EconPapers    
Economics at your fingertips  
 

Portfolio Optimization with Spectral Measures of Risk

Carlo Acerbi and Simonetti Prospero

Papers from arXiv.org

Abstract: We study Spectral Measures of Risk from the perspective of portfolio optimization. We derive exact results which extend to general Spectral Measures M_phi the Pflug--Rockafellar--Uryasev methodology for the minimization of alpha--Expected Shortfall. The minimization problem of a spectral measure is shown to be equivalent to the minimization of a suitable function which contains additional parameters, but displays analytical properties (piecewise linearity and convexity in all arguments, absence of sorting subroutines) which allow for efficient minimization procedures. In doing so we also reveal a new picture where the classical risk--reward problem a la Markowitz (minimizing risks with constrained returns or maximizing returns with constrained risks) is shown to coincide to the unconstrained optimization of a single suitable spectral measure. In other words, minimizing a spectral measure turns out to be already an optimization process itself, where risk minimization and returns maximization cannot be disentangled from each other.

Date: 2002-03
References: Add references at CitEc
Citations: View citations in EconPapers (18)

Downloads: (external link)
http://arxiv.org/pdf/cond-mat/0203607 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:cond-mat/0203607

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2024-12-28
Handle: RePEc:arx:papers:cond-mat/0203607
            
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy