
COE CST Seventh Annual Technical Meeting (ATM7)

October 10, 2017 1

COE CST Seventh Annual 

Technical Meeting 

Task #319. DebriSat Panel 

Preparation and Fragment 

Characterization for the 

Period: FY17 Q3

Norman Fitz-Coy

Joe Kleespies

October 10, 2017
Las Cruces, NM



COE CST Seventh Annual Technical Meeting (ATM7)

October 10, 2017 2

Agenda

• Team Members

• Task Description

• Schedule

• Goals

• Task Discussion

• Conclusions and Future Work



COE CST Seventh Annual Technical Meeting (ATM7)

October 10, 2017 3

Team Members

• People

• Norman Fitz-Coy (PI)

• Joe Kleespies (Grad Student)

• Organizations



COE CST Seventh Annual Technical Meeting (ATM7)

October 10, 2017 4

Task Description

• Objectives:

• Implement “big data” management solution and 

procedures for archiving DebriSat’s data.

• Ensure all project data management 

requirements are satisfied.

• Evaluate and optimize the performance of the 

data management solution.

• Facilitate the transfer of DebriSat data to the 

project stakeholders.



COE CST Seventh Annual Technical Meeting (ATM7)

October 10, 2017 5

Schedule
Semester Tasks

Fall 2016

• Research viable database engines and storage methods.

• Install and configure new database engine.

• Define and document structure of new database engine and 

subsequent relational tables.

• Begin modification of the existing DCS front-end layer.

Spring 2017

• Complete modification of the existing DCS front-end layer.

• Implement new image and file storage structure.

• Begin addition of “3D” imaging system fields and formats.

Summer 2017 • Evaluate and optimize database engine performance.

Fall 2017

• Complete addition of “3D” imaging system fields and formats.

• Begin documentation of upgrade process and maintenance 

protocols.

Spring 2018
• Complete documentation of upgrade process and maintenance 

protocols.



COE CST Seventh Annual Technical Meeting (ATM7)

October 10, 2017 6

Goals

• Outcomes:

• Database solution used for the data 

management for DebriSat project.

• Database solution used for data management 

for similar “big data” projects.

• Relevance to FAA:

• Orbital debris modeling is critical to achieving 

better space traffic management.

• Archival database using “big data” framework 

for improved modeling of space debris.



COE CST Seventh Annual Technical Meeting (ATM7)

October 10, 2017 7

Task Discussion



COE CST Seventh Annual Technical Meeting (ATM7)

October 10, 2017 8

Task Description

• Answering the questions related to “What?”



COE CST Seventh Annual Technical Meeting (ATM7)

October 10, 2017 9

Orbital Debris Background
• 23,000+ objects, Iridium 33 – Cosmos 2251 collision was a big contributor.

• Current satellite breakup models based on the SOCIT series of laboratory

hyper-velocity impact (HVI) tests.

• Existing models work well for old satellites, less so for newer satellites with 

modern materials and processes.

Iridium 33

(560 kg)

0

20

40

60

80

100

120

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

N
u

m
b

e
r

Log10(A/M m2/kg)

A/M Distribution of Iridium 33 Fragments

NASA Breakup Model Prediction

SATCAT Data (17 September 2010)

0

0.05

0.1

0.15

0.2

0.25

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

N
u

m
b

e
r 

(N
o

rm
al

iz
e

d
)

Log10(A/M m2/kg)

A/M Distribution of Cosmos 2251 Fragments

NASA Breakup Model Prediction

SATCAT Data (17 September 2010)

Cosmos 2251

(900 kg)

Iridium 33

(560 kg)



COE CST Seventh Annual Technical Meeting (ATM7)

October 10, 2017 10

DebriSat Overview
• Test article designed and fabricated as a “representative” modern LEO 

satellite using modern materials and processes.

• Goal: Update existing satellite breakup models.

• Laboratory HVI test performed in April 2014.

• 56 kg representative LEO satellite

• Impact speed of 6.8 m/s (13.2 MJ)



COE CST Seventh Annual Technical Meeting (ATM7)

October 10, 2017 11

Post-HVI Process
• Fragment Detection:

• Prepare foam panels for X-ray imaging.

• Process X-ray images to detect 

embedded fragments.

• Fragment Extraction:

• Excavate fragments ≥ 2 mm in one 

dimension.

• Fragment Characterization:

• Assess fragment’s physical attributes 

(2D/3D, material, shape, and color).

• Measure fragment’s mass and sizes.

• Archive all fragment data, images, and 

associated metadata in database.

• Verify fragment’s database entry.



COE CST Seventh Annual Technical Meeting (ATM7)

October 10, 2017 12

Data Management Challenge
• Originally expected 85,000 debris fragments.

• Collected and recorded over 200,000 fragments to date (and still counting).

• 300+ data fields utilized for each debris fragment.

80K

90K

100K

110K

120K

130K

140K

150K

9/14/15 11/11/15 1/19/16 3/14/16 5/9/16 7/16/16 1/4/17 4/4/17

N
u
m

b
er

 o
f 

D
eb

ri
s

Date

Recorded Collected Initial Estimate index section imagerSoftwareVersion

project row mass_g

debrisId area temperature_C

revisionNumber foamGridLocation humidity_%

currentRevision primaryMaterial xDimension_mm

boxNumber secondMaterial yDimension_mm

creator thirdMaterial zDimension_mm

creationTimestamp shape characteristicLength_mm

verified identifyingColor volume_mm^3

verifier debrisType density_g/mm^3

verificationTimestamp foamAttached acsa_mm^2

source intactPart amr_mm^2/g

relatedFoam balanceType frontlitCapture

foamId balanceSoftwareVersion backlitCapture

foamType imagerType …



COE CST Seventh Annual Technical Meeting (ATM7)

October 10, 2017 13

Debris Categorization System
• Requirements:

• Record data from foam and debris.

• Guide user through post-impact process.

• Minimize human error.

• Maximize user efficiency.

• Ensure data perpetuity and integrity.
Bag Individual Debris, 

Label with Location

Asses Debris Material, 

Shape, Color, Size

Edit Debris Entry in 

DCS with new 

Assesments

Measure Debris Mass 

and Size

Edit Debris Entry in 

DCS with new 

Measurements

Retrieve a Bagged 

Debris Fragment

Begin Characterization

Extract or Collect 

Debris from Foam

Create New Debris 

Entry in DCS with 

Location Information

Verify Debris

Entry

Local Server – University of Florida Campus

Front-End User Interface

PHP Scripts to 

Query Data

HTML and 

JavaScript to Print 

Forms and Tables

Back-End Services

MySQL Database 

Foundation to 

Execute Queries

Task-Scheduled 

Windows Backup 

Service Daily

Network Attached Storage – University of Florida Campus

Remote Storage Shares to Store Period Backups 

Performed by Task-Scheduled Backup Service

Front-end, back-

end dichotomy.

Designed and

developed in 

parallel with the

post-HVI phase

procedures.



COE CST Seventh Annual Technical Meeting (ATM7)

October 10, 2017 14

Phases of DCS Implementation
• Two Phases:

• Rapid-Development Phase (initial)

• Get the system online and operational as fast as possible.

• Respond to frequent changes in requirements, data fields, etc.

• Operations Phase (current)

• Ensure all the project requirements are satisfied.

• Ensure data perpetuity and integrity.

• Make the system as maintenance-free as possible.

• Facilitate data transfer to stakeholder organizations.

HVI Test Rapid-Development Production



COE CST Seventh Annual Technical Meeting (ATM7)

October 10, 2017 15

Rapid-Development Phase
• Simple, convenient, quick design choices made.

• MySQL database engine used for simplicity.

• Rich data stored as dynamic links.

• Frequency changes to requirements, data fields

and processes mirrored in post-HVI workflow.

• Functional front-end interface and back-end

services implemented in 6 months.

Mass Measurement 

Graphical User 

Interface (GUI)

Microbalance

(BM-22)

Milligram 

Balance

(PGL 203)

Milligram 

Balance

(CY-510)

Arduino

Temperature and 

Humidity Sensors

ODBC

Conn.

DCS Back-End Layer

MySQL DB Engine



COE CST Seventh Annual Technical Meeting (ATM7)

October 10, 2017 16

Operations Phase
• Primary Goal: Ensure data perpetuity and integrity (i.e. ACID-compliant).

• ACID (Atomicity, Consistency, Isolation, Durability) used to describe the 

validity of database engine transactions.

• Indirect storage method for rich data implemented in rapid-development 

phase posed a risk to data perpetuity and integrity.

• Decision (requirements-driven) to implement direct BLOB storage.



COE CST Seventh Annual Technical Meeting (ATM7)

October 10, 2017 17

BLOB Storage in Industry
• Paper from Microsoft Research in 2006 concluded for files larger than 1 

MB, indirect storage was better; for files less than 256 kb, direct storage 

was better; in between it depends on the application.

Facebook: Haystack and f4 warm BLOB storage (hybrid)

Twitter: Blobstore (indirect)

Azure: BLOB storage provider, different types of BLOBs (hybrid)

SharePoint: Storage bins and FILESTREAM (direct)

• Storage method decisions are requirements-driven.

• Almost all of the major companies use custom, hybrid solutions.

• Facebook and Twitter don’t necessarily require data perpetuity.



COE CST Seventh Annual Technical Meeting (ATM7)

October 10, 2017 18

Performance Concerns

• Direct BLOB storage and incur significant query performance impacts.

• Example:

• Copied data from between 

rapid-development version to 

production version.

• Exponential-like query execution

time while inserting data.

• Time to finish copy became

prohibitively high.



COE CST Seventh Annual Technical Meeting (ATM7)

October 10, 2017 19

Performance Solutions
• After analyzing the database engine status, noticed a majority of query 

execution time was consumed by full database-wide scan for rows.

• Column indexing eliminates full-database scans for queries using 

indexed columns in their WHERE clauses.

• Front-end user interface could be optimized by writing clever queries 

leveraging structures like INNER JOIN and avoiding database-wide scans.

Consistently low query execution

time for same data transfer

example after column indexing.

Use of clever SQL “tricks” can be

used to mitigate negative

performance impact from direct

BLOB storage.



COE CST Seventh Annual Technical Meeting (ATM7)

October 10, 2017 20

Conclusions and Future Work
• Debris Categorization System (DCS) was designed, developed, and 

implemented in two distinct stages with different goals.

• Rapid-development phase was necessary because the requirements and 

structure of the DCS changed frequently and mirrored changes in the 

physical post-impact phase procedures.

• The goals of the operations phase were primarily to address the 

shortcomings of quick and convenient design choices in the rapid-

development phase.

• Direct BLOB storage was chosen to ensure data perpetuity and integrity 

per the requirements of the DebriSat project.

• Various SQL “tricks” were employed to mitigate the negative performance 

impact of direct BLOB storage.


