therefore, for our purposes, solar 

azimuth angle, 𝜃, can better explain diurnal variability than solar zenith angle, and hence help 

de-convolve the flux temporal variation from flux spatial variation better. Considering the 

relative measurement height in the ABL, zm/zi, not only combines EC measurements from 

different heights zm, but also to explicitly account for vertical flux divergence during ERF 

projection. Lastly, the vertical gradients of temperature and water vapor permit the ERF to 

explain corresponding surface-atmosphere exchanges as flux-gradient relationships. Here, air 

potential temperature (𝜃 in K) and mole fraction of water vapor in dry air (𝑞 in 𝑚𝑚𝑜𝑙	𝑚𝑜𝑙PQ) 

were used as meteorological drivers, as well as LST and EVI as corresponding land surface 

drivers. While EVI represents the green vegetation fraction, in the absence of a suitable surface 

moisture product it was chosen as proxy for surface-available moisture in a transpiration-

dominated environment. 

The resulting ERF acted as a transfer function and was applied to project turbulent exchange to 

each 100 m grid cell across the 20×20 km2 target domain at minutely interval. The projection 

was at 30 m height for H and 122 m for LE and CO2 flux so as to be compared with 30 m H 
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observations at both WLEF, WCr tower sites and 122 m WLEF LE and CO2 observations. 

During projection, we used the median value during the time interval for the meteorological 

drivers, assuming that the atmospheric state above the target area was spatially homogeneous. 

The uncertainty resulting from this assumption was quantified in the uncertainty budget (Sect. 

2.2.3, Table 1(iii)). The spatio-temporally resolved grids were used for LST and EVI.  

When summarized over the study period, because of the uneven distribution of qualified 

observations and projections (more observations and projections during daytime than 

nighttime), the monthly averaged observations and projections were calculated as mean of 

monthly-mean diurnal cycle, in the cases of latent heat and CO2 flux excluding nighttime data.  

2.2.3 Uncertainty budget 

Throughout the study we use median and median absolute deviation (MAD) for quantifying 

systematic and random uncertainty, respectively (Croux and Rousseeuw, 1992; Rousseeuw and 

Verboven, 2002).  

To evaluate the significance of the presented approach, we estimated the uncertainty budget 

throughout the procedure, including the uncertainty from: (i) instrument detection limit, (ii) 

systematic and random uncertainty for turbulent sampling, (iii) ERF state variable uncertainty, 

(iv) spatio-temporal analysis, (v) ERF training uncertainty, and (vi) ERF projection uncertainty. 

Of those, (i) and (ii) have been introduced in Sect. 2.2.2.2. To calculate (iii)–(v) we used the 

routine of Metzger et al., (2013), in short: (iii) quantified the uncertainty generating from 

unaccounted spatial and temporal variation of state variables, as we assumed tower-observed 𝜃 

and 𝑞 were spatially homogeneous, and the spatially resolved drivers were temporally linear 

continuous in flux map projection. (iv) quantified the uncertainty in the ERF scaling approach 

resulting from footprint modeling and implicit assumption of linear mixing in machine learning. 

(v) used random cross-validation (CV) to assess how well ERF projection performed when 
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projecting within the tower footprint originally used in model training. (vi) consisted of an 

updated approach using stratified CV, in order to evaluate how well ERF performs when 

projecting to areas the tower footprint had never covered during the training period. This term 

was essentially important, as the ultimate purpose of the ERF approach was to project to a 

consistent target area that the tower footprint cannot sample at all times. We divided the target 

area into a northeastern, southeastern, southwestern and northwestern quadrant. On this basis, 

four incomplete training datasets were created, each of which omitting all data from one 

quadrant by wind direction. For each incomplete training dataset, (i) the ERF was trained with 

data from three quadrants; (ii) the resulting ERF along with the state variables from the omitted 

quadrant were used for projection; (iii) The resulting projection was compared to the reference 

projection not subject to omissions. 

2.3 Results and discussion 

In Sect. 2.3.1, we first discuss the ERF outcome, the extracted response functions for H and 

CO2 flux, based on the high-frequency flux computation of the ERF approach. In Sect. 2.3.2, 

the projection results from ERFs and summarized probability density functions (PDFs) are 

shown and discussed. Sects. 2.3.3–2.3.6 present and discuss the uncertainty, comparison with 

other upscaling approaches, as well as prospect and limitation of ERF scaling, respectively. 

2.3.1 Extracted environmental response functions  

This section presents the extracted case study environmental response functions. Flux footprints 

from tower EC measurements can vary rapidly, e.g. with wind direction and wind speed. In the 

case of Fig. 7, the footprint changed from southwest narrow strip (Fig. 7a) over small closed 

area (Fig. 7b) to south larger area (Fig. 7c) within the hour. In consequence, the EC 

measurement sourced surface areas with potentially very different emission characteristics in 

rapid succession, or even a blend thereof. Only EC fluxes at high temporal resolution (i.e., one-
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minute in this study) distinguishes such source area variations through de-convolving what 

would otherwise be an hourly blend. This provides the foundation for separating spatial (surface 

characteristics) and temporal (ecosystem activity) attributes when relating a varying flux signal 

to environmental drivers. 

These wavelet computed fluxes were comparable to traditional hourly non-wavelet based 

approaches. We found the bias of our computed fluxes, compared to the fluxes calculated from 

traditional EC method over the whole dataset, were within -3.6%±4%, -8.7%±4% and +7.5%±3% 

for H, LE and CO2 flux respectively, where tolerance represents one standard error. Visual 

inspection of wavelet computed fluxes against footprint weight drivers showed the value of 

high-resolution flux processing. For example, in Figure 8, between minutes 30 and 40, an oasis 

effect was observed consistent with land surface wetting and warming in the surface flux 

footprint. The sensible heat flux became negative as heat was dominantly released by a wet 

surface through latent heat. This was also indicated by mirrored amount of latent heat flux 

increase. The advantage to resolve and attribute effects of flux footprint changes on the minute-

scale stands out when compared to fluxes calculated from traditional hourly EC method (black 

lines in Figure 8). The latter remains constant for the entire duration, and is unable to reflect 

spatio-temporal variations at finer resolution. The advantage of utilizing wavelet cross-

scalogram fluxes was also explicitly confirmed in the earlier publication (Metzger et al., 2013). 

Fig. 9 shows non-linear, cross-correlated, multi-dimensional ERFs extracted from BRT. It is 

noted that the absolute values shown on the y-axis of Fig. 9 do not imply the actual projected 

flux, as the responses were not projected with the actual driver combination, but random 

combinations of uniformly distributed samples within the range of the drivers (Sect. 2.2.2.4). 

However, these equidistant plots are most useful for revealing the relationships among driver 

and response stored in the ERF. 
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Strong relationships between H and cos(azi), 𝜃, sin(azi), zm/zi, LST and EVI have been found 

in this study as shown in Fig. 9 a, while we did not find significant relationship between H and 

q. As shown in cos(azi) subplot, large (small) amount of sensible heat was released from surface 

during daytime (nighttime) with negative (positive) cos(azi). The variability of cos(azi) could 

roughly capture 1/3 of H variation. It is interesting to note a strong positive relationship between 

H and 𝜃. This is consistent with our general understanding that the air is warmed by the surface 

mainly through sensible heat, latent heat and long wave radiation. Another possible explanation 

could be that	𝜃 acts as a proxy for the actual radiative forcing due to the presence of clouds 

(ref.), but further study is required to test alternative hypotheses. In sin(azi) subplot, the pulse 

at sin(azi) around 7–9 a.m. is the sign of buoyancy overcoming nighttime stable stratification 

at the beginning of the convective boundary layer (CBL) development. In the subplot of zm/zi 

in Fig. 10a, the green and blue curves indicate that during daytime, H declined with zm/zi, and 

in nighttime, H was positively related with zm/zi. This pattern is also reflected in the cross-

relationship between zm/zi, cos(azi) and H (Fig. 10a). Next, the ERF of H with q had a small 

negative slope, following general expectation of higher H during drier periods. Lastly, H was 

generally positively related to LST and negatively related to EVI, indicating that warmer and 

less vegetated areas tended to develop larger heat flux. The cross-correlation between EVI, 

cos(azi) and H displays that during daytime H is larger over areas with lower EVI, whereas it 

is smaller at lower EVI during nighttime (Fig. 10c). This indicated that drier areas with lower 

EVI were heating and cooling rapidly, and wetter areas with higher EVI could store more heat 

during daytime and release it during nighttime. 

For CO2 turbulent flux, 𝜃, sin(azi) and zm/zi were the most important drivers. As expected, 

turbulent CO2 flux was negatively and positively related with 𝜃 and zm/zi, respectively. In the 

sin(azi) subplot, the flush of nocturnal accumulated storage flux in the early morning is captured. 
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The magnitude of CO2 flux was larger during noontime than morning and afternoon as indicated 

in the cos(azi) subplot. Areas with higher LST and EVI took up more CO2, consistent with 

general understanding. The ERF between q and CO2 flux was quite non-linear. As expected, 

the plants could uptake more CO2 during wetter times. Plants were also shown to uptake more 

CO2 at dry end. This is supported by the argument that mild drought could enhance CO2 uptake 

as it suppresses respiration but has less impact on gross primary productivity (Grant et al., 2006). 

These reasonable non-linear, cross-correlated, multi-dimensional ERFs were able to be 

extracted from BRT and then used to project turbulent exchange maps between surface and 

atmosphere. 

2.3.2 Spatial-temporally resolved flux maps 

Figure 11 shows an example of the domain scaled H, LE and CO2 flux over the predefined 

20 km × 20 km target area. The white cells in the figure are areas with state-space combinations 

of drivers for which no extracted response relationship exists. In this particular time slice, the 

ERF projection covered 73%, 54%, 62% of the target area. Over the whole experiment, the 

coverage was extended from the original 1% (average footprint area relative to 20 km x 20 km) 

to 56%±13%, 51% ± 6%, and 51% ± 13% for 20×20 km2 target domain for H, LE and CO2 

flux respectively, where the tolerance here is one standard deviation. The spatial coverage of 

the prediction area during the experiment time period was not constant (Fig. 12) and increased 

with smaller target domain area. Spatial coverage information can be used to identify the 

representativeness of tower observations in future study. 

In this study, when summarized over the whole experiment, the projected H, LE and CO2 flux 

differed from the tower observations in their expected value (+27%, –9%, and –17%) and 

spatio-temporal variation (–22%, –21%, and –3%). The mean of total domain projected H, LE 

and CO2 flux over a 20 km × 20 km target domain were 50.1 Wm-2, 44.8 Wm-2 and –
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94.4  gC/month/m2, compared to the flux observations, 39.6 Wm-2, 49.2 Wm-2, and –

80.4 gC/month/m2. One standard deviation of spatio-temporal variation of projected H, LE, and 

CO2 flux were 101 Wm-2, 73 Wm-2, and 322 gC/month/m2, smaller than observations, 124 Wm-

2, 92 Wm-2, 332 gC/month/m2, respectively. Smaller carbon uptake measured by WLEF was 

consistent with Desai et al., (2008), stating that WLEF under-estimated carbon sinks compared 

to aggregation of nearby flux towers. CO2 flux difference is likely owing to a higher LST and 

EVI across the domain compared to the footprint, in particular during daytime (Figure 6). 

Similar in H and LE: Larger H over target area is due to the positive relationship between LST 

and H in extracted ERFs, although EVI has a small opposite effect due to large EVI in target 

area; Domain-scaled LE is slightly smaller than observed, likely owing to its slight negative 

relationship with LST within the study range of 291K-295K (not shown because of limited 

space). Flux differences reflect the effect of transient footprint bias and differences in mean 

surface properties in the target area compared to the flux footprint. In addition, the greater 

domain-scale heat turbulent exchange may potentially point to a source of non-closure of 

energy balance (Stoy et al., 2013; Foken, 2008a). Smaller spatio-temporal variation of 

projections compared to observations was likely the result of the smaller spatio-temporal 

variation of surface properties over the fixed target area than the temporally spatially varying 

footprint area. 

2.3.3 Uncertainty budget 

The median systematic and random uncertainty terms (median absolute deviation, in 

parenthesis) are shown for each uncertainty source in Table 1. The first two rows are uncertainty 

for a single observation, whereas rows 3-6 are uncertainty per projection.  

The uncertainty from instrumentation and hardware was estimated as detection limit, below 

which the instrument could not distinguish signal from noise. For a single observation, the 
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detection limit was 0.9±1.2 W/m2 for 𝐻, 1.4±1.8 W/m2 for LE and 0.2±0.3 𝜇mol m-2 s-1 for CO2 

flux. For 𝐻, LE and CO2 flux, the systematic sampling errors were 1%, 1% and 0% for the 

Wavelet transforms of 1-hourly datasets, and the random errors were 45%, 78% and 52% for 

the five-minute averaging window over the Wavelet cross-scalograms, respectively.  

For each single projection, the uncertainty from the unaccounted spatio-temporal variability in 

the state variables was 1% biased for H and unbiased for LE and CO2 flux. The uncertainty 

from spatio-temporal analysis was unbiased for H and LE, and biased for CO2 flux by -4%. The 

systematic uncertainty from ERF training was 0% and precise to 4% for 𝐻, 2% for LE and 2% 

for CO2 flux. Finally, ERF projection uncertainty was used to assess how well the procedure 

performed if the footprints did not cover the predefined domain. Here, we saw the ERF 

approach underestimated 𝐻 by 11%, LE by 1.5% and overestimated CO2 flux by 16%.  

The latter was found to be the dominant source of systematic error for the tower ERF procedure. 

On this basis, an overall accuracy of < 20% for H and CO2 fluxes and < 5% for LE can be 

assigned. Ensemble random uncertainty σ`ab , with σ`ab =
cdef
g

, dropped rapidly when 

aggregating multiple observations and projection cells/periods N. Even by adding random 

uncertainty of all terms in quadrature, the ensemble random uncertainty for hourly projection 

over the whole projection domain will be confined to within 1% for all three fluxes.  

2.3.4 Comparison with measurements and other studies 

The averaged ERF-projection over 3 km x 3 km region centered by WCr explained 76%, 80% 

of the variation of H observed at WCr when using WCr and WLEF meteorological drivers for 

projection, respectively (Figure 13). ERF-projection underestimated (slope) observations by 17% 

and 9% with residual standard deviation at 7.49 Wm-2 and 0.99 Wm-2. It is worth noting that 

the underestimation is in the same order as the systematic ERF projection error (11% in Table 

1), thus corroborating the usefulness and validity of ERF-extraction and uncertainty budget of 
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the algorithm. The difference between Figure 13b reflects the impact of the assumption of 

homogeneity in meteorological drivers and it indicates that this assumption is acceptable in this 

study. The residual and offset could be attributed to the significant distance of the tall tower 

from the target tower (21 km), inability to extrapolate for all grid cells within the target WC-

centered area. However, overall this independent evaluation shows agreement between the 

ERF-projected fluxes and the US-WCr observations.  

When compared to other upscaling approaches (Table 2), our estimate, -94±31 gC m-2 month-1 

is consistent with a footprint-debiased estimate −86 ± 18 gC m-2 month-1 and a multi-tower 

synthesis aggregation -97±30 gC m-2 month-1 by Desai et al., (2008) over 40	×	40km2 around 

WLEF in June-Aug in 2002 and 2003; and also agrees with −11–−107 gC	𝑚Pj𝑚𝑜𝑛𝑡ℎPQ 

regional flux estimates (Wang et al., 2006) focusing on May-Sep in 2003, although over 

different time period and space. The uncertainty here and for those reported below represent 

one sd of spatial variation. However, our estimate suggests a larger carbon sequestration than 

Xiao et al., (2014) estimate (−73 ± 28	gC	𝑚Pj𝑚𝑜𝑛𝑡ℎPQ) over the same area during the same 

period. When lowering our domain-scaled projection by 17.4% for location bias and 33.4% for 

combined location bias and systematic ERF projection uncertainty, we obtain 80 gC m-2 month-

1 and 62 gC m-2 month-1, respectively. Xiao et al., (2014) estimate falls well into this range of 

the CO2 location bias, indicating how current upscaling procedures might be directly impacted 

by the effects of scale discrepancy, such as through the neglect of changing flux footprints: 

Xiao et al., (2014) trained the model with tower-surrounded 3×3 km2 domain drivers, and the 

extracted relationships could be distorted due to neglecting of footprint in drivers. Therefore, 

one advantage of ERF method is that ERF-scaled flux grids are reliable and uncertainty directly 

estimated because the extracted ERFs are trained with fluxes and footprint-weighted drivers at 

high temporal and spatial resolution.  
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Among other upscaling approaches, the other advantage of ERF method is that it produces 

continuous hourly flux maps by involving temporally resolved (i.e. sub-hourly) meteorological 

variables. Direct variation of H, LE and CO2 flux can be captured at the hourly interval and the 

spatiotemporal variability of projected maps can be quite different than projection at coarse 

temporal resolution from continental upscaling (Xiao et al., 2014, Table 2). This could exert 

large influence on model-data comparison as most ESMs are run at fine time resolutions and 

model formulations for surface fluxes were derived for this timescale of response, e.g. light use 

efficiency model. Further, only at hourly or finer temporal resolution can the problem of 

removing the footprint diurnal cycle from the true regional flux diurnal cycle of surface be 

accomplished. 

2.3.5 Prospect for model-data fusion  

ERF method can improve mechanistic models in two potential ways: providing model process-

structures reference and by directly evaluating model fluxes against ERF-rectified flux maps at 

the same space and time of model grids. ERF itself essentially acts as a transfer function that 

can be used for parameterizing formulations or testing competing model processes. For example, 

a parameterization can be fitted to the response surface between H, cos(azi) and EVI and 

compared with empirical models. Also, if extracted ERFs are non-linear, it could be used as an 

indicator to suggest models should operate at higher spatial or temporal resolution: In this study, 

one-month integrated H over target domain was 45% greater than projected H from one-month 

integrated drivers. 

The ERF method can also improve model evaluation by providing hourly PDFs and descriptive 

statistics from domain-scaled fluxes as reference: Over the study period the domain-scaled 

fluxes of H, LE and CO2 were 27% larger, 9% smaller and 17% smaller than the tower 

observations. Here in Figure 11, we also show that at hourly scale, PDFs of projected flux grids 



 

 

43	

behaved differently from observations due to the transient footprint bias. In this case, sometimes 

the tower sourced areas with near-identical flux (Figure 11a, c), displaying smaller variation 

than the region of a model cell. At other times, the tower might see areas exhibiting different 

source strength, making measurements exhibit larger variation (Figure 11b). Therefore, ERF-

rectified flux grids mitigate the pitfall of limited and varying spatial representativeness when 

using observations to inform a model during execution.  

2.3.6 Current limitations and future directions 

Some factors or assumptions limit and degrade current tower ERF performance, which can be 

further researched in future studies focusing on improving the ERF approach. 

First, at sub-hourly time scales, surface-atmosphere exchange is rarely resolved completely by 

the turbulent flux alone. Specifically in the case of taller towers, storage beneath the turbulent 

flux measurement height can comprise a substantial amount of the actual surface-atmosphere 

exchange. Through combining storage and turbulent flux, an improved performance in mapping 

net ecosystem exchange is expected, which bears the potential to address surface-heterogeneity-

related components of a frequently observed non-closed energy balance. 

Second, an inappropriate assumption in ERF projection is the homogeneity of the 

meteorological drivers across the target domain. Further study is undergoing focusing on the 

impact of spatial heterogeneity of meteorological states on the performance of ERF approach 

using gridded reanalysis meteorology with observations. Even with spatially resolved drivers, 

the spatial resolution can have a large influence on ERF’s power to detect the surface spatial 

variability. The resulting uncertainty is influenced by how many pixels are sampled by towers, 

especially for short towers. Potential high-resolution (both spatial and temporal) remote sensing 

products provide an opportunity to improve the representation of small-scale spatiotemporal 

heterogeneity in ERFs.  
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Third, the projection spatial coverage could not reach 100%, as this method chooses to only 

project to surfaces with properties that have been experienced by machine learning through 

training data. Alternate machine learning approaches or interpolation methods may need to be 

implemented if the ultimate goal is a full resolved projected grid. 

It is also worthy to note that when applying BRT at hourly or finer resolution, drivers should 

include one with strong diurnal cycle, e.g. azimuth angle. This resolved issues of the diurnal 

cycle in footprint variation resulting in biophysically implausible response attribution across 

drivers. In addition, here we tested ERF on a site with known heterogeneity and suspected 

footprint biases arising from it. Whether more homogeneous sites can also benefit from the 

application of ERF is an area of more work. However, in many cases even ostensibly 

homogenous sites can exhibit large spatial variation in fluxes, especially for trace gases like 

methane. Here, ERF could help disentangle processes and patterns, provided suitable land 

surface drivers are available. 

2.4 Conclusions 

Our study demonstrated applicability of the environmental response function (ERF) approach 

to map heat and CO2 fluxes from an eddy-covariance tower to the scale of an earth system 

model grid cell. In comparison to other upscaling methodologies, the two main advantages of 

the ERF approach are the explicit consideration of varying flux footprints during training, and 

the ability to produce regional, high-resolution flux grids at hourly timescales. 

ERF-projected flux grids not only assess, but also rectifies the spatial representativeness of 

tower eddy-covariance measurements. This is achieved through decomposing and spatio-

temporally attributing heterogeneous surface contribution. It thus provides a promising tool for 

studying heterogeneity-induced non-closure of the surface energy balance, and for interpreting 

flux observations in model-data fusion approaches. For example, mechanistic models can be 
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improved through ERF-extracted process-structures, and can be constrained using ERF-

projected hourly flux and uncertainty maps. 

Applying the ERF procedure to longer time periods and across multiple tower sites can help 

decomposing the interplay of seasonal, inter-annual and spatial variability on regional scales. 

The main limitations of ERF approach in this study were the omission of storage flux, the 

assumption of spatially homogeneous meteorological drivers during projection, and state-space 

gaps in the projected grids, which are areas of ongoing and future research. 
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2.7 Tables 
Table 1 Median systematic and random uncertainty terms (in parenthesis) of a single flux 

observation (for (i) and (ii)) or of a single projected cell (for (iii), (iv), (v) and (vi)).  

Source H LE CO2 flux 

(i) Instrumentation and 

hardware 
0.9 (1.2) W m-2 1.4 (1.8) W m-2 0.2 (0.3) umol m-2 s-1 

(ii) Turbulent sampling 1% (45%) 1% (78%) 0.4% (52%) 

(iii) ERF state variables 1% (49%) 0.2% (57%) 0.1% (52%) 

(iv) Spatio-temporal 

analysis 
0.2% (46%) -0.4% (58%) -4% (71%) 

(v) ERF training 0.06% (4%) 0.2% (2%) 0.1% (2%) 

(vi) ERF projection -11% (130%) -1.5% (72%) 16% (51%) 
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Table 2. ERF-projected CO2 net ecosystem exchange [gC m-2 month-1] for major land covers in 

the 20 km x 20 km target domain compared to other scaling approaches applied around WLEF. 

Where available, either the range of values or one standard deviation of spatial variation is 

provided. 

 
ERF-

projection 

Xiao et 

al., 2014 

Desai et al., 2008 

(footprint 

decomposition) 

Wang et 

al., 2006 

Desai et al., 2008 

(Multi-tower 

synthesis 

aggregation) 

Target domain −94 ± 31 −73 ± 28	 −86 ± 19 −11–−107 −97 ± 30 

Woody wetland −91 ± 31 −71 ± 21 -66 -46 - 

Deciduous 

forest 
−98 ± 31 −72 ± 22 -132 - - 

Mixed forest −96 ± 35 −70 ± 23 - -49 - 
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2.8 Figures 

 

Figure 5 Land cover map (National Land Cover Database 2011) of Park Fall tower and Willow 

Creek tower sites (+) and 20×20 km2 target domain (within red dashed line). The land cover data 

were obtained from National Land Cover Database 2011 (NLCD 2011) at spatial resolution of 

30 m. NLCD 2011 is based primarily on a decision-tree classification of Landsat satellite data 

(Homer et al., 2015). Map of Upper Midwest (USA) is in the up left panel.  
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                             a                                                         b                                                          c 

Figure 6 Footprint climatology (30%, 60% and 90%, white contour lines) for 122 m level 

measurements superimposed over MODIS enhanced vegetation index (EVI) within 20×20 km2 

target domain surrounding the tower, which is indicated with the central crosshairs. (a) entire 

study time period; (b) daytime (9:00 – 17:00 CST), and (c) nighttime (17:00 – 9:00 CST). 
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                        a                                                    b                               c                                                                                           

 

Figure 7 Flux footprint (30%, 60% and 90%, contour lines) for 122 m level measurements over 

MODIS-land surface temperature (LST) on July 27th, 2011, (a) 18:01–18:06, (b) 18:39–18:44, (c) 

18:54–18:59 CST. 
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Figure 8 Time series of turbulent sensible heat (H), latent heat (LE), and CO2 fluxes on July 27th, 

2011, 18:00-19:00 CST. Colors and grey bars indicate the footprint-weighted EVI and 1 sigma 

random uncertainty of each flux observation, respectively. Black horizontal lines show the hourly-

average fluxes calculated from traditional eddy-covariance method. Positive CO2 fluxes imply 

carbon exchange from the surface to the atmosphere (and vice versa) in this paper. 
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Figure 9 Equidistant response plots are shown for sensible heat (H, panel a) and CO2 flux (panel 

b). The drivers are presented in decreasing order of explained variation in the flux signal (partial 

R2 in braces). The black lines are the fitted integrated response over the range of one individual 

driver. Smoothed representations of the fitted function (locally weighted polynomial regression) 

are shown in red bold lines. The equidistant response plots are generated using uniformly 
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distributed percentiles within the range of training data shown as inward tickmarks on the lower 

x-axis. Training data percentiles are shown as inward tickmarks on the upper abscissa. (W), (E) 

under sin(azi) subplot and (N), (S) under cos(azi) subplot indicate western, eastern, northern and 

southern direction of the solar azimuth, respectively. The green and blue curves in the subplot of 

zm/zi in (a) show the partial response of H against zm/zi integrated separately over daytime (9:00 – 

17:00 CST) and nighttime (17:00 – 09:00 CST), respectively. 
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                                        (a)                                                                                   (b) 

Figure 10 The response surface of sensible heat as function of (a) cos(azi) and zm/zi, and (b) cos(azi) 

and EVI. 
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Figure 11 Averaged minutely projected flux grids of sensible heat (top left panel), latent heat (top 

right panel) and CO2 (bottom left panel) over August 19th, 2011, 13:00-14:00 CST for tower-

centered 20×20 km2 target region. White areas are gaps that cannot be reproduced by ERF 

because their biophysical properties exceed the range of the training dataset.  
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Figure 12 Time-varying spatial coverage of the sensible heat flux projection over 5×5 km2 (red), 

10×10 km2 (black) and 20 km × 20 km area (blue). 
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Figure 13 Scatterplot for Willow Creek (WCr) sensible heat flux measurements and ERF 

projections over 3 km × 3 km centered around WCr. Each point represents a one hour averaging 

period, and corresponding aggregation is applied to the minutely ERF projection with 

meteorological drivers measured at WCr (panel a) and WLEF (panel b), respectively. 

Uncertainties are one standard deviation of random uncertainty and shown as error bars in x and 

y direction. 
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Figure 14 Probability density functions of sensible heat (H, panel a), latent heat (LE, panel b) and 

CO2
 (panel c) turbulent fluxes. Shown are minutely tower observations (red) and minutely ERF 

flux maps over 20×20 km2 (blue) for August 19th, 2011, 13:00-14:00 CST. 

  



 

 

2This chapter is modified and excerpted with permission from Xu, K., Metzger, S., & Desai, A. R. 
(2017). Surface-atmosphere exchange in a box: Space-time resolved storage and net vertical fluxes from 
tower-based eddy covariance. Agricultural and Forest Meteorology. 
doi:10.1016/j.agrformet.2017.10.011.  
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3 Surface-atmosphere exchange in a box: Space-time resolved storage and 

net vertical fluxes from tower-based eddy covariance2 

Keywords: Eddy-covariance; Mass continuity equation; Storage flux; Location bias; Energy 

balance closure; environmental response function 

3.1 Introduction 

The eddy-covariance technique has been used worldwide to monitor the surface atmosphere 

exchange for decades (Baldocchi, et al., 2001; Bonan et al., 2011). Theoretically, it provides 

reliable observations for comparison with remote sensing data and earth system models (ESMs) 

to constrain model performance and to improve our understanding of the impact of global 

climate change (Dietze et al., 2014; Richardson et al., 2012; Schaefer et al., 2012). However, 

despite its widespread use, the eddy covariance technique faces a number of challenges 

especially when attempting to monitor surface-atmosphere exchanges in conditions that deviate 

from assumptions used to derive the method.  

Among those challenges, location bias (Desai et al., 2008; Chen et al, 2011; Schmid, 1997; Stoy 

et al., 2013) and energy imbalance (Leuning et al., 2012; Foken et al., 2011; Foken, 2008) are 

two major ones. Location bias refers to the surface influencing the eddy covariance flux varying 

temporally and usually within the areas of 10-1–101 km2. This area is far smaller than typical 

ecosystem scales and the resolution of most earth system models (102–104 km2), leading to a 

mismatch of scale and potentially representativeness in model-data comparison. Furthermore, 

almost all flux towers suffer from an imbalanced energy budget: the sum of measured sensible 
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and latent heat flux is consistently less than available net radiation minus ground heat flux, 

which may also indicate bias in other trace gas fluxes such as CO2 (Foken, 2008).  

Here, we argue that one root cause for these challenges are the inherent assumptions of the eddy 

covariance technique allowing the measured vertical turbulent flux (Figure 15b) to represent 

the net surface-atmosphere exchange (NSAE) across a volume (Figure 15a). This volume is 

confined vertically from the surface to the measurement height, across a horizontal target 

domain that is large in comparison to the flux footprint. The vertical turbulent flux measured at 

the top of the tower is assumed to be spatially representative across the entire target domain. 

However, in reality, the corresponding flux measurement footprint typically represents a small 

fraction (order 1%) of the target ecosystem or ESM grid cell.  

Further, the location of this fraction changes with time. Many sites have differing frequency of 

wind directions and magnitudes at daytime versus nighttime (Xu et al., 2017). This results in 

vertical turbulent flux observations at daily scales being a convolution of the diurnal cycle with 

a related systematic change in flux footprint. In non-homogenous conditions, which are 

common, this temporally varying and small flux footprints directly leads to location bias in 

eddy covariance measurements (Xiao et al., 2014; Desai et al., 2015). 

Second, long-term storage flux is often assumed to be either zero, filtered out using steady state 

criteria, or vertical profile measurements are assumed to be horizontally representative of the 

storage flux across the virtual box as a whole. However, in reality, the storage flux is not 

necessarily negligible for typical eddy flux averaging intervals, in particular for tall towers over 

complex surfaces. Lack of consideration of this term has been shown to contribute to the 

observed energy imbalance (Leuning et al., 2012). Moreover, each vertical profile observation 

used to calculate storage flux has its own footprint, resulting in an influence area that increases 
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with measurement height. This can be another source of location bias in flux tower observations 

(Schmid 1997; Raupach et al., 1988).  

Third, advection terms are typically assumed to cancel each other or to be smaller than the 

turbulent flux. However, local advection can contain spurious low-frequency mesoscale 

contributions to the NSAE, which has been argued as another source for energy imbalance 

(Finnigan, 2003; Kanda et al., 2004; Foken 2008; Eder et al., 2015; Sakai et al., 2001). Low-

frequency flux contributions can be caused by turbulent organized structures (TOS; Kanda et 

al., 2004; Finnigan 2003) and/or secondary circulations associated with surface heterogeneity 

(Schlegel et al., 2014; Eder et al., 2015). In the presence of these structures, strong convection 

of warmer/wetter air occurs in spatially confined updraft zones, countered by a slight 

subsidence of cooler/dryer air across the majority of the target area. The corresponding 

timescales exceed typical eddy covariance averaging periods, thus these structures manifest 

themselves as advection rather than as turbulent contribution to the net surface-atmosphere 

exchange. In addition, this flux contribution can appear as a component of horizontal advection, 

vertical advection and storage, or combinations thereof, depending on the location of updraft 

and downdraft zones with respect to the measurement location. Due to the skewed distribution 

of updraft and downdraft zones, heat fluxes will thus tend to be underestimated when only 

considering the turbulent vertical flux in the standard eddy covariance approach (Mauder et al., 

2008). 

To mitigate the first assumption (representativeness) on vertical turbulent flux, two main 

upscaling approaches, process-based and data-driven approaches, have been utilized. However, 

each is subject to specific limitations. Purely process-based scaling (Wang et al., 2006; Desai 

et al., 2008, 2010; Xiao et al., 2011) relies on prescribed mechanistic relationships, oftentimes 

based on laboratory calibrations and far-reaching assumptions. Purely data-driven scaling (Xiao 
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et al., 2014, 2008; Hutjes et al., 2010) minimizes the number of assumptions employed by 

inferring relationships among observations directly from the available data, but are limited in 

model robustness and predictive performance. More recently, Metzger et al., (2013) and Xu et 

al., (2017) developed the environmental response function (ERF) approach that combines the 

process-based and data-driven approaches. The underlying principle of ERF is to relate high-

frequency (minute-to-minute) fluxes over fast-varying footprints with appropriate spatial or 

temporal drivers, e.g. meteorological and surface ecological forcings. The extracted 

relationships are then used for spatio-temporal mapping over a large domain. 

To address the second and third assumption, Metzger (2017) developed ERF further, and 

derived the ERF virtual control volume (ERF-VCV) framework. In essence, ERF-VCV 

attempts to apply the ERF technique to all terms in the continuity equation, including storage 

flux, advection and turbulent flux, to estimate the control volume net surface atmosphere 

exchange (NSAE). The two main assumptions of ERF-VCV theory are: i) the eddy covariance 

observations are dominated by surface flux, not entrainment, and ii) all relevant atmospheric 

and surface dynamics / state-space combinations are sampled by the eddy covariance platform. 

Here we ask, based on an example case using one single tower during July and August 2014 

over a heterogeneous environment of AmeriFlux Park Falls WLEF very tall tower in North 

Wisconsin, USA: 

1. Can assumptions made in ERF-VCV theory be fulfilled in a real-world setting and 

enable the method to retrieve VCV-estimated storage and vertical heat fluxes?  

2. How do ERF-VCV produced heat fluxes compare in magnitude and pattern to the tower-

measured turbulent heat fluxes and what does it imply for location bias? 

3. How does ERF-VCV enable addressing advective heat fluxes? 
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4. Do the virtual control volume integrated heat fluxes provide insight into how energy 

balance closure can be further addressed? 

To answer these questions, we first introduce the climate, biophysical properties in the study 

area and footprint composition of the WLEF tower data (Sect. 2.2.1). The methodology of ERF-

VCV and associated uncertainty algorithms are described in Sect. 2.2.2. We present the 

extracted relationships, scaled storage and vertical flux grids and the associated uncertainty 

budget in Sect. 3.3. The previous four key questions are discussed in Sect. 3.4, and conclusions 

are provided in Sect. 3.5. 

3.2 Materials and methods 

3.2.1 Study area and data acquisition 

The 447-m tall WLEF television tower (45.9 °N, 90.3°W) is located in the Mississippi River 

Basin, within the Park Falls Ranger District of the Chequamegon-Nicolet National Forest, 

Wisconsin, USA (Xu et al., 2017). The surrounding landscape is a mix of wetlands and upland 

forests. The tower footprint climatology samples a landscape that is representative of much of 

the Upper Midwest U.S. forested region (Desai et al., 2008, 2015). The surrounding forest 

canopy has approximately 70% deciduous and 30% coniferous trees, and a mean canopy height 

of 20 m. The whole region was heavily logged around the beginning of the 20th century. Soils 

are sandy loam and are mostly glacial outwash deposits. The site has an interior continental 

climate with cold winters and warm summers. 

Observations used in this study include tower-measured meteorological variables, storage, 

turbulent, and vertical advection fluxes, as well as remote sensing products. Tower-based 10 Hz 

observations were chosen from 6th July to 31st August 2014 for WLEF at both 30 m and 

122 m levels. The flux footprint along-wind distance was 0.1–0.8 km and 2–5 km for 30 and 
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122 m height measurement at 90% cumulative level (Figure 16), respectively.  

For 30 m and 122 m levels, fast response wind speed and air temperature were derived from a 

sonic anemometer (Applied Technogies., Inc. Seattle, USA, ATI Type K). Dry mole fraction 

of water vapor were measured by a closed-path infrared gas analyzer (LI-COR, Inc. Lincoln, 

USA, LI-6262) at both levels. Reference air temperature and relative humidity were also 

measured (Vaisala, Inc. Louisville, USA, HMP45C). Additional measurements at the surface 

included the barometric air pressure (Vaisala, Inc. Louisville, USA, PT101B).  

Land surface temperature (LST) and enhanced vegetation index (EVI) were chosen as 

biophysical surface drivers. These two drivers were acquired from Moderate Resolution 

Imaging Spectroradiometer (MODIS) data products. 250 m 16-day interval MOD13Q1 (V005) 

EVI and 1000 m 8-day daytime MYD11A2 (V005) LST. Atmospheric boundary layer (ABL) 

height, 𝑧G , was obtained by linear interpolation into one-minute interval from the North 

American Regional Reanalysis (NARR) 3-hourly data produced by National Oceanic and 

Atmospheric Administration (NOAA). 

3.2.2 Environmental response function - virtual control volume (ERF-VCV) approach 

The ERF flux scaling procedure for tower eddy covariance measurements is based on Metzger 

et al., (2013) and Xu et al., (2017). The underlying principle of ERF is to relate high-frequency 

(minute-to-minute) fluxes via fast-varying footprint estimates with appropriate spatial or 

temporal drivers, e.g. biophysical surface and meteorological forcings. The extracted 

relationships are then utilized for spatio-temporal mapping over a domain that exceeds the 

typical footprint extent. The ERF method uses the footprint variation to re-assemble the NSAE. 

In order to project flux into one area, the exact same area doesn’t necessarily have to be 
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measured as long as its properties are within the state space of the training dataset used by the 

machine learning. 

Unlike the work of Xu et al (2017), where ERF was applied solely to vertical turbulent flux for 

a single month, here ERF flux scaling is realized not only for vertical turbulent flux (𝑤>𝑐>), but 

also for low-frequency turbulent contributions to the vertical advection term (𝑤𝑐) and storage 

flux (no
np

) observations over a longer-time period (2 months) to retrieve flux across the whole 

virtual control volume (VCV). This procedure for the first-time permits addressing these terms 

in the mass continuity equation that are neglected by the standard eddy covariance methodology. 

We first determined appropriate temporal scales for vertical transport, and calculated high-rate 

(one-minute) flux responses using wavelet discretization for tower-based vertical transport 

permitting inclusion of transporting scale up to three hours (Sect. 3.2.2.1). Next, the storage 

flux was determined using measurements at multiple vertical levels (Sect. 3.2.2.2). Lastly, 

ERFs were extracted using machine learning (Figure 4) and used for projection for both vertical 

and storage flux (Figure 19, Figure 20) in Sect. 3.2.2.3. Our routines were developed in GNU 

R version 3.1 (R Development Core Team, 2014), and code and examples are being developed 

for a public repository (Metzger et al., 2017). 

3.2.2.1 Wavelet discretized vertical exchange 

Building on Metzger et al. (2013) and Xu et al. (2017), several preprocessing steps were 

performed: de-spiking after Brock (1986) (Table 1, Row 1) and Starkenburg et al.(2015), planar 

fit rotation (Wilczak et al., 2001), fixed lag correction using maximum correlation, and point-

by-point conversion of sonic temperature to air temperature based on Schotanus et al. (1983). 

Only hours with more than 80% available raw data were used for further analysis (Table 1, 

Row 2). 
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Since flux footprint varies rapidly even within one hour (Xu et al., 2017), we use high-

frequency (sub-hourly) flux responses to avoid footprint blending. At the same time, the 

spectral range of aggregated transporting scale from 10 Hz up to three hours permits combining 

high-frequency vertical turbulent flux and vertical advection (up to three hours) together into a 

single “vertical flux” term (Finnigan 2003, Steinfeld et al., 2007, Mauder et al., 2008, Mahrt 

1998). Wavelet decomposition (Torrence and Compo et al., 1998) can satisfy these two 

requirements to achieve high temporal resolution while including transporting scales up to 

several hours (Charuchittipan et al., 2014). However, wavelet decomposition assumes data are 

circulate, this assumption leads to larger uncertainty at the begin and end times of the dataset 

compared to its center (Torrence and Compo, 1998; Metzger et al., 2013). Therefore, the 

vertical flux over transporting scale of up to three hours were calculated using 15 hours of raw 

data in order to avoid this edge effect. Here, we integrated over wavelet transport scales of up 

to three hours, with flux results discretized over a five-minute window that for each observation 

moves one-minute forward in time. Within the entire observation period, 55,160 one-minute 

vertical flux observations were obtained and qualified for machine learning. 

3.2.2.2 Storage flux 

We also determined the averaging time for storage flux. Following Finnigan, (2006), we should 

avoid storage flux estimates influenced by single or a small number of eddies influencing the 

observations. Instead, we should use a period long enough to capture an adequate ensemble of 

these eddies. Here we consider the integral time scale of the turbulent time series between these 

eddies, and multiply it by one order of magnitude as the basis of storage flux computation. 

Considering the maximum integral space scale (98.4 m) and the average mean wind speeds of 

2.2 m s-1 and 0.5 m s-1 at 122m and 30 m, respectively, we determine 15 minutes as storage flux 

averaging time. For example, the storage flux estimates for timestamp 08:00:00 is calculated as 
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the time average of measurements from 8:00:00 to 8:14:59 minus the average from 7:45:00 to 

7:59:59. Within the entire observation period, 3,304 storage flux observations are obtained and 

qualified for machine learning. 

3.2.2.3 Environmental response function extraction and projection 

The operator underlying the extraction of environmental relationships is the flux footprint 

model which links the flux responses to surface biophysical drivers. ERF builds the 

relationships among the observed fluxes, meteorology and footprint weighted surface properties 

to unveil the whole, time-varying flux field. In addition, by including transporting scales of 

three hours, one tower may sample updraft branch and downdraft branch in a mesoscale 

circulation, which principally enables ERF to reproduce large eddy circulations over the virtual 

box (Figure 17). 

Storage flux is the time-rate-of-change of a state variable such as temperature or mixing ratio 

of water vapor, as opposed to the state variable itself. Thus, we need to also consult a flux 

footprint model instead of concentration footprint model. Therefore, storage flux environmental 

relationships were also generated with observed storage exchange (response) and flux footprint-

weighted biophysical surface properties and meteorological forcings (drivers). Flux footprint 

matrixes were calculated (Metzger et al., 2012; Kljun et al., 2004). The footprint model is valid 

for certain ranges of input parameters. Instead of discarding footprints when the input 

parameters that exceed the allowable range, we instead set parameters that exceeds the input 

range to be minimum or maximum, i.e. roughness length less than 1e-5 is set to be 1e-5, and 

larger than 1 is set to be 1, vertical wind speed variation 0.23–1.23, and u* less than 0.2 is set 

to be 0.2, only for the purpose of footprint matrix calculation. Only for the purpose of footprint 

modeling, 11.7% of the data were constrained to match the valid range of footprint model inputs. 

Both storage and vertical fluxes are filtered for (i) unreliable nighttime data; (ii) spikes; and (iii) 



 

 

76	

connectivity with the surface using the integral turbulence characteristic (ITC) test after Foken 

(2008), as shown in Table 1, Row 3–5, separately. It should be mentioned that nighttime data 

considered as unreliable for the purpose of this study may still contain valid information for 

dealing with different phenomena. 

In terms of driver selection, solar azimuth angle azi, relative measurement height within 

boundary layer, temperature and water vapor gradients between surface and atmosphere were 

selected according to Xu et al., 2017. To explain the diurnal cycle and solar radiation, we 

derived and included cos(azi) and sin(azi). Considering the relative measurement height in the 

ABL, zm/zi, not only permits combining eddy covariance measurements from multiple heights 

zm, but also to explicitly account for vertical flux divergence during ERF projection. This 

property allows us to project to all vertical levels above displacement height. Lastly, the vertical 

gradients of temperature and water vapor were explained using air potential temperature (𝜃 in 

K) and mole fraction of water vapor in dry air (𝑞 in 𝑚𝑚𝑜𝑙	𝑚𝑜𝑙PQ), as well as LST and EVI as 

corresponding land surface drivers. LST and EVI matrixes were downscaled from MODIS data 

products, bi-linearly to 100 m in space, and linearly to one-hour in time. Surface properties are 

more responsible for spatial variability of the response in machine learning, while 

meteorological drivers, e.g. air temperature, are more responsible for the diurnal cycle and 

temporal variability. Considering the coarse temporal resolution (8/16 day) of surface 

properties, we chose to use simple linear interpolation in time for LST and EVI matrixes. 

Building on Metzger et al., (2013) and Xu et al., (2017), we used boosted regression trees (BRT) 

as machine learning technique, which is based on categorization and regression. 55,160 vertical 

fluxes and 3,304 storage fluxes served as the training dataset in machine learning to produce 

fluxes over grids and volumes, respectively. Ten cross-validations were operated at 10 nodes 

before the model with the best agreement between the fitted fluxes and the training dataset was 
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selected. In the end, 70,000 split points were used for vertical flux regression and 3040 split 

points for storage flux regression.  

The extracted ERFs were summarized in equidistant response-sensitivity plots (Cacuci, 2003), 

which show the driver-response relationships stored in the ERF (Figure 4). In each plot, the 

ERF was evaluated with random combinations of drivers drawn from uniform distributions, 

and the response was aggregated for each driver individually. The contribution of each driver 

to the explained variance was determined from the reduction of R2 when removing one driver 

at a time. The resulting ERF acted as a transfer function and was applied to project vertical flux 

to each 100 m grid cell across the 20×20 km2 target domain at 122 m, and to project storage 

flux to the whole virtual box at five levels, 30 m, 53 m, 76 m, 99 m and 122 m, at hourly interval. 

During projection, for the meteorological drivers we used the median value during the time 

interval, assuming that the atmospheric state above the target area was spatially homogeneous. 

In particular, above the blending height, this assumption is weak compared to invoking a 

homogeneous land surface in the standard eddy covariance technique.  

When summarized over the study period, due to the uneven distribution of qualified 

observations and projections (more observations and projections during daytime than 

nighttime), the monthly averaged observations and projections were calculated as the mean of 

the monthly-mean diurnal cycle. 

3.2.2.4 Uncertainty budget 

To evaluate the significance of the presented approach, we estimated the uncertainty budget for 

both storage and vertical fluxes. We used stratified cross-validation to evaluate how well ERF-

VCV performs when projecting to areas the tower footprint had never covered during the 

training period. Following Xu et al., (2017), we divided the target area into four quadrants: 
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northeastern, southeastern, southwestern and northwestern. On this basis, four incomplete 

training datasets were created, each of which omitting all data from one quadrant by wind 

direction. For each incomplete training dataset, (i) the ERF was trained with data from three 

quadrants; (ii) the resulting ERF along with the state variables from the omitted quadrant were 

used for projection; (iii) The resulting projection was compared to the observation. In this cross-

validation, all uncertainty sources through the ERF-VCV method, i.e. input state variables, 

footprint modeling, and machine learning, were included in this uncertainty quantification. 

We use median and median absolute deviation (MAD) for quantifying systematic and random 

uncertainty, respectively (Croux and Rousseeuw, 1992; Rousseeuw and Verboven, 2002). The 

resulting combined uncertainty estimates correspond to a single projected grid cell in the for 

virtual box. 

3.3 Results 

3.3.1 ERF-VCV projected storage flux 

Figure 4 shows ERFs extracted from BRT. To note, the absolute values shown on the y-axis of 

Figure 4 do not imply the actual projected flux, as the responses were not projected with the 

actual driver combination, but random combinations of uniformly distributed samples within 

the range of the drivers. However, these equidistant plots are most useful for revealing the 

relationships among driver and response stored in the ERF. Temperature time-rate of change 

shows a strong diurnal cycle, negative during daytime and positive during nighttime. The pulse 

at sin(azi) = 0.4 corresponding to 7–9 a.m. local time is the sign of increase in storage flux when 

convective eddies are overcoming nighttime stable stratification during initiation of the 

convective boundary layer (CBL). Temperature time-rate of change is larger in shallower ABLs 

(larger zm/zi), and also has a positive relationship with LST and 𝜃, while it has a negative 
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relationship with EVI. The ERF-VCV predictions fit very well the observed fluxes (-1% for 

vertical H, 0% for vertical LE, -4% for dT/dt, and -8% for dq/dt), but in all cases the 99% 

confidence intervals include the unity slope. 

On Aug 17, 2014, the lower part of the convective layer developed as follows: From 7:00–

8:00 a.m., an initiation of buoyancy on the surface due to solar forcing was detected (Figure 

19). Warm bubbles built up and began to release from the surface. During 8:00–9:00 a.m., 

critical buoyancy was reached. As a result, heated air detached from the surface in discrete 

events, leading to the creation of a spatial pattern with distinct zones that exhibit varying 

degrees of heating. From 9:00 a.m.–10:00 p.m., the whole volume was continued to be heated.  

3.3.2 ERF-VCV projected vertical flux 

Figure 20 shows an example of the domain-scaled vertical transport of H flux over the 

predefined 20 km × 20 km target area at 86 m and the measurement height, 122 m. The white 

cells in the figure are areas with state-space combinations of drivers for which no extracted 

response relationship exists. Over the whole experiment, the coverage was extended from the 

original 1% (average footprint area relative to 20 km x 20 km) to 92%±3%, and 94% ± 3% 

for 20×20 km2 target domain for H, LE respectively, where the tolerance here is one standard 

deviation. 

In Figure 20, for Aug 19, 2014 noontime, the sensible heat flux at 76 m was positive over 

warmer surfaces and negative over cooler surfaces. This may indicate suitable conditions for 

surface heterogeneity-induced mesoscale circulations. In addition, vertical flux divergence and 

blending can be quantified explicitly in space: Buoyant eddies were emitted from individual 

surface patches giving the impression of a clear spatial separation at lower levels, e.g. 76 m. 

The flux at 122 m level was spatially less distinct as a result of blending (Figure 20b). 
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3.3.3 Volume controlled net surface atmosphere exchange 

When superimposing vertically integrated projected storage flux with the vertical flux grids at 

122 m, ERF-VCV NSAE of H and LE were 32.3 Wm-2 and 74.4 Wm-2, 33.8% and 15.5% larger 

compared to tower observed turbulent flux, 24.1 W m-2 and 64.4 Wm-2 for the study time period. 

Here, vertical flux refers to the sum of vertical turbulent flux and vertical advection flux with 

transporting scale up to three hours. The sum of NSAE of sensible and latent heat flux was 

106.7 Wm-2, 20.6% greater than the turbulent observation, 88.5 Wm-2. The standard deviation 

of the diurnal cycle over the study period was 120.9 Wm-2 and 228.9 Wm-2 for ERF-VCV-

projected H and LE, and 149.5 Wm-2, 256.6 Wm-2 for observed turbulent H and LE, because 

spatial averaging ERF-VCV projections were less scattered compared to direct observations. 

The fitted linear relationship shows that the ERF-VCV projections had a larger daytime-

nighttime amplitude (Figure 21). Temporal standard deviation of the spatially aggregated flux 

first decreased and then stabilized at about 10–15 km spatial scale (Figure 22). Incorporation 

of the ERF-VCV approach also reflects the estimated energy fluxes increased until converging 

around the same 10–15 km spatial scale. 

Storage flux is non-negligible even at the monthly scale, and exhibits a sizeable diurnal cycle 

at hourly temporal resolution for the virtual box of 122 m height, e.g. 42 Wm-2 amplitude (~30% 

of vertical transport flux) for storage flux of H (Figure 23).  

The median systematic and random uncertainty terms (median absolute deviation, in 

parenthesis) per single projected cell are 10% (162%), -19% (185%), -15% (232%), and -19% 

(178%) for vertical flux of H, storage flux of H, vertical flux of LE, and storage flux of LE, 

respectively. Here, we see that the ERF-VCV approach tends to overestimate vertical H by 10%, 

and to underestimate vertical LE by 15%. The ERF-VCV approach underestimated the storage 

fluxes of H and LE by 19%. On this basis, an overall uncertainty of < 15% for H and LE vertical 
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fluxes and < 20% for storage flux is determined. To note, this systematic uncertainty is raw 

output from the machine projection, and subsequently corrected across the target-area via site-

specific linear regression. In result, the +20.6% or +18.2 Wm-2 difference for the sum of H and 

LE between ERF-VCV-controlled NSAE projection and turbulent flux tower observation is 

shown. In addition, ensemble random uncertainty becomes very small when aggregating flux 

grid cells over the whole target domain: the ensemble random uncertainty for hourly projection 

over the target domain is confined to within 1% for all fluxes. 

3.4 Discussion 

3.4.1 Evaluation of the assumptions made in the ERF-VCV theory 

A number of assumptions influence the reliability of the ERF-VCV approach. The first 

assumption is that the tower sufficiently samples both updrafts and downdrafts. We believe this 

is satisfied in the current case study because the near-zero averaged vertical wind speed (𝑤 =

0.01	𝑚𝑠PQ) over the entire study period and non-zero hourly 𝑤. These two characteristics 

imply that both updrafts and downdrafts were sampled by the WLEF tower during the study 

period. 

The second assumption is that observations are dominated by surface fluxes rather than 

entrainment from the top of the boundary layer, which ensures the relationships reflect 

information content from the chosen surface drivers. This assumption is fulfilled by filtering 

flux responses for connectivity with the surface through turbulent mixing tests, primarily the 

ITC test, which tends to omit data affected by strong negative vertical velocity. The ITC test 

does not omit situations when surface heterogeneity-induced downdraft occurs in a growing 

boundary layer, since the net velocity is still upward. Thus, the downward branch of a mesoscale 

circulation is still sampled by the tower and used as training data in ERF-VCV. 
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Another implicit assumption is that flux footprint can attribute the main contribution of vertical 

flux to appropriate surface area even with transporting scale up to three hours. In other words, 

we have to assume that the majority contribution is from the last touchdown with the surface 

instead of entrainment (Flesch et al., 1996; Metzger, 2017). Since the majority contribution of 

the vertical flux is from vertical turbulent flux term (Finnigan 2003, 2004), we use a flux 

footprint model instead of concentration footprint model. Further, the extracted relationships 

are built between flux and flux footprint-weighted land surface drivers as well as meteorological 

drivers. Although flux footprint may fail to attribute low frequency flux contribution to the 

appropriate surface drivers, the response relationship can still be propagated via the 

corresponding combination of meteorological drivers. At this study site, the extracted ERFs and 

flux projections appear sound. This suggests that over the ensemble of thousands of 

observations the simple footprint parameterization is sufficient to accurately and precisely 

relate a large fraction of the flux responses to their surface drivers. 

Though these assumptions do require additional testing, our results support the idea that ERF-

VCV projections enable explicitly identifying and quantifying vertical turbulent flux and 

storage flux. As shown in Figure 20, the method was able to detect the initiation of buoyancy 

from solar forcing, development of critical buoyancy leading to a well-mixed volume, and 

continue mixing driving by mesoscale circulations generated by surface heterogeneity. These 

results are remarkably similar to theoretical expectations of boundary-layer mixing.  

The ERF-VCV projections suggest that the ERF-VCV technique is a practical and theoretically 

sound approach to retrieve storage and vertical transport flux in a target box with a maximum 

(correctable on site-level) systematic uncertainty of less than 20%. The estimation of these 

terms and further evaluation of them allow us to directly examine several unmet assumptions 

of eddy covariance in real-world settings which we discuss below: i) location bias of vertical 
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turbulent flux; b) difference of profile to whole domain storage flux; and c) the effect of 

neglecting vertical advection. 

For future development, ERF-VCV requires development of a transporting-scale footprint 

model to identify and quantify large transporting scale eddies. The transporting scale should 

not be scaled beyond the spectral gap to avoid ambiguous interpretation of energy transport at 

a different scale, e.g. synoptic system. Storage flux with inclusion of transporting scale up to 

three hours could be obtained using wavelet decomposition to match the transporting scale of 

vertical flux. The overlapping information content within different drivers (multicollinearity) 

can lead to the extraction of process relationships by the machine-learning that could not be 

reconciled with physical theory. It will be interesting to work on reconciling additional 

constraints and multicollinearity in machine-learning. Lastly, with sub-canopy eddy covariance 

measurements, ERF-VCV should be applicable to capture the features of eddy scalar and heat 

transport in sub-canopy. 

3.4.2 The implication on location bias in eddy covariance measurements 

Combining reliable, precise measurements with time-frequency decomposition and flux 

footprint modelling allows us to transform our observations into a unified Eulerian coordinate 

representation, through which we can finally estimate terms that used to be inaccessible. Our 

study reflects that storage flux has very strong diurnal amplitude (42 W m-2). Therefore, storage 

flux should not be ignored in observation and model-data comparison, at hourly temporal 

resolution, especially in the case of tall towers. However, in many cases storage flux is usually 

assumed to rapidly converge to zero and thus is not measured at many sites (Foken 2008). 

ERF-VCV estimation has a larger vertical H than tower turbulent observations during nighttime, 

likely owing to a higher LST across the target domain than the footprint area (Figure 16). 
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Similarly, a smaller vertical LE during daytime is observed in association with a slightly lower 

EVI across the domain. In addition, ERF-VCV NSAE shows larger magnitude both in daytime 

and nighttime despite substantial scatter in the tower observations. This reflects the influence 

of the diurnal cycle on the transient footprint. Further, in theory, ERF-VCV-projected vertical 

flux is expected to be larger than tower turbulent observation because projected vertical flux 

includes the energy contribution from mesoscale eddies (Foken et al., 2006). The inclusion of 

mesoscale eddies tends to increase emitted heat flux, since spatially confined thus under-

sampled updrafts are net warmer compared to spatially expansive thus over-sampled 

downdrafts. The resulted difference between the tower observation and ERF-VCV estimation 

reflects that WLEF tower cannot consistently represent the mean VCV estimated surface-

atmosphere flux, implying location bias is pervasive in this case and potentially reflective also 

of other flux tower sites in heterogeneous terrain. 

3.4.3 The role of horizontal advection and the implication on spatial transporting scale 

Theoretically, in a mesoscale circulation we expect vertical advection to be compensated by 

horizontal advection and storage flux (Mahrt 1998, Foken 2003, Mauder 2008). Hence, studies 

considering only vertical advection instead of advection from both vertical and horizontal 

directions have incurred criticism. For example, Finnigan (2003) and Mauder et al., (2008) 

argue that only considering the vertical advection term can produce unrealistic large convection 

and rather noisy results on an observation-by-observation basis. 

Here, we argue that the spatial aggregation of projected fluxes over heterogeneous terrain 

improves the resilience of the ERF-VCV projection to horizontal advection. Especially when 

the spatial scale of aggregation is large, the net low-frequency vertical flux due to updrafts and 

downdrafts trends towards its ensemble mean. As shown in Figure 22, the temporal standard 

deviation of the spatially aggregated flux first decreased and then stabilized at about 10–15 km 
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horizontal scale. This indicates that ERF-VCV also projects the localized vertical advection 

resulting from the observation-by-observation compensation of horizontal advection. However, 

when integrated over a critical landscape scale, positive and negative compensatory fluxes 

cancel out each other, and only the net low-frequency flux remains. This justifies the choice of 

neglecting horizontal advection when aggregating over a horizontal scale of order 10 km as 

compared to point-by-point observations. Our finding here generally agrees with previous 

studies suggesting that w = 0 over a large spatial domain is a much weaker assumption 

compared to w = 0 for an individual measurement location (Mahrt 1998). 

In addition, the indicated surface patch size of 15 km implies that it is the minimum reliable 

patch size in the comparison of WLEF eddy covariance flux observations with model and 

remote sensing data, akin to a critical landscape scale. Our approach thus provides a suitable 

bridge for the spatial gap between WLEF tower-measured fluxes and both, remote sensing 

products and ESM outputs. 

3.4.4 Implications of ERF-VCV on the energy balance closure problem 

As discussed in Sect. 3.4.1, surface heterogeneity-induced updrafts and downdrafts were 

sampled by the tower at different times during the study period (Figure 17). While changing 

wind direction and varying source areas complicate direct interpretation of the flux observations, 

they provide an opportunity for including secondary circulations in ERF-VCV. 

At any given time a single tower is unable capture both updrafts and downdrafts. Due to the 

skewed spatial distribution of updrafts and downdrafts, a tower observes sparser but stronger 

updrafts only occasionally, if at all (Figure 17b). More frequently, a tower observes abundant 

but weaker downdrafts (Figure 17c), or cannot capture any low frequency energy transport at 

all (Figure 17a). For example Kanda et al. (2004) and Mahrt et al. (1998) link this spatial 
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patterning and corresponding conditional sampling characteristics to a buoyancy-related 

underestimation in particular of the sensible heat flux. 

Different from the standard tower eddy covariance technique, ERF-VCV provides a potential 

approach for improving energy balance closure through spatially and temporally explicit flux 

projections: the projections include the likely spatial distribution of both low frequency updrafts 

and downdrafts. Once aggregated to the critical landscape spatial scale the compensatory fluxes 

cancel out. The resulting net flux trends positively to its ensemble mean (Figure 22 c,d), which 

exceeded the standard tower flux observations over the study period. This warrants 

investigating further impacts on the energy balance closure problem, once spatially explicit net 

radiation and ground heat flux are available, e.g. from intensive in-situ observations. 

3.5 Conclusions 

Using AmeriFlux Park Falls WLEF tall tower in North Wisconsin, USA during July and August 

2014, ERF-VCV proved useful for retrieving the volume-controlled net surface atmosphere 

exchange (NSAE). This retrieval is achieved by resolving the storage flux, vertical turbulent, 

and vertical advection fluxes, which are not easily measured. ERF-VCV can improve the tower 

observation from a footprint-variable representation to a fixed-coordinate representation. This 

aids reducing the location bias typically incurred from single-location vertical turbulent flux 

and single-profile storage flux measurements, as well as the influence of vertical advection. 

Particularly, in this study, storage flux did not converge to zero as often assumed and had 

significant diurnal cycle, and should thus not be ignored when comparing eddy covariance 

measurements with earth system models (ESMs) at hourly or finer temporal resolution. Low 

frequency flux contributions were detected in this study, and inclusion in the ERF-VCV 

landscape-scale exchange of sensible and latent heat led to a 20.6% increase over the tower 

observations. In addition, the derived flux can spatiotemporally resolve mesoscale circulation 
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that contribute to this source of energy imbalance. Further, we show that spatial aggregated 

fluxes over heterogeneous land cover resilient to horizontal advection. Lastly, in our case we 

find that ERF-VCV-estimated NSAE always increased the turbulent heat fluxes and thus 

provides a promising research direction for improving energy balance closure.  

Substantial improvements are still possible and needed for these kinds of scaling and 

rectification methods. First, high intensity in-situ observations or large eddy simulations (LES) 

model results can be used to comprehensively evaluate and verify assumptions of the ERF-

VCV process. Second, with spatially explicit net radiation and ground heat flux, the potential 

for improving the energy balance closure problem can be studied. Third, multiple flux tower or 

airborne eddy covariance data lend themselves to investigate how the horizontal advection 

terms not addressed in this study could be explicitly resolved.  

ERF-VCV is applicable to retrieve volume-controlled NSAE across a target area. This 

practically permits rectifying footprint bias for eddy covariance flux in model data comparison, 

and provides the potential direction to improve energy budget closure in eddy covariance 

technique.  
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3.8 Tables 

Table 3 Data filtering steps and the remaining percentage of data after each filtering step. 

Processing step Data filtering standard Data remaining % 

De-spiking median filter de-spiking after Brock 

(1986) 

99.5% 

Data quality 3 hour periods with missing 

data >20% were discarded 

60% 

Unreliable nighttime data 

removal 

Measurements at 122 m were 

discarded when sensible heat 

measured at 30 m < -10 W/m2 

50.4% 

Spike removal Lowest and highest 1% of flux 

values were removed 

49.9% 

Integral Turbulence 

Characteristics (ITC) test 

Vertical velocity ITC <250% were 

selected 

49.8% 
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Table 4 Comparison between aggregated tower observed turbulent flux and volume-controlled 

NSAE over the study period. Numbers in parenthesis are standard deviation of the diurnal cycle. 

 H (Wm-2) LE (Wm-2) H + LE (Wm-2) 

Tower observed turbulent 

flux 

24.1(±149.5) 64.4(±256.6) 88.5 

Volume-controlled NSAE 32.3(±120.9) 74.4(±228.9) 106.7 

   



 

 

96	

3.9 Figures 

 

 

Figure 15 Conceptual plot of eddy covariance measurements in ideal condition (a) after Finnigan 

(2004) and in reality (b). Ideally, tower measurements can represent the net surface atmosphere 

exchange across the virtual control volume around it (a). However, in reality tower measurements 

can only represent a cone-shape that is confined by the footprint area over a heterogeneous 

surface. 
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Figure 16 Footprint climatology (30%, 60% and 90%, white contour lines) for 122 m level 

measurements superimposed over average MODIS land surface temperature (LST) within 

20×20 km2 target domain surrounding the tower, which is indicated with the central crosshairs. 

(a) entire study time period; (b) daytime (9:00 – 17:00 CST), and (c) nighttime (17:00 – 9:00 CST). 

In this study, the footprint had a diurnal cycle and LST over the footprint area was lower than 

over the whole domain. 

  

night
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Figure 17 Conceptual figure of a tower measuring (a) no mesoscale circulation, (b) the updraft 

branch and (c) the downdraft branch of mesoscale circulation. Red arrows are updrafts and blue 

arrows are downdrafts.  
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Figure 18 Equidistant response plots of temperature (T) time-rate of change, from which heat 

storage is derived. In decreasing order of explained variation in the flux signal (partial R2 in 

braces), the drivers are cosine of the azimuth angle (cos(azi)), sine of the azimuth angle (sin(azi)), 

water vapor mixing ratio (q), relative height within boundary layer (zm/zi), land surface 

temperature (LST), enhanced vegetation indix (EVI), and potential temperature (q) . The black 

lines are the fitted integrated response over the range of one individual driver. Smoothed 

representations of the fitted function (locally weighted polynomial regression) are in red bold 

lines. The equidistant response plots use uniformly distributed percentiles within the range of 

training data (inward tickmarks on the lower x-axis). Inward tickmarks on the upper abscissa 

represent training data percentiles. (W), (E) under sin(azi) subplot and (N), (S) under cos(azi) 

S N
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subplot indicate western, eastern, northern and southern direction of the solar azimuth, 

respectively.  
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.

 

Figure 19 Volume projection of heat storage flux from the displacement height to the 122 m 

measurement height, across the tower-centered 20×20 km2 target region. The color is the 

temperature time-rate-of-change in Wm-3. The volume projections show a developing convective 

boundary layer from 2014 Aug 17 7:00 a.m.–10:00 p.m. CST. White spaces are time-space 

locations that cannot be projected as they exceed the range of the training data. 
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Figure 20 Projected vertical flux grids of sensible heat for August 19th, 2014, 12:00-13:00 CST for 

the tower-centered 20×20 km2 target region at (a) 76 m and (b) 122 m level. Subplot (a) may 

indicate suitable conditions for surface heterogeneity-induced mesoscale circulations. Subplot (b) 

shows the flux grids at a higher elevation with less spatially distinct features due to blending.  
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Figure 21 a. Tower observed turbulent flux (light blue) and VCV-estimated net surface 

atmosphere exchange (violet) for H, LE and projected net surface atmosphere exchanges (NSAE) 

integrated over the study period. ERF-VCV estimated NSAE sum of sensible and latent heat flux 

is 20.6% greater than tower observation when aggregated over the study period. b. Scatterplot 

for the observed vertical turbulent heat flux measurements for the sum of H and LE and ERF-

VCV projected heat flux. Each point represents a one hour averaging period. Uncertainties are 

one standard deviation of the random uncertainties (error bars in x and y direction). Due to spatial 

averaging, ERF-VCV projections are less scattered. The fitted linear relationship shows that the 

ERF-VCV projections have a larger daytime-nighttime amplitude.  

  

a b
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Figure 22: Temporal standard deviation (top) and mean (bottom) of hourly area-aggregated net 

surface flux as a function of the control volume side length. The left and right panels show net 

sensible and latent heat fluxes, respectively. Temporal standard deviation decreased and 

stabilized at spatial transporting scale of 10–15 km.  
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Figure 23: diurnal cycle of ERF-VCV projected storage flux (green) and tower observed storage 

flux (red) for H and LE generated from all data for the study period. 

 

 

 

  



 

3This chapter is modified and excerpted with permission from Xu, K., Sühring, M., Metzger, S., Durden, 
D., & Desai, A. R. Can data mining help eddy-covariance see the landscape? A large-eddy simulation 
study, In Preparation ready for submission. 
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4 Can data mining help eddy-covariance see the landscape? A large-eddy 

simulation study3 

4.1 Introduction 

The eddy-covariance technique, in theory, can provide reliable, direct, spatially distributed and 

temporally continuous observations for surface-atmosphere exchanges of carbon, water and 

energy across contrasting eco-climate regions (Metzger, 2017). Now EC observations, such as 

those collected by AmeriFlux and National Ecological Observatory Network (NEON), have 

become available at unprecedented temporal duration and distributed spatial extents (Novick, 

et al., 2018). Near continuous (hourly/half-hourly) data on exchanges of carbon, water, heat and 

momentum are collected across the globe. The longest running towers are now approaching 

three decades of observations (Baldocchi, 2008). This drives EC to be one of the most important 

datasets for benchmarking ESMs (Bonan et al., 2011). Recent large land surface model 

intercomparisons as part of the North American Carbon Program diagnosed limitations in 

models, including spring phenology (Richardson et al., 2012), light use efficiency (Schaefer et 

al., 2012), and drought sensitivity (Schwalm et al., 2010). Wavelet coherence spectral analyses 

suggest that models have consistent biases at the diurnal and interannual timescale, for which 

eddy-covariance towers are well suited observations to validate and improve the simulation of 

carbon cycle in ESMs (Dietze et al., 2011; Stoy et al., 2013). 

