In mathematics, given a partial order and on a set and , respectively, the product order[1][2][3][4] (also called the coordinatewise order[5][3][6] or componentwise order[2][7]) is a partial ordering on the Cartesian product Given two pairs and in declare that if and

Hasse diagram of the product order on ×

Another possible ordering on is the lexicographical order. It is a total ordering if both and are totally ordered. However the product order of two total orders is not in general total; for example, the pairs and are incomparable in the product order of the ordering with itself. The lexicographic combination of two total orders is a linear extension of their product order, and thus the product order is a subrelation of the lexicographic order.[3]

The Cartesian product with the product order is the categorical product in the category of partially ordered sets with monotone functions.[7]

The product order generalizes to arbitrary (possibly infinitary) Cartesian products. Suppose is a set and for every is a preordered set. Then the product preorder on is defined by declaring for any and in that

if and only if for every

If every is a partial order then so is the product preorder.

Furthermore, given a set the product order over the Cartesian product can be identified with the inclusion ordering of subsets of [4]

The notion applies equally well to preorders. The product order is also the categorical product in a number of richer categories, including lattices and Boolean algebras.[7]

See also

edit

References

edit
  1. ^ Neggers, J.; Kim, Hee Sik (1998), "4.2 Product Order and Lexicographic Order", Basic Posets, World Scientific, pp. 64–78, ISBN 9789810235895
  2. ^ a b Sudhir R. Ghorpade; Balmohan V. Limaye (2010). A Course in Multivariable Calculus and Analysis. Springer. p. 5. ISBN 978-1-4419-1621-1.
  3. ^ a b c Egbert Harzheim (2006). Ordered Sets. Springer. pp. 86–88. ISBN 978-0-387-24222-4.
  4. ^ a b Victor W. Marek (2009). Introduction to Mathematics of Satisfiability. CRC Press. p. 17. ISBN 978-1-4398-0174-1.
  5. ^ Davey & Priestley, Introduction to Lattices and Order (Second Edition), 2002, p. 18
  6. ^ Alexander Shen; Nikolai Konstantinovich Vereshchagin (2002). Basic Set Theory. American Mathematical Soc. p. 43. ISBN 978-0-8218-2731-4.
  7. ^ a b c Paul Taylor (1999). Practical Foundations of Mathematics. Cambridge University Press. pp. 144–145 and 216. ISBN 978-0-521-63107-5.


pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy