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Abstract. We give an O(
√

logn) factor approximation algorithm for covering a rectilinear
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1. Introduction. We consider the problem of covering rectilinear polygons with
axis-parallel rectangles. Given a rectilinear polygon P with complexity n (complexity
refers to the minimum of the number of vertical edges and the number of horizontal
edges in the polygon), this problem requires determining the minimum number of
axis-parallel rectangles whose union covers P . The polygon P may have holes in it.

Applications. Cheng, Iyengar, and Kashyap [5] showed that this problem has
applications to image compression. They claim that representing an image using a
rectangle covering of its white pixels gives compression superior to that achieved by
quadtrees. It also has applications to printing integrated circuits [9].

Hardness. Much effort has gone into determining the computational complexity
of this problem. In spite of this, the exact complexity of this problem has remained
open for many years and continues to do so. Masek [19] showed that this problem is
NP-complete. Later, Culberson and Reckhow [6] used a clever reduction from 3-SAT
to show that this is the case even when P has no holes. The next natural question is
whether the number of rectangles needed to cover P can be computed approximately.
Berman and Dasgupta [2] showed that this problem is MaxSNP-Hard for polygons
with holes, ruling out the possibility of a polynomial time approximation scheme.

Approximation results. Note that the rectangle covering problem is a special case
of the general set covering problem. Therefore, it admits an approximation algorithm
with a performance guarantee of O(log n), using the greedy scheme due to Johnson
[10] and Lovasz [16]. This was the best approximation factor known for the rectangle
covering problem until now. Further, it is known that the general set covering problem
cannot be approximated any better, modulo constant terms, unless NP = P [17, 18].
However, this proof of hardness assumes certain properties about the set system which
do not hold for the rectangle covering problem. In this paper, we address the issue of
whether the Ω(log n) approximation factor barrier can be broken in polynomial time
for the rectangle covering problem.

There seem to be only a few examples of nontrivial algorithms breaking this
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barrier for specific instances of the set covering problem. Brönnimann and Goodrich
[3] showed that the covering problem for any set system with Vapnik–Chervonenkis
dimension d can be approximated within an O(d log(dc)) factor, where c is the cost of
the optimal covering. For the rectangle covering problem, while d is a constant, c can
be shown to be Ω(

√
n); therefore, the Brönnimann–Goodrich algorithm gives only an

O(log n) approximation factor. Brönnimann and Goodrich [3] also showed that O(c)
sized set covers can be computed for two-dimensional disc covering and a problem
related to three-dimensional polytope separation as these set systems admit ε-nets of
small size. It is not clear whether the rectangle covering problem admits ε-nets of
small size.

Special situations. There are special situations when the above barrier can indeed
be broken. When P is hole-free, Franzblau [7] showed a factor 2 approximation
guarantee. When P has holes, Franzblau also gave an O(n log n) time heuristic which
gives an O(log n) approximation factor. When P is both vertically and horizontally
convex (i.e., the intersection of any vertical or horizontal line and P is just a single
line segment), Chaiken et al. [4] gave a polynomial time algorithm which computed
the minimum number of rectangles required, exactly. This was improved upon by
Franzblau and Kleitman [8], who achieved the same result under the weaker restriction
that P is just vertically convex. Note that both restrictions preclude the presence of
holes.

Other papers which have dealt with this problem are [9, 11, 12, 13, 5].
Our result. We give the first algorithm to break the Ω(logn) barrier even when

P has holes. Our algorithm gives an approximation guarantee of O(
√
log n).

Our algorithm is in fact trivial, and our contribution lies entirely in showing a
lower bound. For simplicity, assume that all holes in P are point holes.1 Then our
algorithm simply puts one rectangle for each strip, i.e., a stretch of points between two
vertically aligned holes (e.g., strip s and its associated rectangle R in Figure 1; this is
defined formally in section 2). This rectangle covers the strip entirely and is made as
thick as possible. It is easy to see that the rectangles for all strips together cover P
(the boundary of P must be treated as being lined by point holes for this). Also note
that the rectangles for two distinct strips could be identical (e.g., strips B and D in
Figure 2). We show that the total number of distinct rectangles #N obtained in the
above process is O(

√
log n ∗ |OPT |)), where OPT is the minimum cover.

The lower bound. The main hurdle in breaking the Ω(logn) barrier is to obtain
a good lower bound for the optimum. One such lower bound is the cardinality of the
largest independent set or antirectangle, i.e., a set of points in P , no two of which can
be covered by the same rectangle. Chvatal (as reported in [4]) originally conjectured
that the size of the minimum covering equals the size of the largest independent
set. While this is indeed true for vertically and horizontally convex P , as shown by
Chaiken et al. [4], it is not true for general P , with or without holes. Szemeredi found
a counterexample with holes, and Chung found one without holes (both reported in
[4]). Erdos (as reported in [4]) asked whether the ratio of the sizes of the minimum
covering and the largest independent sets is bounded. It is easy to show that this
ratio is O(log n). However, to the best of our knowledge, the best lower bound on this
ratio known to date is just 21/17− ε, due to [4].

Instead of using the above independent set bound, we use the clique covering
lower bound. Consider the finite set of all points in P after suitable discretization.

1The case when the holes are arbitrary can effectively be reduced to the case of point holes, as
we will show later in this paper.
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Consider the graph G with these points as vertices and an edge between two points if
and only if they are both covered by some rectangle. It is easy to see that |OPT | is
exactly the size of the smallest clique cover of this graph (i.e., a collection of cliques
that covers all vertices). We shall lower bound the clique cover number by obtaining
an upper bound on the sizes of cliques in OPT .

One problem we face in the process is that the cliques of G could be very different
in size and therefore do not admit a uniform upper bound. However, we show that if
none of the strips are jumpers (we will define this term in section 3.2), then we can
choose Θ(#N) points such that the maximum clique size in the subgraph induced by
them is O(

√
log n), and therefore |OPT | = Ω(#N/√log n), as required. Our proof of

this fact is based on a somewhat detailed exploration of the structure of cliques in G.

There is a correspondence between the points that are chosen in the above induced
subgraph and the set of strips. We choose two points for each strip, one to its left and
one to its right, after partitioning the strips into disjoint sets called families (defined
later); this ensures that the induced subgraph has Θ(#N) points. As mentioned
earlier, if there are no jumpers, we show that the maximum clique size is O(

√
log n)

(this is not strictly true; we show that a further subset of this set of points has this
property). Also, the number of jumpers turns out to be at most (|OPT |√log n),
so we can ignore such strips and argue about the points defined by the rest. The
above description is very incomplete and will be developed formally in the remaining
sections.

A significant point to note is that while we show a lower bound on the clique
covering number of graph G in the absence of jumpers, we are unable to show a good
lower bound on the size of the largest independent set. We can show that the number
of families is a lower bound on the size of the largest independent set; however, the
average family size can be as large as Ω(log n), as we shall show later.

Roadmap. In section 2, we show how to discretize the polygon and then describe
our algorithm for laying rectangles. For simplicity and clarity, we first explain the
arguments in section 3 under some restrictive assumptions. The general case requires
a refinement of these ideas and is handled in section 4. Section 5 describes an example
where the average family size is large. Section 6 mentions the loose threads which
remain in this problem and also describes some related problems.

2. Preliminaries. Consider the grid formed by drawing infinitely long lines
through each vertical and horizontal edge of the polygon (i.e., both the polygon
boundary and the hole boundaries) (see Figure 1). Note that this need not be a
uniform grid; the spacing between adjacent grid lines is not necessarily the same.
Let n denote the vertical complexity of P , i.e., the number of horizontal grid lines.
Without loss of generality, we assume that the vertical complexity is at most as large
as the horizontal complexity.

Viewing the entire plane as partitioned into grid cells, the term hole shall hence-
forth denote any grid cell which is in the exterior of the polygon (i.e., either outside
the outer boundary or within one of the holes). Since any grid cell lies either com-
pletely in the interior of the polygon or completely in the exterior of the polygon (see
Figure 1), the above term is well defined.

Note that any two holes are either perfectly aligned or completely misaligned with
respect to the grid lines. Also note that two holes could lie side by side, touching each
other (e.g., holes A,B in Figure 1). If we treat each grid cell as a point, we get the
case of point holes. However, the rest of the description will be in terms of cells.
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Fig. 1. The grid: Dark cells and external cells are holes. C1, C2 form a strip s of length 2. R
is the rectangle associated with s, and u and l are its upper and lower holes, respectively.

2.1. Defining strips and laying rectangles. A sequence of consecutive ver-
tically aligned nonhole cells bounded by holes on the top and the bottom constitutes
a strip (see Figure 1). The length of a strip A is the number of cells in it and is
denoted by l(A). The upper hole for a strip is the hole which lies immediately above
the topmost cell for that strip. The lower hole is similarly defined.

For each strip, we define its associated rectangle to be the unique rectangle that
covers this strip and extends as far as possible to the left and to the right. In other
words, the associated rectangle is obtained by sweeping the strip to the left and right
until it is blocked by some holes on both sides (see Figure 1). The algorithm simply
adds the associated rectangle of every strip to the overall cover. Lemma 2.1 shows that
these rectangles indeed cover the given polygon. The rest of the paper proves that
this naive way of covering is at most an O(

√
log n) factor larger than the optimum.

The hole which blocks the associated rectangle of a strip S on the right is called
the right blocking hole of S, with ties broken in favor of the topmost hole. Left blocking
holes are defined similarly.

Lemma 2.1. Each point in the polygon is contained in the associated rectangle of
some strip.

Proof. Each nonhole grid cell, c, belongs to a unique strip. This is because if the
cell c is swept vertically up and down, it would hit a hole in both directions. The
rectangle associated with this strip contains c.

Note that two strips could have identical associated rectangles (e.g., strips B,D in
Figure 2). Consider equivalence classes of strips, where strips with the same associated
rectangle are in one class. All but the rightmost of the strips in an equivalence class
are called unnecessary strips. Clearly, an unnecessary strip can be ignored. It suffices
to account for the rectangles associated with necessary strips.

2.2. Spanning, nestedness, and disjointness. A rectangle associated with
strip A is said to pass through strip B if some but not all of the cells in strip B are
contained in this rectangle (see Figure 2). In this situation, B is said to l-span A if it
is to the left of A and r-span A if it is to the right of A. Note the strict condition in
the above definition; i.e., the length of B must be strictly greater than that of A.
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Fig. 2. A family: Strips A,B,C are in one right family and have the common blocking hole h.
D is unnecessary and has the same associated rectangle as B. B r-spans A. Strips E and F are
disjoint.
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C

A′ C′ witnesses of A,B,C
rectangle containing left

are in one left clique
A,B,C

: successors ofA′, B′, C′ A,B,C

B′

Fig. 3. A left clique. B l-spans A, and C l-spans B.

A collection of strips is called right nested if the strips increase in length from left
to right and each strip r-spans all smaller strips. Left nesting is defined analogously.
The strips A, B, and C in Figure 3 are left nested.

Two strips A,B are said to be disjoint if one of the following conditions holds:
(i) the lower hole of A is horizontally aligned with or higher than the upper hole of
B, or (ii) the upper hole of A is horizontally aligned with or below the lower hole of
B (see Figure 2).

2.3. Successors, terminals, and witness cells. We bound the approximation
factor of our algorithm by first identifying a subset of the nonhole cells and then
showing lower bounds on the number of rectangles needed to cover these cells. The
nonhole cells we identify are called witness cells. There are two kinds of witness cells,
left witness cells and right witness cells. To define witness cells, we need the notion
of successor strips.

We will formally define successor strips in section 3.1. Here, we introduce some
properties of successors. The right successor strip for a strip A r-spans A, and the
left successor for a strip A l-spans A. Not each necessary strip has a right successor;
those strips which do not have right successors are called right terminal strips. Left
terminal strips are defined analogously.

Given successors and terminals, witnesses are defined as follows. For each right
terminal strip A, its right witness cell is the cell in A which is horizontally aligned
with its right blocking hole (see Figure 4). For each right nonterminal strip A, its
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right witness for

terminal C

right blocking hole of C

right witness for
A

Successor of A

A

Fig. 4. Right witnesses for nonterminal strip A and terminal strip C.

right witness is the cell in its right successor strip which is horizontally aligned with
A’s upper hole (see Figure 4). The left witness is defined in a similar manner.

Note that right witnesses for right nonterminal strips A are not well defined if the
upper hole of the right successor of A is aligned with the upper hole of A. An analogous
fact holds for left witnesses of left nonterminal strips. This is clearly a problem
because the above process may not define sufficiently many witness cells to obtain a
good enough lower bound on the size of the optimum. We solve this problem by first
identifying a constant fraction of the necessary strips with the following property:
each such strip has a well-defined left witness. The remaining necessary strips are
called discarded strips, and they play no role in the proof.

The precise definition of successor strips and the description of which strips are
discarded appear in subsequent sections. We set up some more preliminaries in this
section.

2.4. Cliques and the optimum cover. The optimum cover, denoted by OPT ,
must cover all the witness cells defined above. Consider a graph G whose vertices
are the various witness cells defined above and whose edges denote that the two
associated cells can be covered together by a single rectangle. Note that each cell is
either completely inside or completely outside any maximal rectangle (one which has
holes touching all four sides). Two witness cells are said to be independent if no single
rectangle covers both of them; i.e., there is no edge between them in G. The following
lemma holds.

Lemma 2.2. All witness cells contained in any rectangle form a clique in G.
Conversely, any clique in G comprises witness cells which can be covered by just one
rectangle.

Proof. The first statement of the lemma follows from the definition of G.
We now show that any clique C in G can be covered by one rectangle. Let a, b, c, d

be the leftmost, topmost, rightmost, and bottommost witness cells in C, respectively.
Note that a, b, c, d need not be all distinct. We claim that the rectangle R having
a, b, c, d on its left, top, right, and bottom edges, respectively, is hole-free (see Figure
5). The claim then follows since a, b, c, d are extreme points.

To show that R is hole-free consider all edges between witness cells a, b, c, d. If
a, b, c, d are all distinct there will be six such edges, and fewer otherwise. There exist
up to six rectangles, each of which covers both witness cells for one of the above edges
(see Figure 5). Clearly, R is contained in the union of these rectangles.

We partition the witness cells into O(|OPT |) cliques, where |OPT | denotes the
number of rectangles used by OPT , in the following manner. For each witness cell,
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a
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d

Fig. 5. The rectangle R formed by a, b, c, d and the six possible rectangles formed by each pair
of witness cells, which together cover R.

assign it to some rectangle covering it in OPT , breaking ties arbitrarily. From Lemma
2.2 above, this corresponds to a partition of witness cells into cliques. We partition
each clique further into two parts, one containing left witness cells and another con-
taining right witness cells; these parts are called the left clique and the right clique,
respectively.

Remark. We say that a strip is in a particular left clique (right clique, respectively)
if its left witness cell (right witness cell, respectively) is in that clique, and, by abuse
of notation, we will sometimes identify a strip with its witness cell.

To bound the approximation factor of our algorithm, we will show a lower bound
on the number of cliques obtained above. This lower bound will exploit several in-
teresting properties of these cliques. However, before we describe these properties,
we need to specify how successors are determined and how strips to be discarded are
identified. We start by describing the above for a simpler special case so as to bring
out the intuition behind our proof.

We again remind the reader that unnecessary strips are being ignored, and any
reference to a strip in the rest of the paper denotes a necessary strip.

3. The lower bound argument: A special case. We make the following
assumptions in this section and illustrate the main ideas of the proof of the lower
bound for this special case. We shall return to the general case in section 4.

Assumption 1. The length of each strip is a power of 2.

Assumption 2. The upper hole of a strip is not horizontally aligned with that
of its left or right successor strip. The notion of a successor strip was introduced in
section 2, and successors will be defined shortly.

Recall the preceding discussion on discarded strips in section 2. Assumption 2
precludes exactly those situations which forced us to introduce the notion of discarded
strips. It follows that there is no need to discard any strips. Thus, all necessary strips
will have associated left and right witnesses. Assumption 1 will make the definition
of successor strips a little easier.