However, two challenges limit how well EC can reliably inform model-data comparison, 

assimilation, and data-inter-comparison and validation. The first one stems from footprint bias. 

This surface influence sampling footprint from EC towers not only varies rapidly in time, but 
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the spatial scale of flux tower footprint (10-1–101 km2) is typically a mismatch with either the 

resolution of most earth system models (102–104 km2) or many remote sensing data product 

spatial resolutions (10-5–102 km2), complicating the interpretation in the comparison with RS 

data and model-data comparison. Previous studies also show towers tend to under-sample warm 

convective spots, but over-sample cold subsidence areas, which is another source in location 

bias (Foken 2008; Wyngaard et al., 1984, Moeng et al., 1984). 

The second challenge originates from longstanding challenge of energy balance non-closure in 

EC, incurred by unaccounted mesoscale eddies or under-sampling of hot spots by flux towers. 

Energy balance closure refers to a long-standing observed pattern that, at almost all sites, the 

observed turbulent sensible and latent heat fluxes are always 10–30% less than the sum of 

incoming available energy (net shortwave and long wave radiation minus ground heating), 

when expected to be zero at long term scale, e.g. multiple-years (Foken et al., 2011). One main 

reason is that low-frequency mesoscale flux contributions are hidden in the advection term, and 

inherently not captured by eddy-covariance technique as confirmed in a growing body of 

literature (e.g. Finnigan, 2003; Kanda et al., 2004; Foken 2008; Eder et al., 2015).  

Atmospheric structures, i.e., turbulent organized structures (Kanda et al., 2004; Finnigan 2003) 

and/or secondary circulation associated with surface heterogeneity (Schlegel et al., 2014; Eder 

et al., 2015), can cause low-frequency mesoscale flux contributions. Turbulent organized 

structures are thermal-driven open cells (Eder et al, 2015; Wilczak and Tillman, 1980) or, in 

case of background wind, horizontal rolls (Drobinski et al., 1998; Maronga and Raasch, 2013) 

and typically have timescales larger than the averaging time of the eddy-covariance (Sakai et 

al., 2001; Foken et al., 2006). The under-sampling of hot spots by flux towers can also 

contribute to the energy imbalance (Foken, 2008; Wyngaard et al., 1984).  
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On occasionally but not always measured term, the atmospheric storage flux (Eqn. 1, term 1), 

does have a diurnal cycle and influences energy closure at hourly or finer temporal scale, despite 

its small averaged magnitude over daily timescale (Leuning et al., 2012). Especially in the case 

of tall towers or tall vegetated canopies, storage beneath the turbulent flux measurement height 

can comprise a substantial amount of the actual surface-atmosphere exchange at hourly 

resolution. Moreover, the flux footprint of turbulent flux measured at the tower top is 

mismatched with footprint of storage flux measured below, which is a potential source of flux 

error, too (Schmid 1997).  

Previous studies found that adding more towers (Steinfeld et al., 2007; Mauder et al., 2008) or 

applying advanced scaling methods (ERF, Metzger, 2013, 2017; Xu et al., 2017a,b) can include 

mesoscale eddies in eddy-covariance measurements to help close energy budget (Kanda et al., 

2004; Eder et al., 2015). However, these studies have not systematically evaluated advanced 

approaches for upscaling, rectifying, or combining multiple flux towers. Here, we attempt a 

first-of-its kind "Virtual flux tower" investigation of resolving spatial mismatch and energy 

balance closure using advanced upscaling techniques, and ask: 

• How many eddy flux towers are needed to sufficiently rectify location bias, close energy 

budget, and sample the regional domain?  

• Can an advanced scaling approach reduce this observational requirement, while still 

adequately sampling the regional flux domain?  

• How accurate can advanced upscaling methods  retrieve the spatial pattern of surface 

fluxes? 
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4.2 Methodology 

In order to investigate the three questions raised in Sect. 4, we applied three different methods 

(Sect. 4.2.2), spatial EC, spatial-temporal EC, and ERF, to 384 virtual towers in Large-eddy 

Simulation (LES) (Sect. 4.2.1) with mesoscale eddies generated from prescribed stripe-like 

heterogeneous surface forcing. 

4.2.1 LES set up and virtual tower measurements 

Previous studies using ‘real’ measurements have difficulty detecting and distinguishing the 

source of systematic errors in tower measurements with unknown boundary conditions (Sühring 

et al., 2018; Schröter et al., 2000; Sühring and Raasch, 2013). With heterogeneous surface 

forcing in LES set up, this study targets to reveal the source and different systematic errors and 

magnitude of them to improve measurement strategies. 

Here, the parallelized LES Model PALM (Raasch and Schroöter, 2001; Maronga et al., 2015; 

Suhring et al., 2018) was used for the numerical simulations in this study. The surface forcing 

was set to be stripe-wise alternating patches of higher sensible heat H (lower latent heat) and 

lower H (higher LE) along the x-axis with patch sizes L of 3 km., as illustrated in Figure 24a, 

b; hereafter refer to as warm-dry and cold-wet patches, respectively. Along the y-axis, the 

model surface was homogeneous. The domain-averaged surface heat fluxes were constant in 

time with a value of H=0.1 Kms-1 and LE=6 x 10-5 kg kg-1ms-1 (each equals a heat flux of 

100Wm-2, assuming a constant air density of 1 x 103 kgm-3 in all performed simulations. Stripe-

like surface patches with the surface sensible heat alternated between 150 and 50 W m-2 and 

latent heat alternated between 150 and 250 W m-2 (Sühring et al., 2014). With horizontal wind 

perpendicular to the surface heterogeneity, secondary circulations can develop (Figure 24c). 
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PALM LES was set up over a domain of 12 km x 16 km x 1.8 km at 7 m spatial resolution and 

at a time step of 0.3 s. The simulations ran for 5 hours of simulation time, while data analysis 

started after 2 hours. Detailed LES set up and boundary layer structure can be found in Suhring 

et al., (2018). 384 virtual flux towers (w,q,t,p) were sampled at 49 m vertical level (Figure 24, 

Suring et al., 2018). 

4.2.2 Analysis 

We applied four different methods, spatial EC, spatial-temporal EC (S07 and M08), and ERF, 

to reproduce the domain flux mean and variation. 

4.2.2.1 Spatial eddy-covariance 

Traditional eddy-covariance using stationary towers is calculated in temporal domain with only 

one tower. With multiple towers set up in this study, eddy-covariance representative flux can 

be calculated in spatial domain (Equation 1).  

[𝐹(stputv	wx] = 𝑤(> 𝑥, 𝑦, 𝑡 ∙ 𝑐(> 𝑥, 𝑦, 𝑡

= [ 𝑤 𝑥, 𝑦, 𝑡 − 𝑤 𝑥, 𝑦, 𝑡 ∙ 𝑐 𝑥, 𝑦, 𝑡 − 𝑐 𝑥, 𝑦, 𝑡 ] 
 Equation 1 

Here, c represents air temperature, T and water vapor mixing ratio, q. [ϕ] denotes the horizontal 

average of a quantity ϕ over a certain horizontal domain and if ϕ denotes the temporal average 

of a quantity ϕ over a certain period of time. According to Reynolds decomposition (Foken and 

Nappo, 2008, Stull, 1988), w and c can be split up into a horizontal mean and a related deviation 

(marked by a prime and subscript s), i.e. 𝑤(> 𝑥, 𝑦, 𝑡  and 𝑐(> 𝑥, 𝑦, 𝑡 . 

After subtracting, aggregate 𝑤(> 𝑥, 𝑦, 𝑡  and 𝑐(> 𝑥, 𝑦, 𝑡 	over half an hour for each tower, then 

aggregate over all towers in the horizontal domain. This calculation was repeated 50,000 times 

to obtain ensemble representative flux. 
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4.2.2.2 Spatio-temporal eddy-covariance  

We derived spatial-temporal eddy-covariance method from Steinfeld et al., (2007, S07).   

From Equation 23 in Steinfeld et al., (2007), representative flux is calculated as:  

[𝐹{:|] = 𝑤 ∙ ([𝑐] − 𝑐 ) + 𝑤 ∙ (𝑐 − 𝑐 ) = 𝑤𝑐 − 𝑤 [𝑐]  Equation 2 

Note that if we calculate flux using spatio-temporal eddy covariance, we get the same result. 

Following is the derivation. 

[𝑭𝒔𝒑𝒂𝒕�𝒐P�𝒆𝒎𝒑𝒐𝒓𝒂𝒍	𝑬𝑪] = 𝒘𝒔𝒕
> 𝒙, 𝒚, 𝒕 ∙ 𝒄𝒔𝒕> 𝒙, 𝒚, 𝒕    Equation 3 

while, 

𝑤(p> 𝑥, 𝑦, 𝑡 = 𝑤 𝑥, 𝑦, 𝑡 − 𝑤   Equation 4 

𝑐(p> 𝑥, 𝑦, 𝑡 = 𝑐 𝑥, 𝑦, 𝑡 − 𝑐   Equation 5 

when using Reynold decomposition, 

[𝑭𝒔𝒑𝒂𝒕�𝒐P𝒕𝒆𝒎𝒑𝒐𝒓𝒂𝒍	𝑬𝑪] = 𝒘 𝒙, 𝒚, 𝒕 − 𝒘 ∙ 𝒄 𝒙, 𝒚, 𝒕 − 𝒄    Equation 6 

After expanding Equation 6 

[𝑭𝒔𝒑𝒂𝒕�𝒐P𝒕𝒆𝒎𝒑𝒐𝒓𝒂𝒍	𝑬𝑪] = 𝒘𝒄 − 𝒘 𝒄 − 𝒘 𝒄 + 𝒘 𝒄 = 𝒘𝒄 − 𝒘 𝒄 −

𝒘 𝒄 + 𝒘 𝒄 = 𝒘𝒄 − 𝒘 𝒄 = [𝑭𝑺𝟎𝟕]  
 Equation 7 

As S07 and spatio-temporal EC are identical, here we call S07 method as “spatio-temporal EC”. 

Mauder et al., 2008’s method built on S07, but with only one high-frequency of the tower, for 

rest, temperature and humidity were measured at low-frequency. Therefore, here we call S07 
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and M08 methods by a joint name “spatio-temporal EC”. The averaging time period is half-

hour for S07 and M08. The ensemble size is 50,000. 

4.2.2.3 Environmental Response Function (ERF) 

The underlying principle of ERF (Metzger et al., 2013; Xu et al., 2017a) is to utilize high-

frequency (minute to minute) footprint variation to extract the relationship between high-

frequency flux response and appropriate spatial or temporal drivers, e.g. meteorological 

forcings and surface ecological properties, and then utilize the extracted relationship for spatio-

temporal mapping to the whole domain, where possible. 

In short, the essential steps of ERF are: (i) observing key environmental drivers and responses 

at high spatiotemporal resolution; (ii) inferring process relationships among environmental 

drivers and responses using artificial intelligence; (iii) projecting environmental responses in 

3-D space and time. 

In ERF-VCV, these three essential steps are realized by coupling time-frequency-decomposed 

eddy-covariance flux observations (Xu et al., 2015) with flux footprint modelling (Kljun et al., 

2015) and machine learning (Elith et al., 2008). The traditional eddy-covariance approach 

requires averaging turbulent fluctuations over a 30 to 60-minute window, making it susceptible 

to changing turbulent conditions and footprint variations that occur on shorter time scales. By 

using a wavelet-based spectral average instead, the flux measurement period can be reduced 

substantially (5-minute window size at 1-minute resolution), permitting clear spatial attribution 

without neglecting long-wavelength flux contributions. The resulting large sample size and 

high signal-to-noise ratio enables machine learning to extract key relationships between these 

atmospheric flux ‘responses’, and land surface and meteorological ‘drivers’.  
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In this study, ERF was applied to randomly-chosen 1 to 14 towers for 2000 ensemble times. 

We used time series of hour 3–4, with  transporting scale in the wavelet decomposition is 1 

hour, in order to get rid of edge-effect in wavelet decomposition. With n virtual tower(s), 

whereas n is from 1 to 14, the training dataset for machine learning is 60´n.  

Drivers consisted of surface properties, meteorological variables, and relative height within the 

boundary layer (zm/zi). Meteorological variables were air temperature, water vapor mixing ratio 

measured by virtual tower. Surface properties were land surface temperature (LST) and land 

surface moisture (LSM) at 3.5 m derived from x-z cross sections, the lowest level above the 

surface. The two sets of temperature and humidity drivers were used to indicate the gradient 

between the air and surface. 

Storage flux were calculated as the domain averaged time-rate of change of air temperature and 

humidity using x-z cross sections. 

4.3 Results and Discussion 

4.3.1 How many flux towers are needed to sufficiently sample the flux domain mean? 

When using spatial EC, adding each tower helps ensemble averaged H close the energy budget 

(orange line in Figure 26a). But a relatively high tower density is needed to fully close the 

energy: when 14 towers are used per 12 km´16 km (7.3 towers per 100km2), the represented 

flux only reach 80% of the applied surface flux. After account for 5.6% of energy transformed 

to storage flux, the spatial-EC method is still unable to capture and explain 13.5% of H + LE 

flux. Spatio-temporal EC (S07 and M08 in Figure 26a) performs much better: with one single 

tower, ensemble averaged H starts from 79.2%, also increases with more towers, and reaches 

85% of energy with fewer (5) towers, leaving 9.2% of total surface energy balance flux 

unexplained.  
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Similar results are seen in LE (Figure 26b, note the values at y axis in Figure 26b should be 

divided by the surface forcing of LE, 200 Wm-2, to get relative percentage): ensemble average 

LE derived  from spatio-temporal EC increases from 91.1% to 94.6% of the expected LE 

surface flux as one goes from X to Y towers, indicating the contribution from mesoscale eddies 

in LE limit the use of single towers. Spatio-temporal EC performs better than spatial EC in 

terms of the represented flux with one single tower and the numbers of towers required to close 

the total LE flux. 

Spatial variation of fluxes could be derived from S07 and spatial EC in theory, if number of 

towers is larger than 2. But simple bi-linear interpolation into the whole domain would not give 

a good retrieval of the surface especially with towers < 20, because the surface patches are 

stripe-like. The companion paper (Suhring et al., 2018) used the same LES set up and flux 

disaggregation method using virtual airborne EC measurements to retrieve the spatial variation, 

and tested the retrievals with the surface forcing reference (finding what?) 

Based on this analysis, we surmise that the detected mesoscale eddies contribute 6% and 3.5% 

of energy budget for H and LE, separately (Table 5). Also, storage flux in this convective 

situation is not negligible, 5.6% and 3.4% for H and LE (Table 5). When considering storage 

flux and mesoscale eddies in sum, spatio-temporal EC helps to close the energy budget from 

20.8% to 9.2% for H, and from 8.9% to 2% for LE, with only 5 towers. 

When compared with previous work, 5 towers are needed per 12 km´16 km region in this study 

is consistent with the findings in Steinfeld et al., (2007) and Mauder et al., (2008). We also 

proved the M08 method (Mauder et al., 2008) generates almost identical results with S07, but 

with only one high-frequency tower and remaining towers are measuring only mean quantities, 

thereby reducing the observation expense. In addition, while previous studies suggested that 

the evidence of latent heat-generated mesoscale eddies is lacking (e.g. Eder et al., 2015), this 
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LES experiment identified similar magnitude of mesoscale eddy contribution to H and LE 

underestimation. As discussed more in Sect. 4.3.2, evidence of secondary circulation generated 

by the horizontal gradient of H flux are shown, while the lack of evidence of LE-generated 

secondary circulation indicates that the mesoscale eddies in LE are generated as turbulent 

organized structures. 

4.3.2 How does the upscaling method, ERF, help flux towers to sample the regional 

domain? 

Upscaling and wavelet based flux computation significantly improves the reliability of energy 

flux measurement even with a single tower. With one single tower, the total ERF-projected flux 

of H and LE incorporates additional energy term of 4.3%, persurmably from mesoscale eddies, 

reducing the energy budget gap from 12.9% to 4.6% (Figure 26c, Table 5). This reduces the 

observation requirement by 80%, compared to five towers using spatio-temporal EC. As 

expected with the method, with more towers, ERF-projected ensemble total flux of H and LE 

remain unchanged (Figure 26c). This is achieved by the longer flux transporting scale enabled 

in the wavelet composition in ERF. Additionally, the ensemble standard deviation of ERF and 

spatio-temporal EC are about the same magnitude (figure not shown), reflecting the sensitivity 

of both methods to the choice of virtual towers is about the same. 

If we look at ERF-projected H and LE separately, ERF can retrieve 85.2% of H and 93.9% of 

LE with one single tower. With 7 towers, ERF-projected ensemble energy increases to 92% for 

H, while decreases to 90.4% for LE (red line in Figure 26b). We found this decrease occurs 

because the warm-dry patches are under-sampled by virtual towers (green line in Figure 27a), 

and adding more towers in ERF increase the chance of warm dry patches to be detected and 

projected by ERF (yellow, orange, and red linesFigure 27a) while reducing the change of 

detecting cooler, wetter patches. Adding more towers especially improve the sampling of 
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warm-dry, spatially confined and strong convective patches, whereas spatially abundant cold-

wet patches can be easily detected even with few towers. This finding is consistent with 

previous studies reflecting that in real world EC towers also tend to under-sample hot spots 

(Foken 2008; Wyngaard et al., 1984). 

Under-sampling of hot spots by towers occurs as a result of atmospheric convection skewness. 

In the updraft branch of the mesoscale eddies, convective eddies gather more energy to 

overcome gravity, and become stronger and spatially-smaller as they go up, as observations 

show larger magnitude but less probability density (second peak of green line inFigure 27a) 

than the surface forcing reference (second peak of blue line Figure 27a). The weaker downward 

flow needs more area than the stronger upward flow so they compensate each other according 

to mass conservation (Figure 28). The corresponding spatial distribution of atmospheric fields 

is skewed towards weaker, cooler subsidence areas (as opposed to stronger, warmer convective 

areas), even though cold/warm surface forcing (real-world or virtual) are uniformly distributed 

in space (Figure 28). Because the EC tower is operating in this atmospheric field in a fixed 

temporal frame of reference, its measurement is inherently “biased” to capture more of the 

weaker downward flow as opposed to the stronger upward flow (Figure 28).  

The atmospheric convection skewness also explains the decrease of ERF-projected LE with 

more towers (red line in Figure 26b). The tower-measured land surface moisture (LSM), 2.32 

mkg/kg, is shown to be larger than domain mean LSM, 2.38 mkg/kg. But different from H, LE 

observations tend to be more mixed and homogenized with height? (green line in Figure 27b). 

This can be explained by the theory that heterogeneity-induced mesoscale eddies dominated by 

sensible heat fluxes mix the passive water vapor, making water vapor field more homogenized. 

An alternative explanation is that convergence of warm updraft branch (with low LE) and 



 

 

117	

divergence of cold downdraft branch (with high LE) lead to the increase the magnitude of lower 

LE, and decrease the magnitude of high LE, making tower-measured LE more homogenized. 

ERF is able to rectify this location bias, while spatio-temporal EC cannot. The more towers 

ERF utilizes, the better it can rectify. Further, ERF not only increase the probability density of 

the warm-dry patches in H projection, it also enables reducing the magnitude of the converged 

warm fluxes due to atmospheric skewness (second peak of red line in Figure 27a). In this case, 

the location bias incurred by atmospheric skewness contribute to 5.8% and -3% energy for H 

and LE (Table 5). 

The remaining 4.6% “missing” flux can be hidden in projected H, since the projection of H still 

cannot produce bimodal distribution  (Figure 27a), which means warm-dry patches are 

fractionally under-projected.  

4.3.3 How accurate can ERF retrieve the surface flux variation? 

Based on the ERF calculated projection statistics, ERF can rectify location bias by improving 

flux coverage over the regional domain from <1% tower footprint area (based on footprint 

spatial coverage), to 10%, 42%, and 59%, respectively, with one, two and 14 virtual towers. 

When the surface properties exceed the range of what the tower(s) can project, ERF rejects to 

project to these areas (white areas in Figure 29), and this is how the coverage percentages are 

calculated. The low spatial coverage with one tower is likely arising from atmospheric condition 

being quasi-stationary in this LES set up, making each virtual tower measure have almost the 

same footprint area, an effect that is less likely in the real-world. Applying ERF over several 

months flux tower data would build an ensemble of different atmospheric conditions and thus 

a footprint climatology, which in turn improves the spatial representation, such as larger than 

60% over 10´10 km2 (Xu et al., 2017a).  
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The fitted relationship (dashed line in Figure 30) between ERF-projected H and known LES 

surface reference is very close to 1:1 line. These two show very good agreement with 13% of 

median absolute deviation of residual. The extracted response functions of H are physically 

reasonable (Figure 31). Both proved the theoretical soundness and statistical significance of 

ERF approach. 

Because LE flux at 49 m virtual tower is much more homogenized than tower-measured H flux 

(Figure 25, Figure 27b), ERF is unable to distinguish the two different patch contributions to 

LE, gives less successful projection performance.  

4.4 Conclusion 

In our study, one and six virtual eddy-covariance towers, respectively, were able to capture only 

79% and 91.5% of the half-hourly turbulent heat flux over a 12 km´16 km LES domain using 

the spatio-temporal EC method. Once the ERF upscaling method was applied, 91.5% and 98.3% 

of the domain mean sensible heat were captured with one single tower and with 7 towers, 

respectively. This is achieved because ERF resolves mesoscale eddies using wavelet-

decomposed fluxes, which considers high-frequency (sub-hourly) fluxes with long transporting 

scales, e.g. one hour or three hours. We also find, in this convective LES set up, that storage 

flux contributes to 4.1% out of 13.2% eddy-covariance energy imbalance. Storage flux did not 

converge to zero as often assumed at diurnal cycle scale, especially during convection events 

such as in this LES experiment.  

In this experiment, evidence does show mesoscale eddies in latent heat flux (LE). LE mesoscale 

eddies are not generated by LE itself. Rather, the updraft and downdraft branches generated by 

sensible heat fluxes trigger the mesoscale eddies in LE field. 
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Evidence of secondary circulation generated by the horizontal gradient of sensible heat flux (H) 

are shown, while the lack of evidence of latent heat (LE)-generated secondary circulation 

indicates that the mesoscale eddies in LE are generated as turbulent organized structures. 

In addition, ERF rectifies the location bias introduced by atmospheric skewness: strong 

convective areas are sparsely distributed, while cool subsidence areas cover the majority of the 

space. But in this LES analysis, for the surface, warm and cold patches are evenly distributed. 

Convection and heterogeneity-induced mesoscale eddies tend to increase ratio of cold-wet 

patches to warm-dry patches observed by towers, driving towers to under-sample warm-dry 

area. ERF rectifies atmospheric-skewed location bias by retrieving more warm areas in 

mapping surface atmosphere exchanges, while traditional spatio-temporal eddy-covariance 

using more towers cannot either detect or correct this atmospheric-skewed location bias. 

The theoretical soundness and statistical significance of ERF approach are proved by both the 

very good agreement between ERF-projection and known LES surface reference, and the 

physically reasonable extracted response functions. ERF enables rectifying location bias by 

improving flux coverage over the regional domain from <1% tower footprint area, to 20%, 62%, 

and 89%, respectively, with one, two and 14 virtual towers.  

Future work can be on: 1) application of ERF with virtual towers in LES to resolve advection 

terms; 2) Comparison with other flux decomposition methods, e.g. flux disaggregation method, 

with LES models; 3) test ERF with flux tower cluster real observations; 4) test the hypothesis 

that with spatially more abundant updraft regions, the warm patches are not anymore under-

sampled; 

This paper demonstrates how advanced scaling techniques can captures effect of mesoscale 

eddies, maps fluxes across regional scale, and decrease the number of towers required for 
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sampling both mean and variation of heterogeneous surface, and thus decrease experimental 

expense.  
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4.6 Table 

Table 5 Energy budget for turbulent flux, ERF-resolved mesoscale eddies, storage flux, 

and the remaining part of sensible heat flux (H) and latent heat flux (LE). 

 Turbulent 

flux 

Mesoscale 

eddies 

Storage flux Atmospheric 

skewness 

missing 

H 79.2% 6% 5.6% 5.8% 3.4% 

LE 91.1% 3.5% 3.4% -3% 5% 

H + LE 87.1% 4.3% 4.1% -0.08% 4.6% 
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4.7 Figures 

 

Figure 24 The heterogeneously prescribed surface-fluxes of a) sensible heat flux with white crosses 

indicating the horizontal position of the virtual tower measurements and b) latent heat flux with 

black lines indicating the horizontal flight tracks of virtual aircraft measurements (not used here). 

c) (x,z)-cross-section of the turbulent sensible heat flux (colored contours), as well as the 

corresponding flow field (vectors) at different points in time during the analysis period 3–4 h, 

indicates the mesoscale eddies occur with larger heat fluxes in the uprising branches over the 

warm-dry patches, and suppressed heat fluxes in the subsiding branches over the cold-wet 

patches. 

  

(c) x-z cross-section of turbulent sensible heat flux
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Figure 25: Virtual tower measured sensible heat and latent heat fluxes at 50 m. Sensible heat flux 

map reflects strong warm-cold patches, while latent heat flux maps are more mixed and 

homogenized without strong wet-dry contrast. 
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Figure 26 Ensemble averaged energy fluxes from randomly placed virtual towers at 49 m using 

spatio-temporal eddy-covariance method (S07 and M08) for a) sensible heat (H), b) latent heat 

(LE), and c) H + LE. ERF enables rectifying location bias for H and LE, while S07 and M08 

cannot. ERF enable reaching 91.7% of H+LE with one single tower, while S07 and M08 needs 5 

towers.  
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Figure 27: 2000-fold ensemble probability density functions of ERF-projected sensible heat and 

latent heat fluxes with 1 to 14 virtual towers. Adding more towers improved the reproduction of 

warm, strong convective patches. Even with few towers cold-wet patches can be detected more 

easily, and adding more towers does not substantially improve their reproduction. 
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Figure 28: Schematic plot for atmospheric convection skewness. In the updraft branch (orange 

lines) of the mesoscale eddies, convective eddies gather more energy to overcome gravity, and 

become stronger and spatially-smaller as they go up. The weaker downward flow (blue lines) 

needs more area than the stronger upward flow so they compensate each other according to mass 

conservation. The corresponding spatial distribution of atmospheric fields is skewed towards 

weaker, cooler subsidence areas (as opposed to stronger, warmer convective areas), even though 

cold/warm surface forcing (real-world or virtual) are uniformly distributed in space (red and dark 

blue lines). Because the EC tower (black crosses) is operating in this atmospheric field, its 

measurement is inherently “biased” to capture more of the weaker downward flow as opposed to 

the stronger upward flow. 
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                          a                                                     b                                                    c 

Figure 29 ERF-projected sensible heat fluxes with (a) one virtual tower, (b) two virtual towers, 

and (c) 14 towers. White areas are gaps that cannot be reproduced by ERF because their physical 

properties exceed the range of the observation dataset. The spatial coverage increases from 20% 

with one virtual tower, over 62% with two towers, to 89% with 14 towers. 

 

 

 

Figure 30 Scatterplot for ensemble ERF-projected sensible heat flux and latent heat produced 

from 14 virtual tower observations and LES surface reference subtracting storage flux. Solid 

black line is 1:1 line, and dashed black line is the fitted relationship.  
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Figure 31 Extracted environmental response functions when 14 virtual towers are used. The fitted 

sensible heat flux (H) is shown on the ordinate. The abscissa show: potential temperature 

measured by the virtual tower (theta), water vapor dry mole fraction (FD_mole_H2O), land 

surface temperature (LST), relative measurement height in the boundary layer (zm_zi), land 

surface moisture (LSM). The extracted relationships are consistent with flux-gradient 

relationships in terms of relationship with LST, FD_mole_H2O, LSM. The positive relationship 

between theta and fitted H agrees our understanding that the air is usually warmed through large 

sensible heat flux and long wave radiation, especially over dry areas. The extracted relationship 

with zm_zi is consistent with the effect from vertical flux divergence.  
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5 Conclusions and Future Perspectives 

5.1 Conclusions 

My dissertation has extended the Environmental Response Function (ERF) approach to solve 

the two main challenges, energy imbalance and location bias, in observing net surface-

atmosphere exchange from eddy-covariance flux towers. ERF achieves to decompose fluxes by 

utilizing the footprint variation over heterogeneous surface at high spatiotemporal resolution, 

relating the flux response to key environmental drivers, and projecting fluxes in space and time. 

Compared to traditional spatio-temporal eddy-covariance by adding more towers and previous 

upscaling methods, ERF has advantages in reducing observation requirements, resolving the 

missing sources in energy budget, and enabling flux decomposition at fine spatio-temporal 

resolution. 

Chapter 2 demonstrated applicability of the ERF approach to map heat, water vapor, and CO2 

fluxes from an eddy-covariance tower to the regional scale of 20×20 km2. In the real application, 

ERF enables to improve spatial coverage from tower footprint, <10% of the regional scale 

spatial domain, to >70%, >60%, and >50% over 5×5 km2, 10×10 km2, and 20×20 km2, 

separately. The ERF-projected fluxes of sensible heat and latent heat and CO2 fluxes integrated 

over a 20×20 km2 target domain differed substantially from the tower observations in their 

expected value (+27%, −9%, and −17%) and spatio-temporal variation (−22%, −21%, and 

−3%, respectively). ERF systematic uncertainties are bound within −11%, −1.5%, and +16%, 

respectively, indicating that tower location bias might be even more pronounced for heat and 

CO2 fluxes than currently detectable. The ERF-projected fluxes showed general agreement with 

both independent observations and previous upscaling methods. In comparison to other 

upscaling methodologies, the two main advantages of the ERF approach are the explicit 
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consideration of varying flux footprints during training, and the ability to produce regional, 

high-resolution flux grids at hourly timescales. ERF-projected flux grids not only assess, but 

also rectify the spatial representativeness of tower eddy-covariance measurements.  

Chapter 3 proved ERF-VCV is useful for retrieving the volume-controlled net surface 

atmosphere exchange (NSAE), when using AmeriFlux Park Falls WLEF tall tower in North 

Wisconsin, USA during July and August 2014. This retrieval is achieved by resolving the 

storage flux, vertical turbulent, and vertical advection fluxes, which are not easily measured. 

ERF approach is useful for mapping heat and CO2 fluxes from an eddy-covariance tower 

footprint-variable representation to a fixed-coordinate representation at regional scale. This aids 

reducing the location bias typically incurred from single-location vertical turbulent flux as well 

as single-profile storage flux measurements, and the influence of vertical advection. Particularly, 

in this study, storage flux did not converge to zero as often assumed and had significant diurnal 

cycle, and should thus not be ignored, e.g. when comparing eddy covariance measurements 

with earth system models (ESMs) at hourly or finer temporal resolution. Low frequency flux 

contributions were detected in this study, and inclusion in the ERF-VCV landscape-scale 

exchange of sensible and latent heat led to a 20.6% increase over the tower observations, thus 

provides a promising research direction for improving energy balance closure. 

Chapter 4 further proved that ERF enables detecting and resolving mesoscale eddies, which 

contribute to 4.3% out of 13.2% eddy-covariance energy imbalance over 12 km´16 km in the 

LES experiment, with one single tower, compared to 5 towers using traditional spatio-temporal 

eddy-covariance method. This advance is achieved by using wavelet-decomposed fluxes, which 

considers high-frequency (sub-hourly) fluxes with long transporting scales, e.g. one hour or 

three hours.  
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In this experiment, evidence does show mesoscale eddies in latent heat flux (LE). LE mesoscale 

eddies are not generated by LE itself. Rather, the updraft and downdraft branches generated by 

sensible heat fluxes trigger the mesoscale eddies in LE field. 

In addition, ERF rectifies the location bias introduced by atmospheric skewness: strong 

convective areas are sparsely distributed, while cool subsidence areas cover the majority of the 

space. But in this LES analysis, for the surface, warm and cold patches are evenly distributed. 

Convection and heterogeneity-induced mesoscale eddies tend to increase ratio of cold-wet 

patches to warm-dry patches observed by towers, driving towers to under-sample warm-dry 

area. ERF rectifies atmospheric-skewed location bias by retrieving more warm areas in 

mapping surface atmosphere exchanges, while traditional spatio-temporal eddy-covariance 

using more towers cannot either detect or correct this atmospheric-skewed location bias. 

The theoretical soundness and statistical significance of ERF approach are proved by both the 

very good agreement between ERF-projection and known LES surface reference, and the 

physically reasonable extracted response functions. ERF enables rectifying location bias by 

improving flux coverage over the regional domain from <1% tower footprint area, to 20%, 62%, 

and 89%, respectively, with one, two and 14 virtual towers.  

Potential improvements will address the state-space gaps in the projected grids, assumption of 

spatially homogeneous meteorological drivers and coarse spatial-temporal resolution in surface 

property drivers. With spatially explicit net radiation, ground heat flux observations, and flux 

measurements from multiple flux towers and airborne eddy-covariance, the validation of ERF 

and the potential for improving the energy balance closure problem can be further studied from 

intensive observations.  

ERF will be the next-generation eddy-covariance flux calculation algorithm that enhances the 

use and value of data from multiple flux networks. Perspective advances in the field will include 
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developing operative ERF routine among flux tower networks across north America (Sect. 5.2), 

providing next-generation benchmark for Earth system modelling (Sect. 5.3), and 

benchmarking for remote sensing data in data comparison, validation, and complementation 

(Sect. 5.4), advancing the study of boundary layer development over heterogeneous surface 

(Sect. 5.5). 

5.2 Future expansion of ERF-VCV 

A number of projects are underway to expand the ERF-VCV approach to make eddy flux 

observations a network-wide operative tool. NEON Surface-Atmosphere Exchange team led by 

Dr. Stefan Metzger, Dr. Trevor Keenan at the DOE LBNL, and I are targeting to expand the 

application of ERF-VCV from one single tower to flux network-wide across North America, 

through the scope of NEON Operations, NCAR Advanced Study Program fellowship 

application, and proposals to be submitted to the ROSES-ECOSTRESS call. Fundamentally, 

the goal is to move eddy-covariance flux observations from a micrometeorological tool, to one 

that is directly useful for regional to continental scale ecosystem ecology. The deliverable is to 

provide open-source, network-scalable ERF-VCV software as part of the community-

developed eddy-covariance software ‘eddy4R’ in user-friendly R-packages in platform-

independent Docker images (Metzger et al., 2017). This tool will automatically generate flux 

maps and response surfaces, e.g. around the 47 NEON eddy-covariance sites, at sub-100 m 

spatial and sub-hourly temporal resolution. Both data and routines will be available and sharable 

to all eddy-covariance users in the community. We believe developing and deploying an 

operational and automatic ERF-VCV routine among the entire networks can provide an end-to-

end solution for location bias and energy imbalance in eddy-covariance observations, and 

thereby benefit all eddy-covariance data products users in the research community.  

5.3 Prospect for model-data fusion  
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Uncertainty in terrestrial carbon fluxes simulated in ESMs can lead to uncertainty in future 

atmospheric CO2 concentrations as high as several hundred ppmv and global mean temperature 

as large as several centigrade, given the same anthropogenic forcing. There are a number of 

sources of uncertainty that drive the divergent carbon fluxes in ESMs, but significant 

improvements are possible when confronting models with contemporary ecosystem 

observations, such as the eddy covariance data. 

However, to date virtually all model-data inter-comparisons using eddy-covariance data have 

neglected uncertainties from footprint bias and energy balance non-closure. ESMs represent 

regular gridded cells (102 km2–104 km2), while eddy-covariance observations represent a much 

smaller footprint on the order of 10‒1–101 km2 around the tower, and this footprint is temporally 

varying. The problems are well known, yet unified solutions remain elusive. Flux footprint 

rectification has been applied in limited domains (Desai et al., 2008; Wang et al., 2006; Xiao et 

al., 2014). Any transient bias that occurs from changes in sampled characteristics with time will 

bias ecological inference and model-data comparison, thus corrupting model improvement. 

Essentially, observations and modelling currently coexist on two completely different spatial 

scales, requiring some treatment of the observations prior to informing models.  

The application of ERF in model-data fusion can generate both novel data products and novel 

understanding. As far as products are concerned, ERF can produce the hourly net ecosystem 

exchange of energy, water vapor, and especially CO2 and even CH4 flux maps over the regional 

scale (20´20 km2) around tower sites. This can provide an unprecedented advantage compared 

to existing strategies for model-data fusion: Not only an expected value, but the entire 

probability density function over a model cell is quantified at hourly resolution. Utilizing the 

full probability density functions of carbon and water vapor fluxes from ERF products can 

certainly improve model parameter estimation and the determination of parametric uncertainty. 
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Moreover, the spatio-temporally decomposed CO2 and CH4 fluxes for particular land cover 

types enables directly compare fluxes from these land cover/vegetation types and evaluate 

model performance for the different plant functional types. As far as understanding goes, a set 

of extracted environmental response functions that provide the multi-dimensional non-linear 

sensitivity of the target flux to underlying drivers within the domain, providing a second 

mechanistic set of sensitivities for model comparison. Also, if extracted ERFs are non-linear, it 

could be used as an indicator to suggest models should operate at higher spatial or temporal 

resolution: In this study, one-month integrated H over target domain was 45% greater than 

projected H from one-month integrated drivers. 

The data bases, the public operational algorithm routines, and the developed software will 

rectify scale mismatch problem, thereby offering a network-wide observatory benchmark that 

can exert a revolutionary impact in model-data comparison, validation, and assimilation.  

5.4 Prospect for remote sensing data in data comparison, validation and 

complementation  

Fusing remote sensing observations with eddy-covariance tower measurements greatly 

amplifies the utility of both, providing novel understanding of the terrestrial response to climate 

change from local to global scales. However, the spatial scale mismatch exists between the two 

observational platforms: remotely sensed retrievals represent regular gridded cells (60 m–1 km), 

while eddy-covariance observations represent a temporally-varying footprint on the order of 

10‒1–101 km2 around the tower. Hence, any observed dynamics or potential trends may be quite 

different only because of sampling a different source area (e.g., Griebel et al., 2016; Montaldo 

and Oren, 2016; Morin et al., 2017; Metzger 2017). 
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ERF can serve as a promising tool to address the aforementioned issue and hourly/half hourly 

scale-corrected next generation eddy-covariance data maps around North America flux tower 

networks, such as AmeriFlux and NEON. This will operatively accelerate flux networks’ data 

products generation, standardization, and harmonization for advancing the understanding of 

terrestrial biosphere. Further, energy non-balance has also been found when complimenting 

remote sensing radiative observations with in-situ surface observations (L’Ecuyer et al. 2015; 

Wild et al., 2011; 2013). 

ERF can serve as a promising tool to address the aforementioned issues and provide hourly/half 

hourly scale-corrected and energy-corrected next generation eddy-covariance data maps around 

North America flux tower networks, such as AmeriFlux and NEON.  

The produced network-wide regional maps of surface-atmosphere exchanges of sensible heat 

(H), evapotranspiration (LE), net ecosystem exchange of CO2 (NEE) will serve as a benchmark 

in validating and calibrating recently- and soon-to-be-launched satellite missions, e.g. 

ECOSTRESS, SMAP, Orbiting Carbon Observatory-2/3 (OCO-2/3), Table XX).  

Table 1. Main satellite data products in multiple NASA missions that can be calibrated and/or 

validated using the produced near-real-time (NRT) eddy-covariance scale-corrected maps. 

eddy-

covariance 

NRT scale-

corrected data 

products 

Satellite data 

products that can be 

validated and/or 

calibrated against 

eddy-covariance data 

Mission 
Launch 

time 

Temporal 

resolution 

Spatial 

resolution 

H H ECOSTRESS 2018-Apr 4 days 60 m 
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ET ET ECOSTRESS 2018-Apr 4 days 60 m 

NEE L4_C NEE SMAP 2015 7 days 9 km 

GPP SIF-based GPP OCO-2/3 2014/2018 16 days 2 km 

The data bases, the public operational algorithm routines, developed software will provide a 

valuable prompt benchmark of surface-atmosphere exchange that can exert a revolutionary 

impact in catalyzing and facilitating data sharing, calibration/validation, model-data 

assimilation, and thereby benefit all eddy-covariance data products users in the research 

community. As a byproduct, extracted relationships unveil novel ecosystem responses from the 

information encoded but hidden in high temporal resolution in-situ observations. The 

relationships can be directly used to inform next-generation remote sensing algorithm and 

model structure and parameterization.  

5.5 Prospect for the study in boundary layer development and atmospheric 

inverse models 

A number of theories exist on how hypothetical or land surface variations drive planetary 

boundary layer (PBL) growth (Desai et al., 2006; Reen et al., 2014), turbulence structure (Platis 

et al., 2017), and cloud development (Gantner et al., 2017), but current LES studies in 

heterogeneous terrain lack accurate estimate of surface conditions including surface fluxes.  The 

ERF mapping in the prior section can provide realistic surface forcing for the LES model at 

high spatial resolution (100 m). The LES can then directly show how spatial variation in energy 

fluxes and land cover impart on the atmosphere.  

Initial LES results (Fig. 32) of the domain during a case study analysis where ERF technique 

was used to map heterogeneous energy fluxes showed that heterogeneous terrain presents 
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slightly stronger and larger patterns (right panel) in turbulent structures (De Roo et al., 2014). 

We know from idealized numerical experiments using LES that this outcome depends on the 

degree of heterogeneity how the intensity of turbulent organized structures in modified. 

 

Figure 32 Comparison of LES water vapor field at 122 m in response to homogenous surface 

energy forcing (left) and hetereogenous ERF scaled energy forcing for the study domain. Tall 

tower is denoted by the dot. Courtesy of F. deRoo. 

5.6 Future directions for ERF 

The ERF-reproduced scale- and energy-corrected hourly NEE/LE/H flux grids, as well as the 

prospects discussed in Sects. 5.2–5.6, would allow ERF really push the boundary of making 

eddy-covariance observations more useful for benchmarking models, remote sensing data, and 

advancing the study in land-atmosphere interactions, terrestrial response to climate change, and 

atmospheric boundary layer development, thereby benefit all the eddy-covariance data users in 

the community.  
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