EconPapers    
Economics at your fingertips  
 

Random neural networks for rough volatility

Antoine Jacquier and Zan Zuric

Papers from arXiv.org

Abstract: We construct a deep learning-based numerical algorithm to solve path-dependent partial differential equations arising in the context of rough volatility. Our approach is based on interpreting the PDE as a solution to an SPDE, building upon recent insights by Bayer, Qiu and Yao, and on constructing a neural network of reservoir type as originally developed by Gonon, Grigoryeva, Ortega. The reservoir approach allows us to formulate the optimisation problem as a simple least-square regression for which we prove theoretical convergence properties.

Date: 2023-05
New Economics Papers: this item is included in nep-big, nep-cmp, nep-des and nep-rmg
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://arxiv.org/pdf/2305.01035 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2305.01035

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2024-12-28
Handle: RePEc:arx:papers:2305.01035
            
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy