Sparse High-Dimensional Vector Autoregressive Bootstrap
Robert Adamek,
Stephan Smeekes and
Ines Wilms
Papers from arXiv.org
Abstract:
We introduce a high-dimensional multiplier bootstrap for time series data based capturing dependence through a sparsely estimated vector autoregressive model. We prove its consistency for inference on high-dimensional means under two different moment assumptions on the errors, namely sub-gaussian moments and a finite number of absolute moments. In establishing these results, we derive a Gaussian approximation for the maximum mean of a linear process, which may be of independent interest.
Date: 2023-02
New Economics Papers: this item is included in nep-ecm and nep-ets
References: Add references at CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2302.01233 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2302.01233
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().