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Abstract— Quite some research has been done on Reinforce-
ment Learning in continuous environments, but the research
on problems where the actions can also be chosen from a
continuous space is much more limited. We present a new
class of algorithms named Continuous Actor Critic Learning
Automaton (CACLA) that can handle continuous states and
actions. The resulting algorithm is straightforward to implement.
An experimental comparison is made between this algorithm and
other algorithms that can handle continuous action spaces. These
experiments show that CACLA performs much better than the
other algorithms, especially when it is combined with a Gaussian
exploration method.

I. INTRODUCTION

Reinforcement Learning (RL) can be used to make an agent

learn to interact with an environment. The goal is to optimize

the behavior of the agent in respect to a reward signal that

is provided by the environment. The actions of the agent can

also affect the environment, complicating the search for the

optimal behavior. RL can be used to find solutions for Markov

Decision Processes (MDPs). For a detailed introduction in the

field of RL, see the book by Sutton and Barto [1].

In conventional RL, only MDPs with finite sets of actions

are considered. However, in many real-world applications an

a priori discretization of the action space is not very useful.

Some parts of the action space may be much more important

than others, requiring a very fine grained discretization to

reach good solutions. Furthermore it may not be evident at

first exactly what these important regions of the action space

are. Also, when the action space is discretized, it is hard to

generalize from past experiences and learning may be slow

when the resulting discrete action space has many elements.

To avoid these problems, we will look at algorithms capable

of dealing with real continuous action spaces.

We will present the Continuous Actor Critic Learning Au-

tomaton (CACLA) algorithm, which has all the characteristics

that we think are important for a continuous state and action

space RL algorithm. These characteristics are: (1) The ability

to find real continuous solutions; (2) Good generalization

properties and (3) Fast action selection. Though we will not

do so in this paper, CACLA is easily transformed into a batch

algorithm with similar properties.

The CACLA algorithm is model-free, which we think is a

good property to have since we do not want to assume the

agent has an a priori model of the environment and we do

not want to wait until the agent has built a model before it

starts learning. Also, in some cases finding a good model for

a real-world process can be hard, while the optimal behavior

is in fact quite simple. Consider a situation where the agent

can only choose between two actions, one of which is clearly

inferior. A model-based approach would possibly require a lot

of exploration just to construct a rough model before choosing

the correct action, whereas a model-free approach will find the

correct behavior after just a few observations. Furthermore,

constructing a good model in continuous state and action

spaces can be even harder, because of the added complexity

of the need for good generalization and exploration while

retaining the information gathered from earlier observations.

This paper will only discuss online algorithms and will

therefore not cover batch algorithms for similar problems. This

automatically excludes batch algorithms such as Episodic Nat-

ural Actor Critic [2] and Neural Fitted Q Iteration [3]. Since

CACLA is easily extended to a batch algorithm, in the future

it may be interesting to compare a set of batch algorithms

including the aforementioned ones to the batch version of

CACLA. We also make this distinction since online algorithms

have different properties than batch algorithms, such as better

performance in dynamic environments and a faster learning

slope. Batch algorithms on the other hand can potentially

perform better in problems with few observations, for instance

when simulations are (computationally) expensive or when

dealing with actual physical objects instead of simulations.

In section II we give a short summary of RL. In section

III we extend RL to continuous situation and action spaces.

CACLA and the algorithms used to compare CACLA to are

presented in section IV. The experiments we conducted are

described in section V after which the results are given in

section VI. Section VII concludes this paper.

II. REINFORCEMENT LEARNING

RL can be used to solve problems that can be modeled as

an MDP. In this section we will show how an agent can learn

to solve such problems. An MDP can be viewed as a tuple

(S,A,R, T ) where:

• S is the set of all states and st ∈ S is the state the agent

is in at time t.
• A is the set of all possible actions and at ∈ A is the

action the agent performs at time t.
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• R : S × A × S → IR is the reward function that maps

a state st, an action at and the resulting state st+1 into

a reward R(st, at, st+1). This reward is known to the

agent when reaching the state st+1. We use rt to denote

the possibly stochastic reward drawn from a distribution

with mean R(st, at, st+1).
• T : S × A× S → [0, 1] is the transition function, where

T (s, a, s′) gives the probability of arriving in state s′

when performing action a in state s.

A. Values and Q-Functions

An agent can learn by storing values for each state or for

each state-action pair. State values, denoted by V (s), represent

the cumulative discounted reward that the agent expects to

receive in the future after reaching state s. State-action val-

ues, denoted by Q(s, a), represent the cumulative discounted

reward it expects to receive after performing action a in state

s. The goal for the agent is to learn an action selection policy

π : S×A→ [0, 1] that optimizes the cumulative reward. Here

πt(s, a) gives the probability of selecting action a in state s
at time t. Formally, starting at time t, we want the agent to

optimize the total discounted reward:

rt + γrt+1 + γ2rt+2 + . . . =

∞
∑

i=0

γirt+i

where 0 ≤ γ ≤ 1 is a discount factor. We regard the discount

factor as part of the algorithm and not of the MDP, since some

algorithms perform much better with specific discount factors,

while other algorithms require different discount factors for

optimal performance. Of course, a different discount factor

can mean a different optimal policy, which is why we measure

performance in average reward and not in discounted reward.

Let Qπ and V π denote the Q-function and state value

function corresponding to some policy π. We denote the

optimal policy by π∗ and its corresponding state and state-

action values by V ∗ and Q∗. There is always at least one

optimal policy. We then have:

maxa Q∗(s, a) = V ∗(s) = maxπ V π(s)
∀s ∈ S : π∗ = arg maxπ V π(s)

B. Learning the Values

We know that the value function corresponding to the

optimal policy will have the following property:

V ∗(s) = max
a

∑

s′

T (s, a, s′)
(

R(s, a, s′) + γV ∗(s′)
)

(1)

which is called the Bellman optimality equation for V ∗ [4],

[1]. The transition function T is usually not known. The values

can then be updated using Temporal Difference (TD) learning

[5]:

Vt+1(st) = Vt(st) + αtδt , (2)

where δt is the TD-error, defined as rt + γVt(st+1)− Vt(st)
and 0 ≤ αt ≤ 1 is a learning rate. It has been proven that when

these values are stored in a table, using update (2) will result

in convergence of the values to the actual expected returns for

a fixed policy [5], [6]. Convergence to the optimal policy has

been proven under certain conditions for variants of this update

using Q-values instead of state values, such as Q-Learning [7]

and SARSA [8], [9]. These Q-values are dependent on states

and actions instead of just states.

III. CONTINUOUS SPACES

First a short introduction in handling continuous state spaces

will be given. This is a relatively well known field, where a lot

of work has already been done. Then we will continue with

the harder problem of continuous action spaces.

A. Continuous State Spaces

When the state space is continuous, parametrized function

approximators (FAs) can be used to store the value of observed

states and generalize to unseen states. The update is then per-

formed on the parameters of the FA. We used neural networks,

whose weights are then the parameters. Let θV denote the

parameter vector of an FA. The update rule corresponding to

Temporal Difference (TD) learning is derived from update (2):

θV
i,t+1 = θV

i,t + αδt
∂Vt(st)

∂θV
i,t

(3)

Here θV
i,t is the ith component of vector θV at time t and Vt(s)

is the output of the FA at time t with state s as input. These

methods have been extensively studied. See for instance the

book by Bertsekas and Tsitsiklis [10].

B. Continuous Action Spaces

A harder problem is to extend RL to continuous action

spaces. Even if we have a good approximation of the value

function, we still have the problem that we cannot trivially

find the action that corresponds to the highest value, in a given

state. Therefore, we would like an algorithm to quickly output

an approximation of the optimal action, given a certain state.

For this again an FA can be used. The question then becomes

how to improve this approximation.

In section IV we show some possibilities to apply RL to

real continuous action spaces. First some considerations on

exploration in continuous action spaces are given.

C. Exploration

Exploration is crucial in RL, since it is the only way to

discover new and better policies. We discuss two methods

for exploration in continuous spaces. The first method of

exploration is ǫ-greedy exploration. An exploratory random

action is selected with probability ǫ and the greedy, current

approximation for the optimal action is selected with proba-

bility (1 − ǫ). It is then possible to decrease exploration by

simply decreasing the factor ǫ.

The second method of exploration is Gaussian exploration

around the current approximation of the optimal action. The

action that is performed is sampled from a Gaussian distribu-

tion with the mean at the action output of the algorithm we
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are using. When Act(st) denotes the action that the algorithm

outputs at time t, the probability of selecting action a is:

πt(st, a) =
1√
2πσ

e−(a−Act(st))
2/(2σ2)

Here πt(s, a) denotes the policy, while π denotes the mathe-

matical constant.

IV. CONTINUOUS ALGORITHMS

In this section we will describe RL algorithms that can

handle problems with both continuous state and action spaces.

First we will present a new algorithm, then we will describe

two older algorithms.

A. Continuous Actor Critic Learning Automaton

The Actor Critic Learning Automaton (ACLA) algorithm

is a new algorithm that is easily extendable to continuous

spaces. First we consider the tabular case with discrete states

and actions. One table stores the values of the states. These

can be updated with the TD-learning update (2). Another table

stores the probabilities of performing each action for all states.

The values of the states converge to the actual discounted

future rewards, given the current policy. If performing some

action results in a positive change for the value of a state, then

that action could potentially lead to a higher discounted future

reward and thus to a better policy. Therefore, we reinforce that

action. In pseudo-code we get:

IF δt > 0 : increaset(πt(st, at)) (4)

Here increaset(π(st, at)) increases the probability of selecting

action at in state st. The probabilities for other actions in state

st are scaled down accordingly. Note that we do not decrease

the probability of at when δt < 0. A version that also used

negative feedback to adjust the action selection probabilities

is possible in the tabular case. However, when we extend the

algorithm to continuous action spaces, the resulting algorithm

makes more sense when just using the positive feedback. A

comparison between these algorithms will be given in the

experimental section.

The main difference that distinguishes the ACLA algorithm

from conventional actor critic systems is that ACLA only uses

the sign of the TD-error to determine the update to the actor,

as opposed to using the exact value of the TD-error. This

approach has several advantages. The algorithm is easy to

implement and to extend to continuous actions. The learning

parameter of the actor in Continuous ACLA (CACLA) is

invariant to different scalings of the reward function. The al-

gorithm is robust with regard to learning interference. Further,

our experimental results will show that the continuous version

outperforms other algorithms in continuous action spaces.

To extend the algorithm to continuous spaces, we can just

replace the tables by FAs that output the value and the action

that needs to be performed, given a certain state. The update

to the critic FA is simply equation (3). Denoting the output of

the actor FA at time t as Act(st) and its parameter vector as

θAc, the update to the parameters of the actor is:

IF δt > 0 : θAc
i,t+1 = θAc

i,t + α(at − Act(st))
∂Act(st)

∂θAc
i,t

The actor learns to output something more similar to action at

in state st if the value of the state is increased. The actor is not

updated when the value is not increased. The reason for this

is that when also negative updates are allowed, the algorithm

will update away from the last action, which was perceived as

bad. However, this is equivalent to updating towards some

unknown action, which is not necessarily better than our

present approximation of the optimal action. We might have

discovered that at is not perfect, but we do not yet know of

any better alternatives.

To stress the effects of actions that improve the value more

than usual we can extend the update. First, a running average

of the variance of the TD-error is stored:

vart+1 = (1− β)vart + βδ2
t ,

Using this variance, we can determine if an action was

exceptionally good. We link the number of updates towards

an action to the number of standard deviations that the target

value lies above the old value. The number of updates then

is ⌈δt/
√

vart⌉. When δt ≤ 0 no updates will be performed.

Note that var0 should not be set too low compared to usual

values of δ, since this could lead to too many updates early

in learning. We used var0 = 1 and β = 0.001.

We shall refer to the algorithm that uses the variance as

CACLA+Var. The algorithm that always updates at most once

will be referred to as CACLA. We will also use CACLA to

refer to the algorithm in general.

In the broadest sense, CACLA is an Actor Critic method,

since it uses the value of δt to update its actor. A similar class

of algorithms named Continuous Actor Critic (CAC) systems

use a less step-wise update, linearly relating the size of the

update to the size of δt. In Fig. 1 we compare these algorithm

graphically. Note that the unit for the x-axis is δt/stddevt,

where stddevt =
√

vart is the average standard deviation of δt.

This is clearly a function of δt, though we have no knowledge

of earlier Actor Critic algorithms using a similar function.

In Fig. 1 the line labeled CAC is an example of how

a CAC system might update on a specific time step. Since

the x-axis is dependent on stddevt, on another time step the

same CAC system may have a corresponding line with a

steeper, or less steep slope. A special case where this does

not happen is shown as CAC+Var. This CAC system is in

between CACLA+Var and CAC in that it does use δt/stddevt

to determine its update, but it does not update in steps. Rather

CAC+Var updates the actor with a learning rate linearly

dependent on the size of δt/stddevt.

The figure makes clear that the precise value of δt is not

important for CACLA, only its sign matters. The update of

CACLA+Var increases in steps with each standard deviation.

In practice this means that CACLA+Var will update once
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Fig. 1. Comparing CALCA with Continuous Actor Critic (CAC) methods.

The unit δ̂t of the x-axis is defined as the TD-error divided by the standard

deviation of that error: δ̂t = δt/stddevt. Since CAC is dependent only on δt

and not on stddevt, in fact the line of CAC in the figure is only an example
and it can be steeper or less steep on different time steps.

approximately 65% of the time, twice 30% of the time and

more than twice 5% of the time.

In discrete action spaces, conventional Actor Critic (AC)

methods attempt to optimize the performance of the policy in

terms of the value function. The algorithm described as ACLA

is slightly different in its behavior, because it uses less of the

available information from δt. Consider a stochastic setting

with two possible actions a1 and a2 in a state s. The follow-

ing table lists the transition probabilities and corresponding

rewards and discounted values of the next states:

a T (st, a, st+1) rt γVt(st+1) Vt(st) δt

a1 0.1 −100 −100 0 −200
a1 0.9 10 10 0 20
a2 0.1 100 100 0 200
a2 0.9 −10 −10 0 −20

In such a setting, the expected update of ACLA increases

the probability of selecting a1 and therefore decreases the

probability for a2, because the probability of a positive δt

is higher for a1. However, the expected value of δt is in fact

lower for a1 than for a2. Instead of learning a policy that

optimizes the size of δt, ACLA learns the policy that optimizes

the probability of receiving a positive δt. This implies that

convergence to sub-optimal policies is possible for ACLA in

environments with stochastic transitions. It can be shown that

this problem does not occur in deterministic environments.

The behavior of CACLA when compared to ACLA differs

slightly, because CACLA does not change independent prob-

abilities of actions, but instead updates towards an action that

has been found to be better than the present approximation for

the optimal action. As we will show in our experiments, faster

convergence to good policies can be obtained using CACLA

than using CAC even though the experiments feature stochastic

transitions due to noisy interactions with the environments.

B. Wire Fitting

Baird and Klopf propose the Wire Fitting (WF) algorithm,

which efficiently stores an approximation of the complete Q-

function [11]. They propose using a function approximator to

output a fixed number of actions and corresponding values,

given a certain state. Each action and corresponding value are

output independently and concurrently. The outputs can be

interpolated if the value of an interlying action is required.

The interpolation function is given as follows:

f(s, a) = lim
ε↓0

∑n
i=0

qi(s)
||a−ai(s)||2+ci(qmax(s)−qi(s))+ε

∑n
i=0

1
||a−ai(s)||2+ci(qmax(s)−qi(s))+ε

= lim
ε↓0

∑n
i=0 qi(s)/di(s, a)
∑n

i=0 1/di(s, a)

= lim
ε↓0

wsum(s, a)/norm(s, a) ,

where (s, a) is the state-action pair of which the value is

wanted. Time indicating subscripts are left out for increased

legibility. n is the number of action-value pairs output and

ai(s) and qi(s) are the outputs corresponding to the ith

action and action-value for this state, respectively. qmax(s)
def
=

maxj qj(s) is the maximum of all qi. ci is a small smoothing

factor and ε prevents division by zero. Given a state and

an action, the interpolation gives a weighted average of the

different values, depending on the distance of the given action

to the output actions on this particular state. The results for

our experiments were obtained when using c = 10−3 and

9 wires. This makes the WF algorithm computationally by

far the most expensive algorithm. Using more wires did not

increase performance levels, while using less wires resulted in

slightly worse performance.

Consider that an agent using WF has an experience:

(st, at, rt, st+1). We will now explain how this experience is

used to update the system. As mentioned, in this algorithm

the output of the interpolation is to be interpreted as the value

of a given state-action pair, which we shall denote as Q(s, a).
Let θ

aj

i denote the parameters of the function approximator

that outputs action aj . The following update will change these

parameters according to gradient descent on the error of the

value:

θ
aj

i ←θ
aj

i +α(rt+γ max
b

Q(st+1, b)−Q(st, at))
∂Q(s, a)

∂aj

∂aj

∂θA
i

Where:

∂Q(s, a)

∂aj
= lim

ε↓0

2(wsum(s, a)− norm(s, a)qj)(aj − a)

(norm(s, a)di(s, a))2

A similar update can be done for the parameters of the function

approximators that output the values. Then we use:

∂Q(s, a)

∂qj
= lim

ε↓0

norm(s, a)(di(s, a) + qjc)− wsum(s, a)c

(norm(s, a)di(s, a))2

Because of the nature of the interpolator, the action with

the highest value is always amongst the ones output by the

function approximator. This means that to find this action we

do not have to use the interpolation function. We just select
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the action with the highest corresponding value. This results in

fast action selection. In a fully trained system with a low error

between experienced action-value pairs and the interpolation

output, we can assume that this is the optimal action, though

convergence guarantees can not be given.

The approach is called Wire Fitting, because essentially the

interpolation function describes a surface in S×A× IR space,

which is draped, so to say, over wires defined by the outputs of

the function approximator. Because the whole value function

is approximated, using enough outputs, the system can reach

any real valued optimal policy, generalize well, while allowing

fast action selection.

C. Gradient Ascent on the Value

Prokhorov and Wunsch described Adaptive Critic Designs

of which we implemented a version of their Action Dependent

Heuristic Dynamic Programming (ADHDP) algorithm [12].

Since more similar algorithms exist, we will use the more

general name of Gradient Ascent on the Value (GAV). The

algorithm uses a single actor function approximator to output

the optimal action, given a state. We shall denote the output

of the actor at time t as Act(s). When this action is selected,

the Q-value can be determined using a critic function approx-

imator that outputs the Q-value given a state and action.

The following continuous version of Q-Learning handles the

updates to the parameters of the critic function approximator.

An update can be made after each experience of a state, action,

reward and new state:

θQ
i = θQ

i +α(rt+γ max
a

Qt(st+1, a)−Qt(st, at))
∂Qt(st, at)

∂θQ
i

(5)

Training the actor function approximator is only slightly more

complex. We need to find a target towards which we can train

the output of the actor, given a certain state. For this we can

use gradient information to determine how the value function

would change if the action is changed locally. The gradient

information of the value can be propagated back immediately

to the parameters of the actor. Calling the parameters of the

actor θAc, this results in the following update:

θAc
i ← θAc

i + α
∂Qt(st, at)

∂Act(st)

∂Act(st)

∂θAc
i

(6)

So in summary, an update consists of a gradient descent update

on the TD-error of the output value for the critic function

approximator and a gradient ascent update on the Q-value for

the actor function approximator. A potential problem lies in

the backpropagation of the value through the critic. When the

critic is not yet fully trained, the gradient information on the

value will not always be accurate. This can lead to divergence.

In the original ADHDP algorithm, an update was made to

the actor every time step. Our adaptation consists of slowly

increasing the probability for an update to the actor’s param-

eters during learning. This prevents early divergence of the

actor function approximator due to the incorrect early gradient

information provided by the critic. In our experiments, the

probability of an update being performed was (1−p), where p

decreases exponentially from 1 to 0.01 by multiplication with

a constant. Some experiments with both the original algorithm

and the version we just described showed the adaptation

performed significantly better.

Prokhorov and Wunsch note that they did not get ADHDP

to work on one of their problems [12]. They propose using

similar algorithms that do solve that problem and should

have better performance on other problems. However, these

algorithms require that the agent knows the reward function

or a model of the environment. Because we do not want to

assume such knowledge, we do not discuss these algorithms.

V. EXPERIMENTAL SETUP

Now we will describe the experimental setup we used to test

the algorithms. The experiments were a Tracking experiment

and a Cart Pole experiment. A comparison between CACLA

and CAC was performed, but only in the cart pole setting.

Because these results showed that CACLA outperforms CAC,

the latter was not included in the comparison with WF, GAV

and a random policy. All experiments were run with discount

factors of 0.0, 0.8, 0.9, 0.95 and 0.99. Gaussian noise was

added to the actions and reward since noisy interactions are

inevitable in most real-world applications.

When using ǫ-greedy exploration, the exploration rate (ǫ)

was exponentially dropped by multiplication with a constant

from 1 - a random action every time step - to 0.01 - a

probability of 0.01 to perform a random action. Setting the

decay of exploration higher or lower did not result in better

performance for any of the algorithms. When using Gaussian

exploration, the standard deviation for the distribution was 0.1.

Different settings were not tried. In contrast with the ǫ-greedy

exploration described above, this exploration did not decay.

For all FAs used by the algorithms, we used feedforward

neural networks with 12 hidden neurons. Preliminary tests

showed the number of hidden neurons did not severely affect

performance. In both experiments, the components of state

and action vectors and the rewards were linearly scaled to fall

within the [−1, 1] interval, essentially scaling the inputs and

expected outputs of the neural networks to this interval. The

activation function of the hidden layer of the networks was

a sigmoidal function IR → [−1, 1]. The output layer used a

linear activation function. The learning rate for the weights

of the networks was 0.01 in all cases. Different settings for

the learning rates did not increase performance for any of the

algorithms in preliminary testings.

A. Tracking

In this experiment the objective is to get an agent to follow a

target. The positions of the agent and the target are real valued

two dimensional vectors ∈ [0, 10]2. The state description is a

four dimensional vector ∈ [0, 10]4 containing the positions

of the agent and the target. The actions are two dimensional

vectors ∈ IR2, which represent the goal position for the agents.

The components of the action need not be in the [0, 10]
interval, though the agent can never actually step outside

the 10x10 area. The reward that should be maximized is the
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Fig. 2. Tracking agent. The circle represents the movement of the target.
The rectangular shape represents the obstacle. The target is allowed to pass
through it, but the agent is not.

negative squared distance between the learning agent and the

target. The movement of the target is shown in Fig. 2. The

target takes 40 time steps to return to its initial position. Also

an obstacle is shown that the target can pass through. However,

the agent cannot and therefore needs to find a way around it.

When an agent tries to step outside the area or through the

obstacle, the agent’s new coordinates will be the place where

it would hit the boundary, assuming a continuous straight

trajectory. Gaussian noise was added to the actions and reward

with a standard deviation of 0.1. The initial position of the

agent and the target were (5.0, 5.0) and (1.0, 4.5), respectively.

B. Cart Pole

This problem involves a cart that stands on a one dimen-

sional track. The goal is to balance a pole on top of the cart

by pushing the cart left or right. Also the cart must not stray

too far from its initial position. The state description to the

RL agent consists of a four dimensional vector containing the

angle φ and (radial) speed of the pole φ′ = ∂φ/∂t and the

position x and speed x′ = ∂x/∂t of the cart. The action of

the actor consist of a real valued force that is used to push the

cart. A positive force results in pushing the cart right, while a

negative value results in pushing the cart left.

The weights of cart and pole are 1.0 kg and 0.1 kg

respectively. The length of the pole is 1 m and the duration

of one time step 0.1 s. The reward is calculated as follows:

rt =

{

1 if |φ| < 1
15π and |x| < 1

−1 otherwise
(7)

This reward function gives a reward of −1 on failure and a

reward of 1 on all other time steps. Failure is defined as a state

where the angle of the pole is more than 12 degrees in either

direction, or the cart is further than 1 meter from its initial

position. Using this reward function forces the algorithms to

look ahead, since the reward function gives little information

on how good the current situation in fact is.

When one of the conditions for failure was reached, the

system was reset to x = 0, x′ = 0, φ′ = 0 and φ = x, where

x is a random number in the interval [−0.05, 0.05]. This was

also the initial state of the system.

TABLE I

TRACKING RESULTS. THIS TABLE GIVES THE RESULTS AFTER 102400

TIME STEPS. RANDOM GAUSSIAN NOISE WAS ADDED TO ACTIONS AND

REWARDS WITH A STANDARD DEVIATION OF 0.1. AVERAGED OVER 20

SIMULATIONS.

ǫ-greedy

γ mean std dev

WF 0.80 0.861 0.056

GAV 0.00 0.783 0.163

CACLA 0.95 0.829 0.012

CACLA+Var 0.90 0.843 0.014

RND 0.00 0.467 0.020

Gaussian

WF 0.00 0.816 0.261

GAV 0.95 0.088 0.265

CACLA 0.95 0.922 0.011

CACLA+Var 0.80 0.938 0.011

RND 0.00 0.467 0.020

VI. RESULTS

Next we will present the final results, which were obtained

after 102400 time steps of learning. Also the performance

at the intermediate steps is discussed. We give the discount

factor that resulted in the best average results along with the

results. For the settings of other parameters a coarse search was

performed. The results presented below are from experiments

with added random noise. Conducting the same experiments

without this noise resulted in similar results.

First we present the results comparing CACLA to WF, GAV

and the random policy. Then, we show the results of the

comparison of CACLA and CAC on the cart pole task.

A. Tracking

In Table I the results for the Tracking experiment are shown.

Fig. 3 shows intermediate results during training. The y-axis

represents a running average of the rewards. The CACLA

algorithms in combination with Gaussian exploration perform

significantly better than the other algorithms, as can be seen in

the right half of the plot in Fig. 3. Furthermore, the CACLA

algorithms find good solutions very quickly.

B. Cart Pole

As can been seen in Fig. 4 and Table II, in this experiment

the CACLA algorithms outperform the other algorithms for

both types of exploration. Again, the results for CACLA with

Gaussian exploration are better than with ǫ-greedy exploration.

The differences with the other algorithms are significant. As

can be concluded from Table II, the CACLA algorithms

managed to learn to balance the pole perfectly in every

simulation when using Gaussian exploration, also for higher

discount factors than the ones given in the table. The duration

of 100 s corresponds to 1000 actions. In Fig. 4 we see that

good solutions are found very fast, especially by CACLA+Var.
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Fig. 3. Tracking results. Average intermediate rewards are plotted against
the number of training iterations. Results with ǫ-greedy exploration are shown
on the left. The results on the right were obtained with Gaussian exploration.
Random Gaussian noise was added to actions and rewards with a standard
deviation of 0.1. Averaged over 20 simulations. GAV is not visible in the right
plot, because its performance is too low.

TABLE II

CART POLE RESULTS. THE TABLE GIVES THE PERCENTAGE OF TRIALS

THAT ENDED WITH A SOLUTION THAT CAN BALANCE THE POLE FOR AT

LEAST 100 S. RANDOM GAUSSIAN NOISE WAS ADDED TO ACTIONS AND

REWARDS WITH A STD DEV OF 0.3. 20 SIMULATIONS WERE PERFORMED.

ǫ-greedy Gaussian

γ success γ success

WF 0.80 10 % 0.80 0 %

GAV 0.00 15 % 0.80 20 %

CACLA 0.95 40 % 0.80 100 %

CACLA+Var 0.99 80 % 0.95 100 %

RND 0.00 0 % 0.00 0 %

Finally, we present some results comparing the different

versions of CACLA and CAC. In Table III the results are

given. Fig. 5 shows the corresponding intermediate results.

The results for CACLA differ from Fig. 4 because these were

obtained with γ = 0.9 instead of γ = 0.8, showing that though

the final behavior is in both cases perfect, intermediate results

are somewhat better with γ = 0.9.

It is clear that CACLA and CACLA+Var with only posi-

tive updates perform the best of all algorithms. Once again,

CACLA+Var learns the fastest. When also negative updates

are performed, all algorithms except CAC+Var perform worse.

The most striking difference is in the case of CACLA, which

performs so bad that it is not even visible on the right in

Fig. 5. The algorithm never succeeds in balancing the pole for

100 seconds and it even diverges to solutions where it topples

the pole with every action in some cases. CAC, CAC+Var

and CACLA+Var suffer less from the updates when δt < 0.

However, they do not reach as good solutions as CACLA and
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Fig. 4. Cart Pole results. Average intermediate rewards are plotted against
the number of training iterations. Results with ǫ-greedy exploration are shown
on the left. The results on the right were obtained with Gaussian exploration.
Random Gaussian noise was added to actions and rewards with a standard
deviation of 0.3. 20 simulations were performed.

CACLA+Var when only positive updates are performed. It

can be noted that the performance of CAC+Var is significantly

better than that of CAC when updates are done every time-

step.

When comparing CAC and CAC+Var to WF and GAV

by comparing Fig. 5 with Fig. 4, we see that when CAC

and CAC+Var only use positive updates, they reach better

solutions than both WF and GAV do. However, because the

CACLA algorithms significantly outperform the CAC algo-

rithms, we did not extensively study this comparison.

The reason that CAC+Var performs better than CAC most

probably lies in the fact that CAC+Var is less sensitive to

variations in the reward feedback. By using an approximation

of the variance to scale the learning rate, the algorithm

becomes less sensitive to noise. Also CACLA, CACLA+Var

and CAC+Var will be able to maintain the same level of

performance when the reward function is linearly scaled. CAC

will require a new search for the optimal learning rate in

such a case. In our experiments, preliminary experiments

were performed with different learning rates, but no algorithm

performed better with other settings than 0.01. When the

reward function is scaled ×100, the learning rates for the

actor of CACLA, CACLA+Var and CAC+Var can still be

set to 0.01. However, in the case of CAC performance will

deteriorate unless we scale the learning rate down.

The invariance to the precise size of δt of the new al-

gorithms in this paper has another advantage. In almost all

cases, the performance of CACLA and CACLA+Var barely

decreases when higher discount factors are chosen. In most

cases performance at γ = 0.95 or γ = 0.99 is only slightly

worse than at γ = 0.9. In some cases, it is even better at

those higher discount factors. For the other algorithms, this

was not the case. This makes sense when considering the
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TABLE III

CART POLE RESULTS. THE TABLE GIVES THE PERCENTAGE OF TRIALS

THAT ENDED WITH A SOLUTION THAT CAN BALANCE THE POLE FOR AT

LEAST 100 S. RANDOM GAUSSIAN NOISE WAS ADDED TO ACTIONS AND

REWARDS WITH A STD DEV OF 0.3. 20 SIMULATIONS WERE PERFORMED.

Update only when δt > 0 Update always

γ success γ success

CACLA 0.90 100 % 0.90 0 %

CACLA+Var 0.95 100 % 0.90 80 %

CAC 0.90 50 % 0.90 45 %

CAC+Var 0.99 60 % 0.90 60 %
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Fig. 5. Cart Pole results for CAC and CACLA. Average intermediate rewards
are plotted against the number of training iterations. The results on the right
are obtained when updating the algorithms only when δt > 0. For the results
on the left, the actor was updated every time step. All results were obtained
with Gaussian exploration. Random Gaussian noise was added to actions and
rewards with a standard deviation of 0.3. 20 simulations were performed.

impact of a higher discount factor on the value function. When

the discount factor is higher, the values will also be. The

algorithms using the variance of δt to scale their learning rates

are invariant to this scaling of the value function. The other

algorithms show decreasing performance for larger discount

factors, usually peaking at discount factors of 0.8.

VII. CONCLUSION

We have presented a new class of algorithms named Con-

tinuous Actor Critic Learning Automaton (CACLA) for the

RL framework that we extended to handle problems that

involve continuous state and action spaces. In continuous

Tracking and Cart Pole experiments the performance of this

algorithm was very good when compared to the performance

of two other algorithms that can handle continuous states and

actions. This is interesting, because the algorithm is relatively

simple to implement and its computational requirements are

low. A similar class of algorithms named Continuous Actor

Critic (CAC) systems was defined and found to be inferior in

performance to the CACLA algorithms.

More specifically, the performance of CACLA with Gaus-

sian exploration was unequaled when considering the rate of

convergence as well as the final performance. Added noise did

not severely hinder the performance of the algorithm, showing

that it is resistant to noisy interactions with an environment.

CACLA and CAC only update when the TD-error is

positive. Also considering negative updates may allow more

updates to the actors of the algorithms, but was shown to

result in worse behavior. The main difference between CAC

and CACLA lies in their intended optimization. CAC tries to

optimize the policy in terms of δt, while CACLA optimizes

the probability of positive δt. This approach increases learning

rates, especially in areas where δt is relatively small.

An extension to the CACLA and CAC algorithms was

presented that uses the variance δt to determine if an update

has been significantly large. This version performs slightly

better than the versions of the algorithms that treat all updates

equally. We updated the variance as one running average over

all visited states. However, the true variance of states may

differ greatly. Probably better results can be obtained when

an approximation of the current variance is stored per state.

A function approximator could be used that maps states to

approximations of the variance of δt.
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