Mixed-frequency Growth-at-Risk with the MIDAS-QR method: Evidence from China
Qifa Xu,
Mengnan Xu,
Cuixia Jiang and
Weizhong Fu
Economic Systems, 2023, vol. 47, issue 4
Abstract:
High-frequency financial indicators provide more useful information and are efficient at forecasting low-frequency GDP. To this end, we extend the traditional Growth-at-Risk (GaR) framework for mixed frequency data. In this extension, monthly financial indicators are used to forecast quarterly GDP with the mixed data sampling-quantile regression (MIDAS-QR) method. Its ability for high-frequency monitoring of GaR is investigated using Chinese evidence. The evidence shows that our mixed-frequency GaR is promising in terms of good forecasting and nowcasting results, and can offer early warning of GDP downturns.
Keywords: Growth-at-Risk; MIDAS-QR; Skewed t-distribution; Conditional density (search for similar items in EconPapers)
Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0939362523000651
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecosys:v:47:y:2023:i:4:s0939362523000651
DOI: 10.1016/j.ecosys.2023.101131
Access Statistics for this article
Economic Systems is currently edited by R. Frensch
More articles in Economic Systems from Elsevier Contact information at EDIRC.
Bibliographic data for series maintained by Catherine Liu ().