EconPapers    
Economics at your fingertips  
 

Forecasting Stock Market Crashes via Machine Learning

Hubert Dichtl, Wolfgang Drobetz and Tizian Otto

Journal of Financial Stability, 2023, vol. 65, issue C

Abstract: This paper uses a comprehensive set of predictor variables from the five largest Eurozone countries to compare the performance of simple univariate and machine learning-based multivariate models in forecasting stock market crashes. In terms of statistical predictive performance, a support vector machine-based crash prediction model outperforms a random classifier and is superior to the average univariate benchmark as well as a multivariate logistic regression model. Incorporating nonlinear and interactive effects is both imperative and foundation for the outperformance of support vector machines. Their ability to forecast stock market crashes out-of-sample translates into substantial value-added to active investors. From a policy perspective, the use of machine learning-based crash prediction models can help activate macroprudential tools in time.

Keywords: Extreme event prediction; Stock market crashes; Machine learning; Active trading strategy (search for similar items in EconPapers)
JEL-codes: G11 G12 G14 G17 (search for similar items in EconPapers)
Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1572308922001206
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:finsta:v:65:y:2023:i:c:s1572308922001206

DOI: 10.1016/j.jfs.2022.101099

Access Statistics for this article

Journal of Financial Stability is currently edited by I. Hasan, W. C. Hunter and G. G. Kaufman

More articles in Journal of Financial Stability from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2024-12-28
Handle: RePEc:eee:finsta:v:65:y:2023:i:c:s1572308922001206
            
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy