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1 Introduction

The notion of productivity is central in many respects, whether viewed locally or globally.
Indeed, whatever topic we take, one can often arrive at a point related to some sort of produc-
tion, and whenever there is production (i.e., some inputs get converted into some outputs),
there is also the notion of productivity. The notion of productivity also goes well beyond
economics. For example, from physics we know that various particles produce various types
of radiation, e.g., light, which further leads to (and can be used for) production of heat,
electricity, etc. From biology, we know that living things are persistently trying to produce
something (at least themselves) to exist and, possibly, even prosper—this includes plants,
viruses, bacteria, animals and of course us, humans. The latter (humans) even study pro-
duction and productivity, trying to understand how to measure it well, how to analyze and
explain it, and also writing various books and articles about it, such as this one. Some (in-
cluding the author of these lines) also come to the conclusion that productivity is among the
most important aspects in this world. Not surprisingly, the Nobel Laureate, Paul Krugman
said about it very eloquently and succinctly: “Productivity isn’t everything, but in the long
run, it’s almost everything...” (Krugman (1997)).

The importance of productivity has also been vividly seen from the Covid-19 pandemic:
if the virus’ basic reproductive rate (so-called R0, which can be also viewed as a measure of
productivity for a virus) is above 1, the virus prospers, while its potential hosts may try to
subdue it with various measures to drive it below 1 in the hopes it will eventually degenerate
to non-existence or at least to not being a big issue. In a similar sense, one may expect
that for humanity to prosper in certain aspects, the productivity for those aspects should
also be sustained above certain levels. In turn, such importance of productivity implies the
importance of accurate measurements and adequate analysis of productivity, as well as its
relative version, usually referred to as production efficiency.

Given such importance, it would not be surprising if the origins of the notion of productiv-
ity is as old as this world and so can hardly be traced to a person who was the first to study it.
Perhaps our colleagues from our very diversely rich international community of researchers
on productivity and efficiency can find some such traces in the works of their famous ancient
scholars (Imhotep, Baudhayana, Pythagoras, Euclid, Confucius, Liu Xin, Ptolemy, Al-Kindi,
Al-Khwarizmi, to mention a few). What I accidentally discovered recently is that the notion
of productivity, and the desire to conduct productivity analysis in particular, appears to be at
the very origin of the word econometrics. Indeed, Ragnar Frisch, who is usually regarded as
the ‘father of econometrics’ and, sometimes, as the one who coined the word econometrics, in
his Econometrica note (1936, Volume 4, Issue 1) acknowledged that this word was proposed
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by Pawel Ciompa (1867-1913) in his book (in German) “published in Lwow (Lernberg) in
1910”.1 What is even more interesting for our productivity analysis community is the context
where Pawel Ciompa coined this word—according to Bauer (2014):

“... in 1910, a Ukrainian bank comptroller named Pawel Ciompa coined the
term econometrics to describe his new process of bookkeeping data to project
trends in worker productivity” (Bauer (2014, p.24), emphasis added.)

I believe this is an interesting fact for the productivity community, who of course know that
the fields of productivity and of econometrics are very closely related and enrich each other
and that, interestingly, the former was apparently at (and the motivation for) the conception
of the latter.

Since then (and likely before that), many econometricians and other scholars across the
world have tried to use or develop new tools to analyze the productivity of many indus-
tries. Among them are many legendary scholars: Leontief, Douglas, von Neumann, Hicks,
Moorsteen, Tinbergen, Solow, Shephard, Kendrick, Debreu, Kantorovich, Friedman, Koop-
mans, Farrell, Cooper, Griliches, Jorgenson, to mention just a few who, sadly, have already
passed. Their discoveries, knowledge and insightful insights were then passed on and de-
veloped further, and quite substantially in different streams by many other scholars. This
includes, of course, our community of productivity and efficiency analysis (recently united in
ISEAPA) that embraces many of the bright scholars that have produced impactful research
output, both theoretical and applied.

The resulting current literature produced by these scholars is truly overwhelming, featur-
ing many articles, chapters, books and working papers. ‘Overwhelming’ is exactly what we
felt when together with Robin Sickles, we tried to summarize this literature with some basic
details. This attempt spilled into 15 years of an exciting book project—because the book
kept growing as more and more papers, old and new, were brought to our attention. While
I will mention many key works in this article, describing them in any fair detail would take
another book and so my goal here is much more modest: I will focus more on some of the
many contributions to the literature from Rolf Färe and Shawna Grosskopf, and some of the
related works they have inspired.

There are many reasons for my choice of the focus here and I will mention just a few.
First, this was the topic of the JPA Symposium panel at EWEPA in honor of Rolf Färe and
Shawna Grosskopf, where I had the great honor to be invited to present an early version of
this article. Second, I had the great honor of being their student and so rightfully feel a duty

1Lwow is a Polish spelling of Lviv, a western city of Ukraine, which at that time was part of the Austria-
Hungarian empire and was called Lemberg.
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Figure 1: The most cited papers in Scopus for the ‘productivity’ topic

to write such an article. Last, yet foremost, their contribution to the literature is indeed
exceptionally outstanding. The experts in our field know it well, yet some concrete evidence
would be useful to support this statement more precisely. To do so, some interesting insights
can be captured by various machine learning tools for ‘biblioanalytics’ on a systematically
collected pool of papers (Choi and Oh, 2019; Wang and Zelenyuk, 2021), and summarized,
e.g., in Figures 1-3 below.2

Figure 1 gives a list of 20 top-cited papers (as of 24 June 2022) and, although the number
of citations is not the only (and not without caveats) indicator of an impact of research, it
provides an insight about some of the most influential works in the literature.

Figure 2 visualizes the citation network in the productivity literature. Intuitively, it is the
network of papers from the pool citing each other, which vividly highlights the key papers
and their interactions with the other papers where ‘productivity’ is a key topic.3

2The papers and bibliometric data (e.g., number of citations, affiliation of authors, references, etc.) are
collected from Scopus using “productivity” and related terms as the keywords, while papers from the Web
of Science using the same keywords are also searched for possible complement. Consequently, 1,222 papers
are selected for further analysis (as of 24 June 2022). I thank Zhichao Wang for helping with harnessing the
data to produce these figures (as an RA task).

3This figure was constructed with the help of VOSviewer (Van Eck and Waltman, 2010), where more
details can be found. In a nutshell, note: (i) each dot represents a paper, and the size of the dot (and its
label) reflects the frequency of the corresponding paper being cited by the papers in the pool; (ii) smaller
dots are omitted in the network (to avoid congestion that spoils visualization), while the more prominent
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Figure 2: Citation network for the ‘productivity’ topic.

A closely related picture is seen in Figure 3, which illustrates the co-citation network of
the key authors on ‘productivity’ as a key topic, for papers co-cited by multiple studies from
the pool.4

While still imperfectly, these three figures quite vividly provide a glimpse of the research
literature on productivity in general and the standing and impact of Färe and Grosskopf
in particular.5 More specifically, note that the most cited paper in Figure 1 is the seminal
work of Färe and Grosskopf, co-authored with Norris and Zhang, published in the American
Economic Review (Färe et al. (1994c)), followed by the seminal work of Olley and Pakes
(1996) in Econometrica. Meanwhile, note also that the 5th, 6th, 8th, 13th, 17th and 20th in the
list also have Färe and Grosskopf among co-authors. Notably, most of these works from Färe
and Grosskopf are one way or another related to the Malmquist Productivity Index (MPI).
The 8th on the list is their paper, co-authored with Lindgren and Roos (Färe et al. (1992c)),

dots with labels float upward; (iii) moreover, the papers are clustered by the vein of the citation relationship,
i.e., the papers citing each other following a similar stream of literature tend to be labeled in the same color.

4It is also created with a help of VOSviewer (Van Eck and Waltman, 2010) where more details can be
found. Briefly, similarly as in Figure 2, the size of the dot (and of the label) reflects the number of times the
author is cited; the authors are also grouped in different colors by their frequency of being co-cited, indicating
a closer collaboration relationship.

5For a more comprehensive and more detailed (albeit a bit less recent) biblioanalytics study, e.g., see Choi
and Oh (2019), which focused on the Journal of Productivity Analysis, and Wang and Zelenyuk (2021), which
focused on performance analysis of hospitals in Australia and its peer. Both of these studies also suggest
about the fundamental impact from the research of Färe and Grosskopf, among others.
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Figure 3: Co-citation network of key authors for the ‘productivity’ topic.
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which is also about MPI for analyzing productivity changes in Swedish pharmacies (from 1980
to 1989). Notably, the latter came before their AER paper and was published in the Journal
of Productivity Analysis (JPA), the flagship journal for research on productivity and related
topics. Among a few others, these JPA and AER articles, are co-responsible for making the
MPI (originally proposed in the seminal work of Caves et al. (1982a) in Econometrica) the
most popular multi-output economic indexes to date. Hence, I will devote more attention
to MPIs in this article, yet I will also mention their connection to the simplest productivity
measures that are most popular in the general literature.

Before moving on, it is important to clarify that the contributions of Rolf Färe and Shawna
Grosskopf go well beyond productivity indexes and include other important areas, both
for theory (e.g., duality theory, theory of various efficiency measures, including directional
distance function, aggregation theory, modeling bad outputs and of congestion, network DEA,
etc.) and for practice (especially performance of healthcare organizations, but also economic
growth, agriculture and environmental economics, energy, banking, etc.) Each of those areas
deserve a separate review, and so I will leave them for other opportunities, while mentioning
them here only briefly.

The structure of the paper is as follows: Section 2 briefly discusses the challenges in
measuring productivity, starting from simple to more complex cases, as well as pointing
out some apparently forgotten roots. Section 3 expounds on how to measure productivity
using the popular ‘Malmquist Approach’, leveraging on classical works and mentioning some
recent developments. Section 4 briefly mentions other fundamental contributions of Färe
and Grosskopf, while Section 5 provides concluding remarks, with a brief discussion of likely
perspectives for the area of productivity and efficiency analysis.

2 How to Measure Productivity?

The previous section emphasized the importance of productivity in virtually all aspects of life,
which in turn implies the importance of managing productivity. And, “you can’t manage it if
you can’t measure it!...” states a famous saying (usually attributed to Peter Drucker), which
succinctly emphasizes the importance of why we need to measure productivity. But, how
shall one measure productivity? While sounding simple, this question has been challenging
scholars for the last few decades (at least) and different disciplines look at it somewhat
differently. In economics, it even became a distinct field (e.g., classified by RePEc as the field
of Efficiency and Productivity), embracing a myriad of studies already produced and many
yet to come. One way or another, they are usually related to either a simple productivity
measure like labor productivity or, recognizing the caveats of the latter, they are related to
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its generalization aimed to address some of those caveats.

2.1 The Simplest Case: 1-input-1-output case

In economics, one usually (although not always) looks at productivity as the amount of
outputs per unit of inputs. This is very easily understood in the case of a single output, call
it y, produced from a single input, call it x, and so productivity can be formalized simply
as the ratio: output over input. Such a measure is sometimes referred to as single factor
productivity (SFP), which can be applied for any particular time (or state) t simply as,6

SFPt ≡
yt
xt

. (1)

The index measuring changes in productivity in such simple environments can then be
simply defined as the ratio of SFP in a period (or state) t to itself in a different period (or
state) s, i.e.,

SFPIst ≡
SFPt

SFPs

=
yt/xt

ys/xs

. (2)

Equivalently, it can be re-arranged as the ratio of yt/ys, which is a simple output index, to
xt/xs, which is a simple input index, i.e.,

SFPIst =
yt/ys
xt/xs

=
Output Index
Input Index

. (3)

This latter representation paves a path to many possible generalizations of SFP for multi-
output-multi-input contexts, as will be described below.

2.2 A More Realistic Case: Aggregate output relative to one input

The world is, of course, much more complex than ‘a single output produced from a single
input’ scenario, hence requiring some suitable generalization of (3). One natural approach is
to generalize (3), by finding some suitable aggregation procedure to replace the single output
yt with some aggregate output and compare it to a selected input, e.g., labor (which may also
be an aggregation of various types of inputs, e.g., different types of labor). A very popular
example of this is the Labor Productivity (LP) measure. For example, when applied for a
country where one uses a measure of gross domestic product (GDP) as an aggregate proxy

6Other names for this measure in the literature include ‘average productivity’, ‘partial productivity’ and
somewhat misleadingly ‘marginal productivity’.
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of a myriad of outputs and some aggregate measure of labor at time t (call it Lt), we get

LPt ≡
GDPt

Lt

. (4)

The related Labor Productivity Index between s and t is then given by,

LPIst ≡
LPt

LPs

=
GDPt

Lt

/
GDPs

Ls

. (5)

=
GDPt

GDPs

/
Lt

Ls

=
GDP Indexst

Labor Indexst

.

The questions of suitability of aggregations of many outputs into a single output, like GDP,
or many very different types (skills, qualities, etc.) of labor into a scalar-valued measure are
subjects by themselves. They usually involve index number theory and particular disciplines
of interest (e.g., macroeconomics for GDPt and labor economics for Lt) and often do not
have unique ways, rather some standard practices that evolve (with some improvements)
over time.

Even if one were to agree on some unique ways for such aggregations, some important
questions of measuring productivity remain. Indeed, even if there is an agreement on an
aggregate output measure, the SFPI measure (3) (and its example (5)) only accounts for
productivity relative to a single input. A natural question arises: Can we have a multi-factor
productivity measure that accounts for other factors? The answer is, of course: Yes, we can;
yet there are many ways to do it and they may lead to different conclusions! Indeed, as
concisely concluded in a methodical work by Diewert (1992b, p.163):

“The results ... appear to be encouraging from the viewpoint of measuring pro-
ductivity change: in the one input, one output case, productivity change can
indeed be accurately measured. However, as soon as we move to the many out-
put, many input case, the situation is no longer clear cut. Different approaches
to productivity measurement can give very different numerical answers.”

Therefore, as it often happens in virtually any disciplines, especially in social sciences, the
main challenge is to agree on which way to choose. And as usual, there is no panacea-
type solution to this question, and no ‘ideal’ or ‘proper’ way to do it, despite all the catchy
nicknames that were given to such approaches over the history of thought on this topic.
Indeed, all approaches have pros and cons, with some caveats attached, which may be more
or less critical depending on the contexts and aims of measurement.
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2.3 On the Forgotten Roots of Measuring Productivity and its De-

composition

Zvi Griliches, besides his fundamental contributions to economic measurement, provided a
nice historical account of how the related literature developed and, in particular, how a closely
related concept of the Solow’s residual came around (Griliches (1996)).7 He conjectured that
the productivity measurement, based on (1) and (2), goes back (at least) to the works of
Copeland (1937) and Copeland and Martin (1938). These two works were in the context of
national income analysis at the National Bureau of Economic Research (NBER), the major
think tank that was at the forefront of many developments in economics. Interestingly,
the paper of Copeland (1937) also included interesting discussions, one of which was by
Simon Kuznets himself (who later became a Nobel Laureate, in 1971), where a major focus
was on productivity, followed by Copeland’s response. Meanwhile, the paper of Copeland
and Martin (1938) also included some interesting discussions, one of which was by Milton
Friedman himself (who was a student of Kuznets, just 26 year old at that time, who later also
became a Nobel Laureate, in 1976). A major focus of those discussions was on productivity
and efficiency, their changes and the biases that arise in their measurements. Among the
many enlightening thoughts expressed in those discussions and replies, Milton Friedman’s
seems particularly insightful, as it anticipated and perhaps inspired a wave of research for
the next few decades:

“... Obviously, input is valued only for the output it makes possible. Hence the
only way by which the volume of input can be measured is in terms of the volume
of output. Were the analysis to stop at this point it would seem as if there
were but a single problem—the measurement of ‘real output’. We can, however,
go somewhat farther, and ask the question—to what extent is the change in
output over some specified period a result of a change in the quantity of the
available resources, and to what extent does it result from a change in the way in
which these resources are employed.8 In order to answer this question it would be
necessary to determine the volume of ‘real output’ that would have been produced
had techniques remained unchanged. A comparison of this series with the actual
‘real output’ then provides a measure of the change in efficiency. ...” (p.127)

That is, back in the 1930s, inspired by Copeland and Martin (1938), Milton Friedman quite
nicely (and perhaps was the first who) conceptualized the idea that productivity change can

7Also see Hulten (2001) for the related discussions.
8Here, Friedman also adds a footnote clarification: “This separation is to a considerable extent artificial:

technological change affects not only the way in which resources are employed but also the quantity and
character of the resource; themselves.”
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potentially be decomposed into efficiency change and technology change (and noted on the
caveats and challenges involved)—the topic of many key papers in our field in the last few
decades. It is also quite interesting to observe from today’s perspective, how in the big
minds of the profession entertained with the concepts of productivity and efficiency. Also as
interesting is the conclusion by Griliches (1996):

“At this point the gauntlet had been thrown: even though it had been named
"efficiency," "technical change," or most accurately a "measure of our ignorance,"
much of observed economic growth remained unexplained. It was now the turn
of the explainers.” (p. 1329)

In hindsight, it seems the many works of Rolf Färe and Shawna Grosskopf, as well as those of
many other researchers studying productivity, are by and large in response to this gauntlet
throw.

2.4 Growth Accounting Approach

The first fundamental breakthrough in measurement of productivity dynamics was due to
Robert M. Solow (who also became Nobel Laureate, in 1987), due to his seminal Solow (1957)
work, which followed shortly after his other fundamental economic growth theory article,
Solow (1956). While the approach he started, usually referred to as growth accounting, has
been described in many books, at least a brief discussion of this fundamental approach is
well-warranted here.9

The basic growth accounting approach typically starts by assuming that technology can be
characterized via some simple production function, usually with the so-called Hicks-neutral
technology change property, e.g., formally defined as:

yτ = fτ (x) = A(τ)× f(x), ∀x ∈ ℜN
+ . (6)

i.e., the production function is separable into a function characterizing the transformation of
inputs into outputs (which is not depending on time) and a residual part, A(τ), characterizing
technology changes over time (which is not depending on inputs).

Such a simple (and quite restrictive) assumption on technology helps simplifying the
measurement of productivity and its changes. Indeed, the simple measure (2) then turns into

9We follow Sickles and Zelenyuk (2019) and Zelenyuk (2021), where more details and references can be
found.
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the following productivity index:

PIst =
ft(xt)/xlt

fs(xs)/xls

=
f(xt)/xlt

f(xs)/xls

× A(t)

A(s)
, (7)

which, note, gives the decomposition of this simple productivity index into changes due to
the contributions from all inputs (normalized by one of the inputs) and technology change,
A(t)/A(s).

Meanwhile, assuming differentiability of f , and given (6), one can represent the growth
in output yt as (Solow (1957)):

g(yt) =
N∑
j=1

ejtg(xjt) + g(A(t)), (8)

where g(zt) := (dzt/dt)/zt = d ln(zt)/dt ≈ (zt+△t/zt) − 1, i.e., the growth rate of zt and
ejt ≡ (∂f(xt)/∂xjt)× (xjt/f(xt)) is the partial scale elasticity with respect to input j. If, in
addition, one also assumes that technology exhibits constant returns to scale, then

g(yt/xlt) =
N∑

j=1,j ̸=l

ejtg(xjt/xlt) + g(A(t)). (9)

Hence, equation (9) is a logarithmic version of (7), where due to differentiability of f ,
the first component in (7) is now being decomposed further, into ‘partial productivities’
corresponding to each input.

Thus, under the simplifying (though quite restrictive) assumptions, the productivity in-
dex (7) can be decomposed into contributions from changes in each input (weighted by their
shares that reflect their importance in the production process) and changes in technology.
Importantly, the latter component is isolated only as a residual, often referred to as ‘Solow
residual’ and therefore it may hide other sources of change that are not related to the tech-
nology change. Besides this important caveat, this approach also has other limitations. One
of them is the assumption of a scalar-valued output measure (usually implemented via an ag-
gregation). Another one is the requirement to know the partial scale elasticity corresponding
to every element of x. Yet another caveat is the assumption of no inefficiency (i.e., everyone
is assumed to be fully efficient), which is an overly optimistic belief that may substantially
distort the representation of reality and imply conclusions or policy implications that are
very different than would be otherwise. Finally, another serious caveat is the assumption of
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Hicks-neutral-type technological change. E.g., in the words of Sickles and Zelenyuk (2019,
p.101):

“Geometrically, this assumption requires that the technology shifts the input-
isoquant in a “parallel” fashion. Intuitively, it means that from a technological
or engineering point of view, the importance of various types of inputs does not
change over time. ... In practice, obviously, technological changes are likely to
be biased towards some inputs, e.g., towards the physical and human capital, as
progress goes on. Indeed, most production processes in the old days were very
labor-intensive and technological progress was making it less and less intensive,
and differently for different industries. ... In more recent days, technological
process is using much more information and communication technologies (ICT)
than before, which is another example of technological bias, etc. Thus, it might
be very desirable to have a measure that does not restrict technology to be Hicks-
neutral and thus allow a researcher to measure the direction and the size of the
bias in the technological change as well as to test for its statistical significance.”
10

While very simple in hindsight, this approach was revolutionary at that stage of knowledge
and for many years it remained as the main or at least one of the main methods in applied
productivity research. In a sense, many other approaches of measuring productivity dynamics
can also be viewed as either generalizations (or as special cases) of this approach. For example,
the generalization to a multi-output case was proposed in the seminal work of Jorgenson and
Griliches (1967).11 Also, if one allows for inefficiency at a period τ , characterized by some
eτ ∈ (0, 1], implying in this framework that yτ = eτ × fτ (x), then we get

PIst =
f(xt)/xlt

f(xs)/xls

× A(t)

A(s)
× et

es
, (10)

where, the last component of this decomposition is an index measuring efficiency change and
is, perhaps, what Milton Friedman had in mind when discussing the work of Copeland and
Martin (1938), as quoted above. This decomposition was further generalized by Färe et al.
(1994c) and Kumar and Russell (2002), to mention a few as will be discussed in Section 3.

Currently, one can roughly distinguish five major approaches for productivity analysis:12

10For related discussions, see Jorgenson (2002), Greenwood et al. (1997), Acemoglu (2002) and references
therein.

11Also see Jorgenson (2002) and references therein.
12Of course, this classification is subjective and I recognize that there are potentially many different ways

to classify this literature, especially because the different approaches are often interrelated (explicitly or
implicitly).
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(i) the growth accounting approach, starting with the basic Solow’s approach (Solow
(1957)) and including various modifications (e.g., see Jorgenson and Griliches (1967), Jorgen-
son and Nishimizu (1978), Jorgenson and Fraumeni (1983), Jorgenson et al. (1987), Jorgenson
(1996), Jorgenson (2017)).

(ii) the productive efficiency approach, substantially impacted by the seminal works of
Farrell (1957),Afriat (1972), Charnes et al. (1978) and Aigner et al. (1977), and advanced fur-
ther in many other works, within economics/econometrics and operations research literatures.
This approach includes the wide literatures on such major methods as Data Envelopment
Analysis (DEA) and Stochastic Frontier Analysis (SFA), as well as their various alternatives
and related methods.13

(iii) the Olley-Pakes approach, started by the seminal work of Olley and Pakes (1996)
and was elaborated on further in many other works, including Levinsohn and Petrin (2003),
Ackerberg et al. (2007), Ackerberg et al. (2015) and Melitz and Polanec (2015), to mention
a few.

(iv) the index number approach—a classic approach where, e.g., Laspeyres, Paasche,
Fisher or Tornqvist indexes are used for obtaining output index and input index, and their
ratio would then give, respectively, Laspeyres, Paasche, Fisher or Tornqvist indexes of pro-
ductivity.

(v) the ‘Malmquist approach’—an approach that originated from the seminal work of
Caves et al. (1982a) and further elaborated on by many other works that theoretically con-
nected the index number approach with the neoclassical economic theory, hence providing
theoretical justification for the former.14 This approach is also closely connected to and en-
riched by the productive efficiency approach. Noteworthy, Färe and Grosskopf (with various
co-authors) appear to be the first to establish this connection, by showing how DEA can be
used for the estimation of such indexes. This approach will be the main focus in this paper.

2.5 The Complexity of Productivity Measurement: An Intuitive

Explanation

The complexity of measuring productivity was well-explained by Moorsteen (1961), illustrat-
ing it with multi-output examples. Importantly, a similar complexity remains even in the
single-output case (and even under often unrealistic assumptions of full efficiency). This can

13E.g., see Chapters 8 through16 in Sickles and Zelenyuk (2019) for extensive discussions and many refer-
ences.

14Also see Caves et al. (1982b); Diewert and Morrison (1986); Diewert and Wales (1987); Diewert (1992a,b),
to mention just a few, and an extensive discussion in chapters 4 and 7 of Sickles and Zelenyuk (2019) with
many references therein.)
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be visually sensed from Figure 4, reproduced from Färe and Zelenyuk (2021), which uses
basic microeconomics concepts of isoquants and isocosts.

Observing Figure 4, one can see that even in a single output case, and with only two
inputs, there is quite an ambiguity as to how productivity should really be measured. Also
note that the problem is actually harder than in the context of consumer theory where a lot
of index number approaches were developed (mainly to measure price changes or inflation).
The complexity is indeed three-fold: while for the consumer context the changes occur in one
product space, in the production context the changes occur in (i) the input space, (ii) the
output-space, and (iii) in the function (or more generally a correspondence) describing the
interaction between these two spaces for a firm of interest (which may also differ substantially
across firms). The change in the latter is what is referred to as the technological change;
and, unlike in the consumer theory where the preferences are typically (and quite naively)
assumed as fixed over time, assuming no change in technology over a substantial period of
time is too contradictory to reality.

Indeed, as can be seen from Figure 4, just focusing on the input-space, there is an ambi-
guity of choice of measurement. For example, one can choose to measure the change via a
distance between input isoquants, which can be either along the ray 0B′ (which goes through
the base-period mix of inputs) or along the ray 0B (which goes through the current-period
mix of inputs). The difference between the two options might be enormous, as can be seen
from the figure.

Alternatively, one can choose to measure the change via a distance between isocosts,
where again the measurement can be either along the ray 0B′ or along the ray 0B and,
the difference between the two options might be also enormous. Even if one agrees to,
say, the base-period mix perspective or the current-period mix perspective, the difference
between measuring the distances between the isoquants can imply very different conclusions
than measuring the distances between the isocosts. Figure 4 also hints that to have the
equivalence of these alternative approaches to measurement of productivity one would need
to have a very peculiar type of technology where the distances from one isoquant to another
are invariant to the location on the isoquant—this will be clarified more formally in the next
section. Moreover, some restrictions on the allocative efficiencies are needed for the isocost-
based measurement to be equivalent with the isoquant-based measurement. In the case of
multiple outputs, similar complexity occurs in the output space, where one needs to decide
between different output-isoquants and isorevenues (e.g., see Moorsteen (1961)).

In practice, the isocost and isorevenue approaches are often implemented via the so-called
‘statistical approach to index numbers’, where one deploys some of the well-studied indexes
to represent aggregate changes in inputs and aggregate changes in outputs in (3). Specifically,
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Figure 4: Complexity of Measuring Productivity Changes: An Illustration. (Färe and Ze-
lenyuk (2021, JPA)).
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one may use the Laspeyres indexes (i.e., aggregate quantities with base-period price weights)
for both, in which case one would get the Laspeyres productivity index. Alternatively, one
may use the Paasche indexes (i.e., aggregate quantities with current-period price weights) for
both, in which case one would get the Paasche productivity index. Which one to prefer is
a matter of taste and is somewhat analogous to the eternal differences between generations:
a younger generation tends to look through the lens of current days (as this is what they
understand best, perhaps), while an older generation tends to value relative to some ‘olden
days’ (e.g., when that generation was young and joyful).

A way to reconcile the different perspectives is to take some middle ground. One way to
do so here is to use what Irving Fisher advocated in the context of price indexes—to take the
simple (equally-weighted) geometric average of these Laspeyres and Paasche indexes. This
gives the Fisher Productivity Index, e.g., theoretically justified and advocated by Diewert
(1992a). Another middle ground is the Törnquist Productivity Index, e.g., theoretically justi-
fied and advocated by Caves et al. (1982a). Yet another alternative is the Walsh Productivity
Index. 15

3 The ‘Malmquist Approach’

Since the seminal work of Caves et al. (1982a), part of the productivity literature was taken
over by what sometimes is broadly referred to as the ‘Malmquist Approach.’ Roughly, it can
be defined as one that embraces the productivity indexes proposed in Caves et al. (1982a) and
their variations.16 We dedicate this section to this important approach, briefly considering
some fundamentals and some recent advances.

3.1 Multidimensional Characterization of Technology

To facilitate further discussions, let x = (x1, . . . , xN)
′ ∈ RN

+ represent a vector of inputs for
producing a vector of outputs y = (y1, . . . , yM)′ ∈ RM

+ and suppose the production technology
at time t is characterized by the set

Ψt = {(x, y) : x can produce y at time t}. (11)
15More recently, Mizobuchi and Zelenyuk (2021), inspired by works of Diewert, Färe and Grosskopf among

others, developed a generalized framework, based on the quadratic mean of order-r, which embraces many
other indexes as special cases, and justifies them on some theoretical grounds.

16Interestingly, this approach is named in honor of Sten Malmquist, a Swedish economist who considered
related ideas about indexes for consumer theory contexts (Malmquist (1953)). In hindsight, considering the
contributions to this approach at the very start and over the past four decades, a more appropriate name
could be the ‘Diewert Approach’ or, since it involves Shephard’s distance functions, the ‘Diewert-Shephard
Approach’.
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Note that, in principle, N and M can be very large, i.e., allowing for the so-called big-wide
data. It is important, however, to assume that Ψt satisfies certain regularity conditions to
ensure complete characterization of technology via functions, e.g., distance functions that
became very popular in productivity and efficiency analysis.17 To be brief, I will focus on
the t-period Shephard’s input distance function, defined with respect to Ψt,

Dt
i(y, x) = sup

β
{β > 0 : (x/β, y) ∈ Ψt}, (12)

and the t-period Shephard’s output distance function defined with respect to Ψt is given by

Dt
o(x, y) = inf

β
{β > 0 : (x, y/β) ∈ Ψt}. (13)

3.2 Quantity and Productivity Indexes

Following Färe and Zelenyuk (2021), who in turn followed Caves et al. (1982a) and Diewert
(1992a) among others, the t-period Malmquist input quantity index is defined as

X(x0, x1, y|Ψt) = Dt
i(y, x

1)/Dt
i(y, x

0). (14)

Note that the index depends on the reference level of output, y, that is kept fixed in this
formulae. The choice of this reference, while it appears simple, is the crux of the whole index
number theory, which goes back several centuries, to at least the dilemma between proposals
of Laspeyres and Paasche and their reconciliation by Fisher, and various debates after that.

While in principle any y can be chosen for this index, it is important that, intuitively
speaking, this reference is ‘as relevant as possible’ to the environment that the DMU in
question faced when making the decision to use x0 and x1, while facing technology Ψt (t ∈
{0, 1}). Thus, quite naturally (albeit not without caveats), the usual references for comparing
x0 and x1 are y0 and y1, which give Laspeyres and Paasche versions of the index, respectively,

XL(x
0, x1, y0|Ψ0) = D0

i (y
0, x1)/D0

i (y
0, x0), (15)

and

XP (x
0, x1, y1|Ψ1) = D1

i (y
1, x1)/D1

i (y
1, x0). (16)

17See Shephard (1953), Färe and Primont (1995), and Sickles and Zelenyuk (2019).
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Similarly, t-period Malmquist output quantity index can be defined as

Y (y0, y1, x|Ψt) = Dt
o(x, y

1)/Dt
o(x, y

0) (17)

i.e., this index depends on the reference level of input, x, that is kept fixed in these formula.
And, again, while in principle any x can be chosen for this index, it is imperative that this
reference is ‘as relevant as possible’ to the environment that the DMU in question faced when
making the decisions to produce y0 and y1, while facing technology Ψ0 or Ψ1. Again, quite
naturally (yet not without caveats), the usual references for comparing y0 and y1 are x0 and
x1, which give Laspeyres and Paasche versions of output index, respectively,

YL(y
0, y1, x0|Ψ0) = D0

o(x
0, y1)/D0

o(x
0, y0), (18)

and

YP (y
0, y1, x1|Ψ1) = D1

o(x
1, y1)/D1

o(x
1, y0). (19)

In turn, the quantity indexes defined above can be used for constructing a multi-factor
productivity index, where, again, we get the Laspeyres version

DBPI(x0, x1, y0, y1|Ψ0) ≡ YL(y
0, y1, x0,Ψ0)

XL(x0, x1, y0,Ψ0)
=

D0
o(x

0, y1)/D0
o(x

0, y0)

D0
i (y

0, x1)/D0
i (y

0, x0)
, (20)

and the Paasche version,

DBPI(x0, x1, y0, y1|Ψ1) ≡ YP (y
0, y1, x1,Ψ1)

XP (x0, x1, y1,Ψ1)
=

D1
o(x

1, y1)/D1
o(x

1, y0)

D1
i (y

1, x1)/D1
i (y

1, x0)
. (21)

And, to reconcile, the geometric mean of the Laspeyres and Paasche perspectives is usually
taken, i.e.,

DBPI(x0, x1, y0, y1|Ψ0,Ψ1) ≡ (22)[
DBPI(x0, x1, y0, y1|Ψ0)×DBPI(x0, x1, y0, y1|Ψ1)

] 1
2 .

Common names for (22) appear to be ‘Hicks–Moorsteen Productivity index’ or HMPI
(due to Diewert (1992a)) and ‘Malmquist TFP index’ (due to Bjurek (1996)). However,
as pointed out by Färe and Zelenyuk (2021), this index “emerged under different names
at different waves of the literature and, perhaps, the name ‘Malmquist–Shephard–Hicks–
Moorsteen–Diewert–Bjurek productivity index’ would probably be the fairest”. To make it
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simpler, Färe and Zelenyuk (2021) referred to it as the Diewert–Bjurek productivity index
(DBPI), which was “to credit the two authors who appear to have contributed the most to
the origin of this interesting index.18

In a nutshell, the HMPI/DBPI approach compares changes in outputs (inputs), some-
what separately from changes in inputs (outputs), in the sense of fixing the latter (and the
technology) at either 0 or 1, to obtain a ‘separate’ output and input quantity indexes and
then use them in a ratio form, as in (3). This seems natural, if one thinks ‘inside the box’
of the formula (3), which is a somewhat narrow way to look at productivity. Indeed, while
very natural for a single-input-single-output case, this ‘output over input’ approach implicitly
imposes a type of ‘separability ’ or ‘de-coupling ’ of inputs from outputs, which may or may
not be justified in practice.19 Indeed, note that x and y come into realization together, in
the sense that x0 (and not x1 or any other x) was chosen to produce y0, while x1 (and not
x0 or any other x) was chosen to produce y1 and so it is desirable that (x0, y0) is considered
as a whole and compared to its analogue, (x1, y1) as a whole, in the other period (or state).
This way of thinking seems natural for many now, yet it was revolutionary (in the sense of
going beyond the narrow definition of ‘output over input’ for productivity) at the time it
was proposed by Caves et al. (1982a). Specifically, in the now seminal Econometrica paper,
Caves et al. (1982a) introduced a new type of productivity measure that they called the
Malmquist Productivity Index (MPI), although perhaps a more appropriate name would be
the ‘CCD-approach’ (crediting the authors), as it is sometimes referred to. Specifically, this
approach encompasses several indexes: in the output oriented context, we have

MPIo(x
0, x1, y0, y1|Ψ0) ≡ D0

o(x
1, y1)

D0
o(x

0, y0)
, (23)

and
MPIo(x

0, x1, y0, y1|Ψ1) ≡ D1
o(x

1, y1)

D1
o(x

0, y0)
(24)

18There are also other variants of this index in the literature. E.g., one of them is the so-called Färe-
Primont Productivity Index (O’Donnell (2014); O’Donnell (2018)), which is essentially a restricted version
of HMPI that fixes the base of the measurement to satisfy some restrictive properties. (Also, see Färe and
Zelenyuk (2021) for related discussions about fixing the base of measurement.)

19As pointed out by one of the anonymous referees, this point of view deserves more discussion, e.g., on
whether this ‘separability ’ or ‘de-coupling ’ phenomenon has implications in the context of other indexes, e.g.,
the empirical indexes.
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and, to reconcile between these, a simple geometric mean is taken, i.e.,

MPIo(x
0, x1, y0, y1|Ψ0,Ψ1) ≡

[
MPIo(x

0, x1, y0, y1|Ψ0)×MPIo(x
0, x1, y0, y1|Ψ1)

] 1
2 (25)

≡
[
D0

o(x
1, y1)

D0
o(x

0, y0)
× D1

o(x
1, y1)

D1
o(x

0, y0)

] 1
2

.

Analogously, in the input oriented context, we have

MPIi(x
0, x1, y0, y1|Ψ0) ≡ D0

i (y
1, x1)

D0
i (y

0, x0)
, (26)

and
MPIi(x

0, x1, y0, y1|Ψ1) ≡ D1
i (y

1, x1)

D0
i (y

0, x0)
, (27)

and their geometric mean is then taken to reconcile, i.e.,

MPIi(x
0, x1, y0, y1|Ψ0,Ψ1) ≡

[
MPIi(x

0, x1, y0, y1|Ψ0)×MPIi(x
0, x1, y0, y1|Ψ1)

] 1
2 (28)

≡
[
D0

i (y
1, x1)

D0
i (y

0, x0)
× D1

i (y
1, x1)

D1
i (y

0, x0)

] 1
2

.

While proposed and theoretically justified by Caves et al. (1982a), it is good to note that
the work by Färe and Grosskopf with various co-authors was also fundamentally important,
especially for the applied world, as they were the first to show how DEA can be used for the
estimation of such indexes. Among others, their work also influenced many applications for
various industries or cross-countries studies,20 as well as further theoretical developments of
Malmquist-index-like indexes.21

The seminal work of Färe, Grosskopf, Norris and Zhang (1994c) also inspired the stream of
literature exploring the productivity dynamics of countries using Penn World Tables (PWT)
via DEA, which is briefly described in the next sub-section.22

3.3 Decompositions of Productivity Indexes

A particular feature of MPI (and other similar measures) is the possibility of various decom-
positions. (Recall the paper of Copeland and Martin (1938) and especially its discussion by

20E.g., see Färe et al. (1998) and Badunenko et al. (2017) for some reviews, although an update for these
seems to be overdue.

21E.g., see Berg et al. (1992), Shestalova (2003), Pastor and Lovell (2005), Pastor et al. (2011), Afsharian
and Ahn (2015).

22In turn, this inspired the related literature that used Stochastic Frontier Analysis (SFA) for estimation
MPI (see Badunenko et al. (2017) for related references, and for a recent review of SFA, see Kumbhakar et al.
(2022a,b)).
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Milton Friedman, briefly mentioned in Section 2.1 above.) Although not the first, and not
the only, the most popular of such decompositions appears to be the one usually attributed to
Färe et al. (1994c), which breaks down the MPI into efficiency change and technical change
as follows:

MPIo(x
0, x1, y0, y1|Ψ0,Ψ1) =

D1
o(x

1, y1)

D0
o(x

0, y0)
×
[
D0

o(x
0, y0)

D1
o(x

0, y0)
× D0

o(x
1, y1)

D1
o(x

1, y1)

] 1
2

, (29)

≡ Eff∆01 × Tech∆01,

where Eff∆01 denotes the efficiency change between period 0 and 1, while Tech∆01 denotes
the technical change between period 0 and period 1.23

Another very interesting decomposition that connects the simple productivity indexes
discussed in Section 2 with MPI was proposed in a follow-up to Färe et al. (1994c) by
Kumar and Russell (2002). In particular, they noted that in a scalar-valued–output case,
when technology in a period t can be characterized by some production function f t(Kt, Lt)

satisfying constant returns to scale, the labor productivity index can be described as:

LPI01 ≡
y1/L1

y0/L0
=

D1
o(K

1, L1, y1)

D0
o(K

0, L0, y0)
×
[
f 1(K0/L0)

f 0(K0/L0)
× f 1(K1/L1)

f 0(K1/L1)

]1/2
×
[
f 0(K1/L1)

f 0(K0/L0)
× f 1(K1/L1)

f 1(K0/L0)

]1/2

= Eff∆01 × Tech∆01 × KLACC∆01, (30)

i.e., it can be decomposed into MPI (which can also be decomposed into technical change
and efficiency change) and the change in capital accumulation (per unit of labor) between
periods 0 and 1, denoted by KLACC∆01.

Like Färe et al. (1994c), Kumar and Russell (2002) also used PWT and found interesting
evidence about the sources of productivity dynamics. This work was further elaborated
by Henderson and Russell (2005), who also used PWT but also added a Human Capital
component to (30), and Badunenko et al. (2008) who looked at a larger set of countries
(including former USSR republics) with more recent PWT, and Badunenko and Romero-
Avila (2013) who added a ‘financial development’ component to (30), among others. Nice

23It appears that the first decomposition of MPI goes back to Nishimizu and Page (1982) in a parametric
context. As mentioned, many alternative (or further) decompositions of MPI were offered in the literature,
e.g, Färe et al. (1997), proposed an interesting decomposition of the technical change component of the
MPI that tries to measure the bias of technical change, and its sources (input-biased vs. output biased
technological change).
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historical accounts of the MPI and its decompositions (along with discussions of theoretical
and empirical issues) can be found in, e.g., Färe et al. (1998) and Grosskopf (2003).24

It is also worth remembering that for all these and other methods, data plays a key role
in what conclusions are reached, e.g., see a recent work of Meng et al. (2022) that showed
how some important conclusions from Kumar and Russell (2002) and Henderson and Russell
(2005) changed due to the recent update of the data vintage from the PWT.

3.4 Equivalences and Differences

An important question is how are the different indexes related and whether they provide
the same or at least approximate information. This important question is at the core of the
index number literature and has been studied widely and it would be unfair to miss it here,
although we must examine it only briefly.25

While there are a lot of technical details, the essence of the matter (as pointed out by
Färe and Zelenyuk (2021)) can be seen by noting that we can have:

XL(x
0, x1, y0,Ψ0) = XP (x

0, x1, y1,Ψ1) (31)

if and only if we have

D1
i (y

1, x1) = f 1(y1)h(x1) (32)

and

D0
i (y

0, x0) = f 0(y0)h(x0), (33)

where h(.), f 1(.) and f 0(.) are some functions whose properties are inherited from D1
i (y, x)

and D0
i (y, x).

An analogous situation exists for the output orientation. Intuitively, this means that
technology must satisfy various types of Hicks-neutrality and of homotheticity, which are very
restrictive assumptions, as well as constant returns to scale or its generalizations. Meanwhile,
the equivalence of the input and output oriented MPIs (i.e., (25) and (28)) requires constant

24Also see Färe et al. (1994b), Grifell-Tatjé and Lovell (1995, 1999, 2015), Färe et al. (1997), Ray and Desli
(1997), Simar and Wilson (1998a), Wheelock and Wilson (1999), Balk (2001), Lovell (2003), Zofio (2007),
Fried et al. (2008), Diewert and Fox (2017) and a review in Badunenko et al. (2017) and more references
therein.

25E.g., see Diewert (1992b,a), Chambers and Färe (1994), Färe and Grosskopf (1996a), Balk et al. (2003),
Peyrache (2013) and most recently in Färe et al. (2020) and references therein. A textbook discussion of this
topic can also be found in Chapter 4 and 7 in Sickles and Zelenyuk (2019).
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returns to scale (e.g., see Berg et al. (1992) and Färe and Grosskopf (1996a)).
Overall, Färe and Zelenyuk (2021) concluded:

“Because of this complexity, it appears infeasible to establish general conclusions
about superiority of any of the indexes we discussed here, be they “true” indexes
that are based on economic principles or any empirical indexes. Only under
fairly restrictive assumptions about technology and how it changes over time or
assumptions about the dynamics as prices is it possible to establish some of the
results.”

While the indexes discussed above (and many other) were originally designed to compare
multidimensional points at any two periods or states, there is often a practical need for
multilateral comparisons involving many periods or states. The task of generalizing to mul-
tilateral comparisons might look like a simple task, yet it turns out to be not so simple, as
can be seen from the debates at various points of the index numbers literature. The problem
is indeed more complicated, although the essence is very similar and rooted to what was dis-
cussed just above. Indeed, and as pointed out by Färe and Zelenyuk (2021), the requirement
of equality of the Laspeyres and Paasche versions generalizes in multilateral context to what
is often referred to as the ‘transitivity’ or circularity property of indexes, which may seem
‘natural’, yet can be also extremely restrictive and misleading in resulting conclusions.

For multi-output-multi-input indexes, this circularity property can sometimes be achieved
very easily, just by fixing the base of measurement.26 However, such imposition of a fixed
base (or fixed weight) may also lead to an even more serious problem—a lower relevance and
possibly even irrelevance of the chosen base (or some of its parts) to the quantities being
measured. This problem is less severe (and less evident) for relatively small periods, and can
be taken as an approximation error, yet for long spans it could be dramatic. Indeed, if one
takes, for example the last 100 years span—when the world experienced dramatic changes
in the types of inputs, the types of outputs and in deployed technologies—the fixed base
at the beginning of the period could be quite irrelevant for comparing what happened 100
years after it. Apparently, after realizing such a problem, Irving Fisher himself, who was an
advocate of circularity for indexes in his famous Fisher (1911) book (in the context of price
indexes), corrected himself about a decade later, acknowledging the serious problems of this
property, stating:

“... for the only definite error which I have found among my former conclusions
has to do with the so-called “circular test” which I originally, with other writers,
accepted as sound, but which, in this book, I reject as theoretically unsound.”

26E.g., see O’Donnell (2018) for some examples, related discussions and references therein.
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— Fisher (1922, p.xii-xiii)

and also,

“... The only formulae which conform perfectly to the circular test are index
numbers which have constant weights, i.e. weights which are the same for all
sides of the “triangle” or segments of the “circle,” i.e. for every pair of times or
places compared. ... But, clearly, constant weighting is not theoretically correct...
We cannot justify using the same weights for comparing the price level of 1913, not
only with 1914 and 1915, but with 1860, 1776, 1492, and the times of Diocletian,
Rameses II, and the Stone Age!”

— Fisher (1922, p. 274-275, original emphasis retained).

In his seminal paper in Econometrica, Eichhorn (1976) used the functional equations approach
to provide a formal proof for this statement (in the context of price indexes), which was
refined further by Funke et al. (1979). More specifically, they showed that the only index
satisfying the circularity property (along with other relevant properties) is the Cobb-Douglas
(i.e., geometric mean) type index that has fixed weights. More discussion on this can be found
in Färe and Zelenyuk (2021) who provided further theoretical justifications and illustrated
their importance with an empirical example (using data from Kumar and Russell (2002)).27

Finally, while there might still be different views on this topic, here it is a good place to
conclude this section with the thoughts on it from Färe and Grosskopf:

Since satisfaction of the circular test is in effect asking that productivity and
technical change be path independent, one would expect that this would require
imposing a lot of structure on the problem. Requiring that technology be . . .
Hicks neutral is, we believe, extremely restrictive. As a consequence, we find
ourselves in agreement with Fisher (1922). We would rather abandon the circular
test and allow for the possibility of nonneutral technical change. We find the
march of time to be a natural “path” upon which technical change should be
allowed to be dependent. (Färe and Grosskopf (1996a, p. 91).)

3.5 Statistical Aspects

It is worth emphasizing here that the Malmquist-type indexes are theoretical concepts, some-
times called ‘true’ indexes, in the sense that they are based on (primal) characterizations of

27Also see related discussions in Konüs and Byushgens (1926), Frisch (1930, 1936), Samuelson and Swamy
(1974), Balk and Althin (1996), Coelli et al. (2005), Diewert and Fox (2017) and Sickles and Zelenyuk (2019,
p. 130-137).
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the ‘true’ technology sets (via distance functions). Of course, in practice, the true technology
sets are not known and must be estimated with some methods, e.g., DEA or SFA. This raises
the question of statistical accuracy of such estimations, which in turn raises the question of
statistical properties (consistency, convergence rates and limiting distributions). The early
attempts on this matter were well reviewed in Grosskopf (1996), while more recent develop-
ments were well reviewed in Simar and Wilson (2013) and Simar and Wilson (2015), although
some important results were developed later on and are in progress as this is written.

In a nutshell, the first substantial breakthrough on this topic is due to Simar and Wilson
(1999) which explained how to bootstrap MPIs (leveraging on Korostelev et al. (1995); Kneip
et al. (1998); Simar and Wilson (1998b) among others). More recently, Simar and Wilson
(2019); Kneip et al. (2021) derived several new central limit theorems for the sample mean
of MPIs (leveraging on Kneip et al. (2015) among others), while Pham et al. (2023) derived
new central limit theorems (CLTs) for the more general aggregates of MPIs, which involve
economically justified weights in the aggregation (leveraging on Zelenyuk (2006); Simar and
Zelenyuk (2018); Kneip et al. (2021) among others). These new developments were needed
because when DEA is used to estimate MPIs (or its components), the estimates are consistent
and asymptotically unbiased (under certain conditions), yet except for peculiar cases the bias
dominates the variance in terms of asymptotic convergence rates. This dominance remains
even for averages of MPIs (or its components), which leads to faulty statistical inference via
the standard CLT. The new statistical developments in these above-mentioned papers involve
jackknife bias correction and theoretical derivations of the new CLTs for such bias corrected
estimates. The resulting CLTs then enable practitioners to construct statistical confidence
intervals (or interval-estimates) for MPIs and conduct well-grounded statistical hypotheses
tests about them.

4 Other Contributions of Färe and Grosskopf

It is important to clarify that the contributions of Rolf Färe and Shawna Grosskopf go well
beyond the topic I focused on here (productivity indexes) and include other important areas
both for theory and applications. In fact, there are several distinct areas (with sub-areas)
that deserve separate papers on each and I will only mention them briefly here.

The first to mention is the duality theory in economics—the area thoroughly developed
by Ronald W. Shephard (Shephard (1953, 1970)) and other giants of the profession (e.g., see
Diewert (1971, 1974); Jorgenson and Lau (1974); Samuelson and Swamy (1974)). Working
with Shephard at the University of California at Berkley, Rolf Färe continued advancing this
area with others, especially with his old-time friends Robert Chambers, Shawna Grosskopf
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and Daniel Primont. (e.g. Färe and Primont (1995); Chambers et al. (1996b); Färe and
Primont (2006); Färe and Grosskopf (2000)).

A closely related key area is theory of various efficiency measures, including directional
distance function, and some contributions from Färe or Grosskopf here are Färe and Lovell
(1978); Chung (1996); Chambers et al. (1998); Färe et al. (2007, 2019) to mention a few.28

Another key area is modeling bad outputs and congestion and their applications in envi-
ronmental economics—some key works contributions from Färe or Grosskopf here include the
pioneering Econometrica article by Färe and Svensson (1980) as well as Färe and Grosskopf
(1983); Färe et al. (1989b); Chung et al. (1997b); Färe and Grosskopf (2003, 2004), to mention
a few, which in turn influenced many others (e.g., Kuosmanen (2005); Kuosmanen and Podi-
novski (2009); Podinovski and Kuosmanen (2011); Pham and Zelenyuk (2019), to mention a
few).

Färe and Grosskopf were also the first to propose the so-called network DEA (Färe and
Grosskopf (1996a)), which started a new and growing literature (e.g., see Kao (2014) for a
review).

Substantial footprints of Färe and Grosskopf can also be found in applied economics
literature, i.e., impacting actual practice, both in academia and outside of it (industries and
governments). Besides the area of empirical cross-country studies of economic growth and
that were substantially impacted by Färe et al. (1994c), their impact is also vivid for the
area of performance analysis of healthcare organizations (e.g., see Färe et al. (1989a, 1992c,
1994a); Grosskopf and Valdmanis (1987)), energy and environment (Färe et al. (1983, 2010,
2013); Ball et al. (2015); Bostian et al. (2016)), to mention just a couple.

Last, yet not least, an important area (closely related to virtually all the areas above)
where they contributed with various co-authors is aggregation theory for efficiency and pro-
ductivity indexes. Some important contributions here include the works of Färe et al. (1992a);
Färe and Zelenyuk (2003); Färe et al. (2004, 2008); Färe and Zelenyuk (2012); Färe and Kara-
giannis (2014). Their work also substantially influenced the works of many other researchers
on this topic (e.g., Li and Ng (1995); Zelenyuk (2006); Simar and Zelenyuk (2007); Mayer
and Zelenyuk (2014); Zelenyuk (2015); Karagiannis (2015); Simar and Zelenyuk (2018); Färe
and Zelenyuk (2019) and Pham et al. (2023), to mention a few).29

28Also see related earlier ideas by Allais (1943); Diewert (1983); Luenberger (1992), among others.
29Many of these works were extending the aggregation theorem and ideas of Koopmans (1957) as well as

ideas of structural efficiency from Farrell (1957) and Førsund and Hjalmarsson (1979).
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5 Concluding Remarks

Productivity—Quo Vadis? In other words, where will the field of Productivity be going?
While I am not an oracle to answer this intriguing for our community question, a few remarks
(perhaps totally incorrect) seem worth making here. So, I will try. In my humble opinion,
besides continuing to explore and refine the same important points that our community has
been exploring for the last 100+ years, a few important and somewhat novel topics are likely
to become trendy in the next decade or so.

First of all, attaining a greater synthesis of the five major approaches for productivity
analysis (as per classification in the section 2.4) seems to be a natural (or wishful) path
for future research endeavors. This seems especially overdue for the case of synthesizing the
Olley-Pakes approach with the productive efficiency approach, the closely related ‘Malmquist
approach’ and more generally the index number approach.

Second, yet as important, more combinations of our usual models and their estimators
(in all the five approaches) with the recent developments in Causal Inference (CI) seem
well-warranted, if not overdue—to better understand causal effects on productivity. Third,
and as important, combinations of our usual models and their estimators with Machine
Learning (ML) and Artificial Intelligence (AI). The aims here could be to automatize the
performance (productivity and efficiency) analysis to enable quick and simple use of many
alternative models and many alternative estimators of such models and a selection of the
most appropriate ones (if any) that fit or explain the data best. A particular sub-topic
here is the handling of big data and related challenges. The fourth, equally important and
perhaps most challenging direction of research is about the combinations of our usual models
and their estimators with both CI and ML/AI methods. The way that I see it will possibly
be in the future is that companies and government agencies will have performance dashboard
apps that will, in real time and instantaneously, enable inference about the performance of
a system of interest via any of a wide range of methods we have been (and will be further)
developing over decades. (A note for those reading this in a few decades: Currently, it often
takes a few researchers performing such analysis over a few months or even years! It also
took over a year to write and fine-tune this paper.)

To conclude, productivity analysis is a very important research area and many models
and estimators have been developed already, with fundamental contributions from Färe and
Grosskopf, among others. As some colleagues pointed out, some of these contributions have
generated new streams of literature in our field due to “flaws” (or I would rather say im-
perfections, typically present in anyone’s work) left in those papers that inspired others to
try to correct or perfect them. Here, I would respond with the phrase attributed to Albert
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Einstein: “Anyone who has never made a mistake has never tried anything new.” Indeed,
Rolf Färe and Shawna Grosskopf not only tried new concepts, ideas and methods, they also
discovered many of them and, to my knowledge and personal experience, appreciated and
encouraged others trying to improve upon them. And, importantly, it is this type of spirit of
appreciation and encouragement from them and others in our great community (ISEAPA)
that, I think, promises that many more interesting advancements are yet to come in our
field of research, especially from the younger generation, standing on the shoulders of their
teachers and our teachers, where Färe and Grosskopf play a prominent role. So, let’s apply
these skills and knowledge the best we can to help improve this fundamentally important
aspect for an economic development. Let’s do so based on solid theories from economics,
statistics, operations research, as well as from the new areas of research (CI, ML, AI, among
others)—for the benefit of the entire world! After all, and paraphrasing Paul Krugman:
productivity (and efficiency) is almost everything...
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Table 1: Top cited papers (as in Figure 1)
Research Citations Source

Färe et al. (1994c) 2530 American Economic Review
Olley and Pakes (1996) 2325 Econometrica
Yachi and Loreau (1999) 1753 Proceedings of the National Academy of Sciences of the USA
Javorcik (2004) 1563 American Economic Review
Chung et al. (1997a) 1558 Journal of Environmental Management
Färe et al. (1989b) 1226 Review of Economics and Statistics
Siegel et al. (2003) 964 Research Policy
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Emrouznejad et al. (2008) 697 Socio-Economic Planning Sciences
Banker and Natarajan (2008) 479 Operations Research
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Färe and Grosskopf (1996b) 383 Economics Letters
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