3.1. Defining families and successors. We organize strips into families as
follows. Our proofs crucially exploit the interplay between cliques and families.

We define a right family to be a set of strips with the same right blocking hole
(Figure 2). It is easy to see that strips in a right family are right nested (the strict
increase in strip lengths from left to right is a consequence of the absence of unneces-
sary strips). The right successor of a strip A in a right family is defined as the next
strip A′ to the right in the family. The rightmost strip in the family does not have a
successor and is a right terminal strip. Left families, successors, and terminal strips
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B

D
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A′B′
D′Rectangle R containing

the witness cells of

A,B,D

Fig. 6. A,B,D are in a right clique. A′, B′, D′ are their respective right successors. A is an
exception.

are defined analogously. It follows from Assumption 1 and the nestedness property
that the number of strips in a family is at most logn.

Remark. The notion of successor defined above will have to be changed when we
deal with the general case in section 4 in the following manner. We will define two
types of strips and use the above definition for strips of the first kind; strips of the
second kind will require a different definition, and the successor of such a strip A will
have length < 2l(A). However, it will continue to be the case that the right successor
of A r-spans A, and, similarly, the left successor of A l-spans A for all undiscarded
strips A. Note that Assumption 1 precludes the existence of strips of the second kind
above.

3.2. Properties of cliques. Our proof is based on some structural facts, which
we state in the following lemmas. In section 3.3, we will use these lemmas to obtain
the approximation factor. The proofs of these lemmas appear in section 3.4.

Lemma 3.1. All right (left, respectively) witness cells associated with right (left,
respectively) terminal strips are independent. Therefore, the number of families and
terminal strips is O(|OPT |).

All further references to strips in subsequent lemmas in this section will be to
nonterminal strips.

Lemma 3.2. Strips in a right (left, respectively) clique belong to distinct right
(left, respectively) families.

Lemma 3.3. With the exception of at most one strip, all strips in a right (left,
respectively) clique constitute a right (left, respectively) nested set of strips.

Thus, each clique of OPT has at most two exceptions, one in each direction. The
total number of exception strips is therefore O(|OPT |). These exception strips can
be removed from consideration. Figure 6 shows an example of an exception strip in a
right clique. All further references to cliques in this section will assume that exception
strips are not present.

Lemma 3.4. Strips in any right (left, respectively) clique are in distinct length
categories; i.e., if a particular strip has length in the range [2i, 2i+1), then the next
strip to the right (left, respectively) has length at least 2 2i+1.

2Strips in a clique will actually at least double in length by Assumption 1. However, we prefer
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In addition, for any x > 0, the number of strips in a right (left, respectively)
clique or a right (left, respectively) family whose length is at least 2x times the length
of one of the two previous strips to the left (right, respectively) is O( lognx ).

Lemma 3.5. Let A,B be strips in a particular right (left, respectively) clique,
with l(A) < l(B). Let A′, B′ be the right (left, respectively) successors of A,B, re-
spectively. These four strips must be in the following order from left to right (right to
left, respectively): A,B,B′, A′. In addition, A′ cannot r-span (l-span, respectively) B
and must have its upper hole above that of B.

Definitions. A strip A is called a right jumper if its right successor has length
at least 2∆l(A), where ∆ is a parameter. This parameter will be set to Θ(

√
log n) at

the end. Left jumpers are defined analogously. The vertical separation between two
holes a, b is the vertical distance between their lower boundaries, measured in terms
of the number of grid cells (see Figure 12).

Lemma 3.6. Let A,B be nonjumper strips in some right (left, respectively) clique,
with l(A) < l(B). The following two facts hold.

1. The vertical separation between the upper holes of A and B is at most 2∆l(A).
2. If A is not amongst the smallest γ∆ nonjumper strips in this right clique (left

clique, respectively), the vertical separation between the upper holes of A and

B is at most l(B)
2(γ−1)∆ .

Lemma 3.7. Let A and B be strips belonging to the same right (left, respectively)
clique, with l(A) < l(B). Then A lies completely above the right (left, respectively)
blocking hole of B.

Lemma 3.8. Let C and C ′ be the left and right cliques, respectively, containing
the left and right witness cells, respectively, of strip A. Let B be a strip in C smaller
than A. Let B′ be a strip in C ′ smaller than A. Then B′ cannot l-span B, and B
cannot r-span B′.

3.3. Accounting for strips. The number of terminal strips is O(|OPT |) by
Lemma 3.1. The number of jumper strips is O(|OPT |∗ log n∆ ) by Lemma 3.4. All refer-
ences to strips in the rest of this section are to nonterminal, nonjumper, nonexception
(see Lemma 3.3) strips. All references to cliques assume that terminal, jumper, and
exception strips have been removed; references to clique sizes denote sizes subsequent
to this removal.

We now consider the remaining strips and show that there exists a large subset
W of the witnesses associated with these strips such that the graph induced by W
has only small, i.e., size Θ(∆), cliques. A rough reason why such a subset W exists
is as follows.

By the nestedness property of strips in a clique and by Assumption 1, large
cliques will necessarily have long strips and will therefore require proportionately
large vertical space. In addition, Lemma 3.6 states that if A,B are strips in a large
clique, then the vertical separation between the upper holes of A and B is small. Given
the properties of cliques stated above, we will show that the left cliques containing
A,B and the right cliques containing A,B cannot all satisfy the dual requirements of
large vertical space and small vertical separation, unless one of these cliques is small.
This intuition is formalized below.

Remark. We mention here that the rest of this section uses only Lemmas 3.1,
3.2, 3.3, 3.4, 3.5, 3.6, 3.7, and 3.8. Assumptions 1 and 2 will not be used directly.
When we drop these assumptions and proceed to the general case, we will apply the

to work with this weaker condition, as it generalizes even when Assumption 1 is dropped.
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description below to a carefully chosen subset of strips for which the above lemmas
will indeed hold.

Definition. The right follower of a strip B is defined to be the unique next
longer strip, if any, in the right clique containing B (uniqueness holds from Lemma
3.3 and since exceptions are ignored). In Figure 6, D is a follower of B. Strip A also
has D as its follower, but A is dropped as it is an exception strip. Left followers are
defined similarly.

Lemma 3.9. Let P,Q be strips in some right clique C, with Q being the right
follower of P (Q need not exist). Then one of the following must hold.

1. P is among the smallest 3∆ strips in C, or P is the largest strip in C.
2. Q is among the smallest 5∆+1 strips in C ′′, where C ′′ denotes the left clique

containing Q.
3. 2∆l(P ) ≤ l(Q).
4. Let C ′ denote the left clique containing P . Let P ′ be the strip in C ′ whose

left follower is P . Either P ′ does not exist or 2∆l(P ′) ≤ l(P ).
5. Let Q1, . . . , Qk, in increasing order of length, be the strips in C ′′ which are

smaller than Q. Then 22∆l(Qk−1) ≤ l(Q).
Analogous statements hold for strips P,Q in a left clique C.

Proof. We suppose that none of the above five conditions holds to get a contra-
diction.

Since condition 1 is not satisfied, Q exists. Since condition 2 is not satisfied,
k ≥ 5∆+1. By Lemma 3.8, none of Q1, . . . , Qk r-span P (see Figure 7(a)). Similarly,
P cannot l-span any of Q1, . . . , Qk. By Lemma 3.3, Q r-spans P , and l-spans each of
Q1, . . . , Qk; therefore, the hatched regions must be hole-free. We consider two cases
now, depending upon whether the upper hole of Qk is above or below that of P .

First, suppose the upper hole of Qk is aligned with or above that of P (see Figure
7(a)). The lower hole of Qk must be above that of P ; otherwise, Qk r-spans P , which
contradicts Lemma 3.8. Therefore, the left blocking hole of Qk will be horizontally
aligned with or above the upper hole of P . By Lemma 3.7, Qk−1 is completely above
this blocking hole and therefore completely above P . Since the fifth condition is not
satisfied, 22∆l(Qk−1) > l(Q). Then the vertical separation between P and Q is at

least l(Qk−1) >
l(Q)
22∆ . Since the first condition is not satisfied, Lemma 3.6 implies

that the vertical separation between P and Q is at most l(Q)
22∆ , a contradiction. While

applying Lemma 3.6, recall that jumpers have been excluded from cliques earlier.
Second, suppose the upper hole of Qk is below that of P (see Figure 7(b)). The

bottom hole of Qk must be below that of P ; otherwise, P will l-span Qk, which
contradicts Lemma 3.8. Since Qk l-spans each of Q1, . . . , Qk−1, these must also have
their upper holes below that of P . Since P cannot l-span Q1, . . . , Qk (by Lemma
3.8), their lower holes must also be below that of P . Since condition 4 is violated,
P ′ exists. By Lemma 3.3, P l-spans P ′, and therefore P ′ must be to the right of Q
(see Figure 7(b)). Since P l-spans P ′, Q l-spans each of Q1, . . . , Qk (by Lemma 3.3),
and lower holes of Q1, . . . , Qk are below that of P , it must be the case that each of
Q1, . . . , Qk either l-spans P

′ or is completely below it (Qk l-spans P
′, while Qi lies

below P ′ in Figure 7(b)). We claim that at most 2∆ of Q1, . . . , Qk can l-span P
′.

This is shown in the next paragraph. Then the vertical separation between the upper

holes of Qk−2∆ (which is completely below P ′) and Q is at least l(P ′) > l(P )
2∆ > l(Q)

22∆

(because conditions 3 and 4 are not satisfied). Since k−2∆ > 3∆, Lemma 3.6 applied
to Qk−2∆ and Q implies that the vertical separation between the upper holes of these
two strips is at most l(Q)

22∆ , a contradiction.
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Fig. 7. Two situations for the upper hole of Qk.

It remains to show that at most 2∆ of Q1, . . . , Qk can l-span P
′. We show

that Qk−2∆ cannot l-span P ′. Suppose this is not true. Then Qk−2∆, . . . , Qk all
l-span P ′ and l(Qk−2∆) > l(P ′). By Lemma 3.4, Qk−2∆, . . . , Qk are in distinct
length categories, and therefore l(Q) ≥ 22∆l(Qk−2∆) > 22∆l(P ′) > 2∆l(P ). The last
inequality follows from the violation of condition 4. Then condition 3 is satisfied, a
contradiction.

Corollary 3.10. The number of nonterminal, nonjumper, nonexception strips
is O(|OPT | ∗ ( logn∆ +∆)).

Proof. Each nonterminal, nonjumper, nonexception strip P must be in some right
clique C and in some left clique C ′.

We consider five classes of these strips, depending upon which of the conditions
in Lemma 3.9 is satisfied. The number of strips P which satisfy the first condition is
clearly O(|OPT | ∗∆) because each clique in OPT has O(∆) such strips. The number
of strips P which satisfy the third condition is O(|OPT | ∗ ( logn∆ )) by Lemma 3.4.

Similarly, the number of strips P which satisfy the fourth condition is O(|OPT |∗ logn∆ ).
Next, consider strips P which satisfy either condition 2 or 5. Such a strip P has a
unique right follower Q. Note that any strip is the right follower of at most one strip.
Thus it suffices to bound the number of strips Q which are right followers of strips P
satisfying condition 2 or 5. Using the same argument as for condition 1, the number
of strips Q satisfying condition 2 is O(|OPT | ∗∆). Using an argument similar to that
for condition 4, the number of strips Q satisfying condition 5 is O(|OPT |∗ logn∆ ).

Thus, given Assumptions 1 and 2, by setting ∆ = Θ(
√
log n) we get that the

number of rectangles laid out by our algorithm is within an O(
√
log n) factor of the

optimal.

3.4. Proofs. We give the proofs of Lemmas 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, and
3.8 in that order. For the general case, we will not repeat the proofs of these lemmas.
To convince the reader that these proofs would continue to hold even in the absence
of Assumptions 1 and 2, we describe the proofs so that they are dependent only on
the following facts and on proofs of previous lemmas in the above order, instead of
Assumptions 1 and 2 directly. These facts are consequences of Assumptions 1 and 2
and of the way in which families and successors were defined. Thus, as long as the
general case obeys these facts, and if we derive the generalizations of these lemmas in
the same order, these proofs will continue to hold. However, there is one exception,
namely the first part of Lemma 3.4, where we shall use Assumption 1. This shall
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Fig. 8. Witnesses of terminal strips are independent.

require reproving when we get to the general case. This will be made precise in
section 4.4.

We state Facts 1–6 here.
Fact 1. Strips in a right (left, respectively) family are right (left, respectively)

nested and have the same right (left, respectively) blocking hole. Further, strips in
distinct right (left, respectively) families have distinct right (left, respectively) blocking
holes.

Fact 2. Each family has one terminal strip. Further, strips in a family lie in
distinct length categories (length categories are given by the length ranges [2i, 2i+1),
1 ≤ i ≤ log n− 1).

Note that by Assumption 1, strips in a family satisfy a stronger property; namely,
they at least double in size. However, the weaker property stated above will be all that
is available in the general case.

Fact 3. The right (left, respectively) successor of a strip A is the next strip to
the right (left, respectively) in the right (left, respectively) family containing A.

Fact 4. The right (left, respectively) successor of a strip A r-spans (l-spans,
respectively) A.

Fact 5. The right (left, respectively) witness of a nonterminal strip A, if it exists,
is horizontally aligned with the upper hole of A and lies on the right (left, respectively)
successor of A.

Note that the condition “if it exists” always holds by Assumption 2. However,
this will not be true in the general case, after Assumptions 1, 2 are dropped.

Fact 6. The right (left, respectively) witness of a terminal strip lies on the
terminal strip itself and is horizontally aligned with its right (left, respectively) blocking
hole.

We now give the proofs. At the end of each proof below, we make a careful note
of which of the above facts are used.

Proof of Lemma 3.1. We give the proof for right terminals. The proof for left
terminals is similar.

Suppose for a contradiction that there are two right terminal strips P,Q whose
right witnesses are not independent. P and Q must be in distinct right families, and
their right blocking holes are distinct, by Facts 1 and 2. Recall that the right witness
cells of P and Q are in P and Q, respectively, and are horizontally aligned with their
respective right blocking holes (see Fact 6).

Consider a rectangle containing the two witness cells; such a rectangle exists by
Lemma 2.2 (see Figure 8). Clearly, both P and Q must have their upper holes above
and lower holes below this rectangle. Without loss of generality, assume P is to the
left of Q. Note that the right blocking holes for both P and Q must be in the hatched
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Fig. 9. Two situations for M,N in Lemma 3.3 if N neither r-spans M nor is disjoint from M .

region (i.e., the extension of the above rectangle to the right; the rectangle itself must
be hole-free). Therefore, both blocking holes must be to the right of Q. Then it follows
that whichever one of these holes occurs further to the right of the other cannot be
the right blocking hole for either P or Q. In addition, if the two blocking holes are
vertically aligned, the lower one cannot be the right blocking hole for either P or Q.3

This gives a contradiction.

Remark. Note that the above proof used only Facts 1, 2, and 6 among the six
facts listed above.

Proof of Lemma 3.2. We show that if A and B are two strips in the same right
family, their right witness cells are independent. Similar arguments hold for the right.

Without loss of generality, assume that l(A) < l(B). By Fact 1, B is to the right
of A and r-spans A. By Facts 3 and 5, A defines its right witness cell either on B (if
B is the right successor of A) or to the left of B. Since B defines its right witness cell
on the horizontal line containing the upper hole of B and to the right of the upper
hole of B, it is easy to see that any rectangle containing the right witness cells of A
and B has to contain the upper hole of B. This implies that these two witness cells
are independent and cannot be in a clique.

Remark. Note that the above proof used only Facts 1, 3, and 5 among the six
facts listed above.

Proof of Lemma 3.3. We prove the lemma for a right clique C; similar arguments
hold for left cliques. The following fact will be useful.

Fact. Suppose strips M and N are two strips in C, and M is either to the left
of N or vertically aligned with it. Then either M and N are disjoint or N r-spans
M . This must be true; otherwise, one of the two situations shown in Figure 9 holds,
and then M ’s right witness cell will be independent from the right witness cell of N
(recall Facts 4 and 5).

Suppose the strips in C are not right nested. By the above fact, if each strip in C
r-spans the smallest strip in C, then there are no disjoint strips in C, and the strips
in C must be right nested. So there must exist a strip in C which is disjoint from
the smallest strip A in C; consider the smallest such strip B. Clearly, neither A nor
B can r-span any strip in C. We will show that all other strips D in C must r-span
the lower of A,B. It would then follow from the above fact that the strips in C with
the upper of A,B removed are right nested. We consider the case when B is below
A; the other case is similar.

Consider a strip D in C, other than the strips A,B, and suppose for a contra-
diction that D does not r-span B. Recall from the previous paragraph that neither

3Here, we use the fact that ties for the blocking hole were broken in favor of the upper hole.
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Fig. 10. (a) D r-spans A but not B. (b) A,B,D are disjoint. The order in which the successors
A′, B′, D′ are present is not important.

A nor B r-span any other strips in C. By the above fact, D must be disjoint from
B. Further, D either is disjoint from A or is to the right of A and r-spans A (see
Figure 10(a),(b)). We will show in the next paragraphs that the right blocking holes
of the two upper strips among A,B,D must be identical. But, by Lemma 3.2, A,B,D
must all be in distinct right families, and therefore, by Fact 1, they have distinct right
blocking holes, a contradiction.

To show that the right blocking holes of the two upper strips among A,B,D must
be identical, consider the rectangle R associated with clique C (by Lemma 2.2, such
a rectangle exists). This rectangle has the following properties. The right witness
cells for A,B,D are all in R, and A,B,D are themselves to the left of R. By Fact 5,
the right witness cells of A,B,D are aligned with their respective upper holes and lie
on their respective right successors, A′, B′, D′. By Fact 4, A′, B′, D′ r-span A,B,D,
respectively. Therefore, R must have its upper edge above the upper holes of A,B,D
and its lower edge below all these holes. In addition, A′, B′, D′ must all have their
upper holes above R and bottom holes below R (see Figure 10); these successor strips
must stab vertically through R. Note that the relative placement of A′, B′, D′ is not
important, though Figure 10 shows D′ placed between A′ and B′. Recall again that
A,B are disjoint, D,B are disjoint, and D either r-spans A or is disjoint from A.

It follows from these properties that the right blocking holes of the upper two
strips X,Y amongst strips A,B,D must be in the hatched region, i.e., the right
extension of R. Next, since a strip and its right successor must have the same right
blocking hole by Facts 1 and 3, the leftmost hole in the hatched region must be the
right blocking hole for both X,Y , as required.

Remark. Note that the above proof directly used only Facts 1, 3, 4, and 5 among
the six facts listed above, and Lemma 3.2.

Proof of Lemma 3.4. Strips in a right (or left) clique strictly increase in length
by Lemma 3.3. The first part of the lemma then follows from Assumption 1.

Next, we prove the second part of Lemma 3.4. Right families are right nested by
Fact 1. By Lemma 3.3, right cliques are also right nested. Therefore, in both right
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Fig. 11. (a) B and B′ lie between A and A′. (b) A′ lies to the left of B. (c) A′ r-spans B. (d)
Upper hole of A′ lies below that of B.

families and right cliques, strip lengths increase strictly monotonically to the right.
Since the smallest strip length is 20 and the largest is 2logn, the lemma follows. A
similar argument holds for left families and cliques.

Remark. Note that the above proof directly used Assumption 1, only Fact 1
among the six facts listed above, and Lemma 3.3.

Proof of Lemma 3.5. We prove the lemma for a right clique C. The argument for
left cliques is similar.

From Lemma 3.3, it follows that B r-spans A and hence must lie to the right of A.
If B is to the right of A′, then the right witness cells a and b of A and B, respectively,
are independent (see Figure 11(b); also see Facts 4 and 5). Therefore, B is to the left
of A′ and to the right of A. To show that the right successor of B also lies between
A and A′, we show in the next paragraph that A′ cannot r-span B. Since A′ and B
both r-span A, they cannot be disjoint either. Then it follows that the right blocking
hole of B is vertically aligned with or to the left of A′. Therefore, the right successor
of B is also to the left of A′ (since, by Facts 1 and 3, a strip and its right successor
have the same right blocking hole).

Suppose A′ r-spans B. Then the right blocking hole of B would be the same as
that of A (which is identical to that of A′ by Facts 1 and 3) (see Figure 11(c); the
hatched region must be hole-free); then A and B would be in the same right family
by Fact 1. This contradicts Lemma 3.2.

It remains to show that the upper hole of A′ is above that of B. By Fact 5, B’s
right witness cell lies on the horizontal line containing the upper hole of B. If the
upper hole of A′ is horizontally aligned with or below that of B, the witness cells a
and b of A and B, respectively, would be independent (see Figure 11(d)). Hence, the
upper hole of A′ lies above that of B.
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Fig. 12. Vertical separation in a right clique.

Remark. Note that the above proof directly used only Facts 1, 3, 4, and 5 among
the six facts listed above, and Lemmas 3.2 and 3.3.

Proof of Lemma 3.6. We prove the lemma for a right clique C. An analogous
argument holds for left cliques.

First, consider part 1. Let A′ be the right successor of A. By Fact 4, A′ r-spans
A. By Lemma 3.3, B must r-span A. By Lemma 3.5, the upper hole of A′ is above
that of B. It follows that the vertical separation between the upper holes of B and A
is at most l(A′) and l(A′) ≤ l(A)2∆, because A is not a right jumper. Part 1 follows.

Next, consider part 2. Let D be the smallest nonjumper strip in C, and let D′

be the right successor of D (see Figure 12). D′ exists because D is not a terminal.
We will show in the next paragraph that the vertical separation between the upper
holes of B and A is at most l(D′). Since D is not a right jumper, l(D′) ≤ l(D)2∆.
Further, since there are at least γ∆ strips smaller than A in C, using the increase in

length categories given by Lemma 3.4, we get l(D′) ≤ l(D)2∆ ≤ l(B)
2(γ)∆ 2

∆ = l(B)
2(γ−1)∆ ,

as required.

It remains to show that the vertical separation between the upper holes of B and
A is at most l(D′). By Lemma 3.3, A and B both r-span D. By Lemma 3.5, A and
B are between D and D′. Since D′ is the right successor of D, D′ must r-span D
(see Fact 4); therefore, the lower hole of D′ is below the upper hole of A. Further,
by Lemma 3.5, the upper hole of D′ is above that of B. It follows that the vertical
separation between the upper holes of B and A is at most l(D′).

Remark. Note that the above proof directly used only Fact 4 among the six facts
listed above, and Lemmas 3.3, 3.4, and 3.5.

Proof of Lemma 3.7. We prove the lemma for a right clique C; the argument for
the left is analogous.

By Lemma 3.3, B r-spans A. Let A′ be the right successor of A and B′ that of
B. By Fact 4, A′ r-spans A. By Lemma 3.5, B and B′ are between A and A′, A′

cannot r-span B, and the upper hole of A′ is above that of B. It follows that the right
blocking hole d of B must be to the left of A′ (see Figure 13) and d can be only in
the two hatched regions in the figure. But if it is in the upper of these two regions,
by Fact 5, the right witness cells for A and B are independent. Therefore, it must be
in the lower hatched region, which is completely below A.

Remark. Note that the above proof directly uses only Facts 4 and 5 among the
six facts listed above, and Lemmas 3.3 and 3.5.
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Fig. 14. Possibilities precluded by Lemma 3.8: (a) B′ l-spans B. (b) B r-spans B′.

Proof of Lemma 3.8. Suppose B′ l-spans B (Figure 14(a)). The hatched region
must be hole-free since A l-spans B and r-spans B′ (see Lemma 3.3). This means
that B has its left blocking hole to the left of B′. Next, B’s left successor is either to
the left of B′ or to the right of A. This is true because any strip between B′ and A
which l-spans B must r-span B′ as well and cannot have its left blocking hole to the
left of B′ (recall from Facts 1 and 3 that B and its left successor must have the same
left blocking hole). Using Facts 4 and 5, it follows that the left witness cell of B is
independent from that of A, a contradiction. Therefore B′ cannot l-span B.

By an argument symmetric (see Figure 14(b)) to the one above, B cannot r-span
B′.

Remark. Note that the above proof directly used only Facts 1, 3, 4, and 5 among
the six facts listed above, and Lemma 3.3.

4. The general case: Removing ill-behaved strips. We now need to handle
the general case. Assumption 2 is not very hard to handle; it is possible to show that a
good fraction of strips define witnesses on at least one of the two sides. Assumption 1
is the most severe: strips of arbitrary lengths could result in large families and cliques
in which the progression of strip lengths described by Lemma 3.4 is absent. This
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Fig. 15. The two kinds of strips considered in Lemma 4.1.

forces us to alter the notion of successor/family defined in this section and partition
strips into classes based on the nature of left and right successors. A detailed analysis
is then needed for each of these classes.

Recall that we have already identified and decided to ignore unnecessary strips.
The aim now is to discard some more ill-behaved strips and then redefine successors
and families for the strips which remain. These remaining strips will constitute a
constant fraction of the number of the rectangles laid out by our algorithm, and each
such strip will have the property that it defines either a left witness cell or a right
witness cell or both. Unlike the previous special case, it will no longer be true that
each strip is part of some family. Each strip will still have a successor, though.

4.1. Discarding strips. Consider two sets of strips. The first set comprises
necessary strips A with the property that Al exists, where Al is the closest necessary
strip to the left, if any, such that the upper holes of Al and A are horizontally aligned
(Figure 15(a)) and Al l-spans A. The second set comprises necessary strips A with
the property that Ar exists, where Ar is the closest necessary strip to the right, if
any, such that the upper hole of Ar and A are horizontally aligned (Figure 15(b)) and
Ar r-spans A. By Lemma 4.1 below, the strips in the smaller of the above two sets
can be ignored. Without loss of generality, assume that the former set is smaller. Let
S ′ denote the set comprising the remaining strips. For all strips A in S ′, Al does not
exist. This property, along with the subsequent definition of successors, will ensure
that left witnesses are always defined for all strips in S ′.

Lemma 4.1. One of the above two sets must have size at most half the number
of necessary strips.

Proof. This follows because if A is in the first set then Al is not in the
second.

Defining categories, doubling strips and nondoubling strips. We classify strips in
S ′ into categories based on length. All strips with length in the range [2i, 2i+1) are
in the ith category, i ≤ log n− 1.

Consider a strip A in S ′. Let B be the closest strip to the right of A in S ′, if
any, which r-spans A and is in the same category as A. If B exists, then A is said
be right nondoubling, and B is said to be the right successor of A. In this case, any
strip in S ′ to the right of A and to the left of B which r-spans A must be in a higher
category than A and therefore has its right blocking hole vertically aligned with or to
the left of B. All other strips A are called right doubling strips. Analogous notions
are defined to the left. As will be shown in Lemma 4.5 shortly, each strip is the right
successor of at most one right nondoubling strip.

Note that we have not yet defined successors for right/left doubling strips. We
will do so after we redefine families later in this section.
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Remark. The strips considered in sections 3 and 3.1 are right and left doubling
because of Assumption 1. As remarked in section 3.1, the notion of successor defined
there is different from that defined above. The successor defined earlier corresponds
to the successor of a right or left doubling strip.

Lemma 4.2. The number of strips in S ′ which are both right nondoubling and
left nondoubling is at most |S ′|/2.

Proof. Consider strip A, which is both right nondoubling and left nondoubling.
Let B be its right successor. Note that no other right nondoubling strip has B as
a right successor (this will be shown formally in Lemma 4.5). We show in the next
paragraph that B cannot be a left nondoubling strip. It follows that for each A which
is both right nondoubling and left nondoubling, there is a unique B which is left
doubling. The lemma follows.

Suppose B is left nondoubling. LetD denote its left successor. Then D is between
A and B and l-spans B. Since B r-spans A, D r-spans A as well. Since A,B,D are
all in the same category, D would be the right successor of A, a contradiction.

Let S denote the subset of S ′ comprising strips which are either left doubling or
right doubling or both. The following lemma shows that S contains at least one-fourth
of all the necessary strips. All further references to strips in the paper will be to the
strips in S. We will account for only these strips; the remaining strips are discarded.

Lemma 4.3. The number of strips in S is at least one-fourth the number of
rectangles laid out to cover the polygon.

Proof. Three kinds of strips have been ignored so far in defining the set S:
1. unnecessary strips;
2. strips A with the property that Al exists, where Al is the closest necessary
strip to the left such that the upper holes of Al and A are horizontally aligned
(Figure 15(a)) and Al l-spans A;

3. strips A, which are both left and right nondoubling.

Unnecessary strips have the same associated rectangle as some necessary strip. By
Lemma 4.1, the number of strips of the second type is at most half the total number
of necessary strips. Finally, by Lemma 4.2, the number of strips of the last type is at
most half of the remainder obtained by removing strips of the first two types.

4.2. Defining families and witnesses. A crucial difference from before is that
right families comprise only right doubling strips, and similarly for left families.

A right family is defined to be a set of right doubling strips in S with the same
right blocking hole. The right successor of a right doubling strip is the next strip A′

to the right in the family. The rightmost strip in a right family has no successor,
and is called a right terminal strip, as before. Left families and successors are defined
similarly. Notice that this is the same definition as in section 3.1, where all strips
were left and right doubling.

We have now defined successors for all strips, whether doubling or not. As before,
the right (left, respectively) witness cell of a nonterminal strip A (whether doubling or
nondoubling) is the cell in its right (left, respectively) successor, horizontally aligned
with the upper hole of A. This witness is not defined if the upper holes of A and its
successor are horizontally aligned. The right (left, respectively) witness cell of a right
(left, respectively) terminal strip A is defined as before; i.e., it is the cell in A which
is horizontally aligned with its right (left, respectively) blocking hole.

The next lemma shows that each strip in S defines a left witness and is a straight-
forward consequence of the definition of S ′.
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Fig. 16. Two possible configurations of strips A,B,C, where B is the right nondoubling suc-
cessor of both A and C.

Lemma 4.4. For all nonterminal strips A ∈ S, the upper hole of A is not
horizontally aligned with the upper hole of its left successor. Therefore, each strip A
defines a left witness cell and possibly a right witness cell.

Lemma 4.5. Any strip is the right (left, respectively) successor of at most two
strips, one right (left, respectively) nondoubling and one right (left, respectively) dou-
bling.

Proof. We prove the “right” case; the “left” case is analogous. First, suppose there
are two right nondoubling strips A,C whose right successor is strip B. Then A,B,C
belong to the same category, and hence l(A) < l(B) < 2l(A) and l(C) < l(B) < 2l(C).
B must r-span both A and C. This can happen only either if A r-spans C (or vice
versa) or A and C are both disjoint (see Figure 16). The former possibility cannot
arise, since in that case the right successor of C would be A (or vice versa), and in
the latter case, l(B) ≥ l(A) + l(C) ≥ 2min{l(A), l(C)}, which implies that B cannot
be in the same category as either A or C, a contradiction.

Next, consider right doubling strips. If the right successor of a right doubling
strip A is strip B, then A and B must belong to the same right family and B is the
first strip to the right of A in its family. So B cannot be the right successor of any
other right doubling strip.

4.3. Classifying strips. Based on the above, we can classify strips in S as
follows. Recall that strips in S are left doubling or right doubling or both.
Class 1 This class contains all strips which are either terminal strips or jumper strips.

This class has two subclasses.
Class 1.1 This class contains all strips which are either right terminals strips or

left terminal strips.
Class 1.2 This class contains all strips which are either right jumper strips or left

jumper strips.
Class 2 This class includes all strips not in Class 1 and which define witness cells in

both directions. This class has three subclasses.
Class 2.1 This class contains strips which are left doubling and right doubling.
Class 2.2 This class contains strips which are left doubling and right nondoubling.
Class 2.3 This class contains strips which are left nondoubling and right doubling.

Class 3 This class includes all strips not in Class 1 and which define only left witness
cells. This class has two subclasses.

Class 3.1 This class contains strips which are left doubling.
Class 3.2 This class contains strips which are left nondoubling.
The aim now is to bound the number of strips in each class byO(|OPT |(∆+ logn

∆ )).
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4.4. Properties of cliques: The general case. This section deals with the
properties of cliques in the general case. We will generalize all the lemmas stated in
section 3.2. We partition the optimal clique cover, OPT , into disjoint cliques in the
same way as described in section 2.4.

Definitions. Define Tr(C, i) to be the set of strips of class i, i being one of 1.1,
1.2, 2.1, 2.2, 2.3, 3.1 or 3.2, whose right witness cells are in clique C of OPT . Tl(C, i)
for left witness cells is defined similarly. As mentioned earlier, we will sometimes
abuse notation and identify a strip with its witness cell.

Before continuing, we reiterate that all right families comprise right doubling
strips only, and, similarly, left families comprise left doubling strips only. Note that
with our new definition of successors and families for strips in S, left versions (right
versions, respectively) of Facts 1–6 of section 3.4 continue to hold for left doubling
(right doubling, respectively) strips. This will allow us to use the proofs in section 3.4
here as well for these strips. In addition, it is clear that Facts 4 and 5 continue to hold
for all cliques (and not just cliques associated with doubling strips). Therefore, the
lemmas in section 3.2 which use only these facts will generalize to both the doubling
and the nondoubling cases directly.

The following lemma is exactly Lemma 3.1 stated for the new definition of ter-
minal strips. The proof is exactly the same as Facts 1, 2, and 6 continue to hold for
doubling strips.

Lemma 4.6. All right (left, respectively) witness cells associated with right (left,
respectively) terminal strips are independent. Therefore, the number of terminal strips
is O(|OPT |).

The following lemma is exactly Lemma 3.2, stated in terms of the classes defined
above. Again, the proof is exactly the same, because Facts 1, 3, and 5 continue to
hold for doubling strips.

Lemma 4.7. All strips in Tr(C, i) (Tl(C, i), respectively) belong to distinct right
families (left families, respectively) for all cliques C in OPT and i being one of 2.1, 2.3
(2.1, 2.2, 3.1, respectively).

The following lemma, a generalization of Lemma 3.3, proves nested structure for
cliques (modulo exceptions).

Lemma 4.8. For any clique C in OPT and any class i, i being one of 2.1, 2.2, 2.3
(2.1, 2.2, 2.3, 3.1, 3.2, respectively), there exists at most one strip (called the excep-
tion) whose removal makes Tr(C, i) (Tl(C, i), respectively) right nested (left nested,
respectively).

Proof. The proof for Tl(C, i), i being one of 2.1, 2.2, 3.1, and for Tr(C, i), i being
one of 2.1, 2.3, is described in Lemma 3.3 (the same proof holds because Facts 1, 3,
4, and 5 and Lemma 4.7 continue to hold for doubling strips).

We shall consider the remaining case for Tr(C, i) here, involving nondoubling
cliques (i.e., i being 2.2). A similar proof will hold for Tl(C, i) with i being one of 2.3,
3.2. We cannot appeal to the proof of Lemma 3.3 directly because Fact 3 does not
hold for nondoubling strips.

However, it is easy to see that the fact stated in the beginning of the proof of
Lemma 3.3 still holds. We will give the rest of the proof, assuming this fact is true.

Suppose the strips in Tr(C, i) are not right nested. By the above fact, if each
strip in Tr(C, i) r-spans the smallest strip in Tr(C, i), then there are no disjoint strips,
and the strips in Tr(C, i) must be right nested. So there must exist a strip in Tr(C, i)
which is disjoint from the smallest strip A in Tr(C, i); consider the smallest such strip
B. Clearly, neither A nor B can r-span any strip in Tr(C, i). We will show that all
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other strips D in Tr(C, i) must r-span the lower of A,B. It would then follow from
the above fact that the strips in Tr(C, i) with the upper of A,B removed are right
nested. We consider the case when B is below A; the other case is identical.

Consider a strip D as above, and suppose it does not r-span B. By the fact
above, it must be disjoint from B; in addition, it either r-spans A or is disjoint
from A as well. Let X,Y denote the upper two strips among A,B,D. So either X
and Y are disjoint (as in Figure 10(b)) or (without loss of generality) l(X) < l(Y )
and Y r-spans X (as in Figure 10(a)). Let X ′, Y ′ be the right successors of X,Y ,
respectively. Since the right witnesses of A,B,D form a clique, rectangle R containing
these witnesses has its lower edge below the lower holes of X,Y and upper edge above
the upper holes of X,Y . This, coupled with the fact that X ′ must stab vertically
through R, implies that l(X ′) > l(Y ), l(X); further, if X,Y are indeed disjoint, then
l(X ′) > l(X)+l(Y ) > 2l(X). But the latter cannot happen as X is right nondoubling,
and therefore X ′ and X are in the same category, which implies that l(X ′) < 2l(X).
Thus, it must be the case that Y and X are not disjoint; i.e., Y r-spans X. Then
l(X) < l(Y ) ≤ l(X ′), and Y must be in the same category as X. Since Y r-spans X,
is in the same category as X, and is to the left of X ′, X ′ cannot be the right successor
of X, a contradiction.

Remark. As we mentioned earlier in section 3.2, we can now ignore exception
strips from all cliques of OPT .

Next, we generalize Lemma 3.4.

Lemma 4.9. Strips in Tl(C, i), i being one of 2.1, 2.2, 2.3, 3.1, 3.2, and in Tr(C, i),
i being one of 2.1, 2.2, 2.3, are in distinct size categories.

Further, consider a right family (left family, respectively) or a set Tr(C, i) of
strips, i being one of 2.1, 2.2, 2.3 (set Tl(C, i) of strips, respectively, i being one of
2.1, 2.2, 2.3, 3.1, 3.2) for some clique C in OPT . For any x, the number of strips
whose length is more than 2x times the length of one of the two previous strips to the
left (right, respectively) is O( lognx ).

Proof. For the first part, we cannot use the proof of the first part of Lemma 3.4,
because that proof was based on Assumption 1, and so we describe it below.

Suppose two strips A,B in Tl(C, i), i being one of 2.1, 2.2, 2.3, 3.1, 3.2, are in
the same size category. Without loss of generality, assume B is to the left of A. By
Lemma 4.8, B l-spans A. By the definition of a left nondoubling strip, A must be
left nondoubling, and its left successor must either lie to the right of B or be B itself.
In either case, A’s left witness cell will be independent from B’s left witness cell, a
contradiction.

A similar proof holds for two strips A,B in Tr(C, i), i being one of 2.1, 2.2, 2.3.

The second part of the lemma follows by using the same argument as in Lemma
3.4, since this uses only Fact 1 for families, and the first part for cliques.

The following lemma generalizes Lemma 3.5.

Lemma 4.10. Let A,B ∈ Tr(C, i) (Tl(C, i), respectively) for some clique C in
OPT and some class i, i being one of 2.1, 2.2, 2.3 (2.1, 2.2, 2.3, 3.1, 3.2, respectively),
with l(A) < l(B). Let A′, B′ be the right successors (left successors, respectively)
of A,B, respectively. These four strips must be in the following order from left to
right (right to left, respectively): A,B,B′, A′. In addition, A′ cannot r-span (l-span,
respectively) B and must have its upper hole above that of B.

Proof. The proof for Tl(C, i), i being one of 2.1, 2.2, 3.1, and for Tr(C, i), i being
one of 2.1, 2.3, is described in Lemma 3.5 (the same proof holds because Facts 1, 3,
4, and 5 continue to hold for doubling strips).
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We need to prove the lemma for the remaining cases only. We prove the lemma
for Tr(C, 2.2); the other cases have analogous proofs.

From Lemma 4.8, it follows that B r-spans A and hence must lie to the right
of A. If B is to the right of A′, then the right witness cells a and b of A and B,
respectively, are independent (see Figure 11(b)). Therefore, B is to the left of A′ and
to the right of A. To show that the right successor of B also lies between A and A′,
we show in the next paragraph that A′ cannot r-span B. Since A′ and B both r-span
A, they cannot be disjoint either. Then it follows that the right blocking hole of B is
vertically aligned with or to the left of A′. Therefore, the right successor of B is also
to the left of A′.

Suppose A′ r-spans B. Since we are considering category 2.2, A′ and A are in
the same category. Since B r-spans A and A′ r-spans B, A,B are also in the same
category, and then B, and not A′, will be the right successor of A.

It remains to show that the upper hole of A′ is above that of B. Recall that B’s
right witness cell lies on the horizontal line containing the upper hole of B. If the
upper hole of A′ is horizontally aligned with or below that of B, the witness cells a
and b of A and B, respectively, would be independent (see Figure 11(d)). Hence, the
upper hole of A′ lies above that of B.

Definitions. As before, we define strip A to be a right jumper if its right
successor has length at least 2∆l(A). Since ∆ will be set to at least 1, all right
jumpers are actually right doubling strips. Left jumpers are defined analogously.

The following lemma generalizes Lemma 3.6.

Lemma 4.11. Consider strips A,B ∈ Tr(C, i) (Tl(C, i), respectively) for some
clique C in OPT and i being one of 2.1, 2.2, 2.3 (2.1, 2.2, 2.3, 3.1, 3.2, respectively).
Suppose l(A) < l(B). The following two facts hold.

1. The vertical separation between the upper holes of A and B is at most 2∆l(A).
2. If A is not amongst the smallest γ∆ nonjumper strips in Tr(C, i) (Tl(C, i),

respectively), the vertical separation between the upper holes of A and B is at

most l(B)
2(γ−1)∆ .

Proof. The proof is identical to that of Lemma 3.6 (the appropriate generalizations
of the lemmas used there have to be invoked) because that proof uses only Fact
4 and Lemmas 4.8, 4.9, and 4.10, which hold for both doubling and nondoubling
strips.

We generalize Lemma 3.7 next.

Lemma 4.12. Let A,B ∈ Tr(C, i) (Tl(C, i), respectively) for some clique C in
OPT and i being one of 2.1, 2.2, 2.3 (one of 2.1, 2.2, 2.3, 3.1, 3.2, respectively). Fur-
ther, suppose l(A) < l(B). Then A lies completely above the right (left, respectively)
blocking hole of B.

Proof. The proof is the same as that of Lemma 3.7 (again, the appropriate
generalizations of the lemmas used there have to be invoked), as that proof uses only
Facts 4 and 5 and Lemmas 4.8 and 4.10, which continue to hold for both doubling
and nondoubling strips.

Finally, we need the following lemma, which generalizes Lemma 3.8.

Lemma 4.13. Let C and C ′ be the cliques in OPT containing the right and left
witness cells, respectively, of a strip A. Let B be a strip in Tr(C, i) smaller than A.
Let B′ be strip in Tl(C

′, i) smaller than A. If i is one of 2.1 or 2.2, then B′ cannot
l-span B. If i is one of 2.1 or 2.3, then B cannot r-span B′.

Proof. The proof for i = 2.1, 2.2 is identical to that of Lemma 3.8 as Facts 1, 3,
4, and 5 used in that proof continue to hold in the left direction for i = 2.1, 2.2 (these
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involve left doubling strips). Note that the whole of the proof for Lemma 3.8 is not
being invoked; rather, only the first half is being invoked. To invoke the second half
(namely, B cannot r-span B′) as well, we will need the above facts to hold in the right
direction. This is indeed true for Class 2.1, which is right doubling as well but not for
Class 2.2. Invoking this second half for Class 2.1, we get the last part of the lemma
for this class. The proof for i = 2.3 is analogous.

4.5. Accounting for strips. The strips in each class are accounted for sepa-
rately. The number of strips in Class 1.1 is O(|OPT |) by Lemma 4.6. The number of
strips in Class 1.2 is O(|OPT | logn∆ ) by Lemmas 4.6 and 4.9.

Class 2.1 contains strips that are doubling in both directions, like the strips in
the special case considered in previous sections. The number of strips in Class 2.1 can
be shown to be O(|OPT |(∆ + logn

∆ )) by a proof identical to those of Lemma 3.9 and
Corollary 3.10; however, invocations of lemmas in section 3.2 need to be modified to
point to their respective counterparts in section 4.4 (see the remark in section 3.3).

The reason why the proof of Lemma 3.9 does not extend to other classes as well
is that Lemma 3.9 uses Lemma 3.8 in both directions, i.e., to claim that B′ cannot
r-span B and B cannot l-span B′; this can be done only for Class 2.1. Therefore, the
remaining classes need separate proofs, which are given below.

4.5.1. Classes 2.2 and 2.3.

Lemma 4.14. Consider a strip P ∈ Tr(C, 2.2) and its right follower Q ∈
Tr(C, 2.2) (Q need not be defined). Then one of the following must hold.

1. P is either the largest strip or among the smallest ∆+2 strips in Tr(C, 2.2).
2. Q is among the smallest 4∆ + 1 strips in Tl(C

′, 2.2), where C ′ denotes the
clique in OPT containing the left witness cell of Q.

3. Let P ′ be the strip in Tr(C, 2.2) which is to the left of P and shorter than P
such that the number of strips longer than P ′ and shorter than P in Tr(C, 2.2)
is 3. Then either P ′ does not exist or 23∆l(P ′) ≤ l(Q).

4. Let Q′ denote the strip in Tl(C
′, 2.2) whose left follower is Q. Then 2∆l(Q′) ≤

l(Q).

Proof. We suppose that none of the four conditions hold and derive a contradic-
tion.

Since condition 1 does not hold, Q exists. The proof then proceeds using the
following claims, which are proved in sebsequent paragraphs. We claim that any
strip in Tr(C, 2.2) with length less than l(Q

′)/2 must lie completely above Q′. Since
condition 3 is violated, P ′ must exist. We then show that P ′ has length less than
l(Q′)/2 and therefore lies above Q′. Since Q r-spans P ′ by Lemma 4.8, the vertical
separation between the upper holes of Q and Q′ is at least l(P ′). By the violation of
condition 2 and Lemma 4.11 applied to Q′ and Q, the vertical separation between the
upper holes of Q and Q′ is at most l(Q)

23∆ . It follows that l(P
′) ≤ l(Q)

23∆ . This satisfies
condition 3, a contradiction.

First, we show that any strip R in Tr(C, 2.2) with length less than l(Q
′)/2 must

lie completely above Q′. Clearly, R lies to the left of Q. Its right successor S is to the
right of Q, by Lemma 4.10. Further, S has size less than l(Q′) (since l(R) < l(Q′)/2
and Class 2.2 is right nondoubling). In addition, by Lemma 4.10, the upper hole of
S is above that of Q. It follows that the lower hole of S must also be above that of
Q′; otherwise, l(S) ≥ l(Q′), a contradiction. Suppose that R is not completely above
Q′. We will get a contradiction as follows. Since R is not completely above Q′ and S
r-spans R, S is not completely above Q′ either. Then one of the two situations shown
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(a)

S

(b)

R R Q

S

Q

Q′ Q′

Fig. 17. (a) S is to the left of Q′, and Q does not l-span Q′. (b) S is to the right of Q′, and
S does not r-span R since it is not above Q′.

in Figure 17 must hold, depending upon whether S is to the left or right of Q′. In
the first case, Q cannot l-span Q′, and in the second case S cannot r-span R, both
contradictions. Therefore, R is completely above Q′.

Second, we show that P ′ has length less than l(Q′)/2. To do this, we will show
that l(P ) ≤ 2l(Q′). Then, since there are three strips between P and P ′ in Tr(C, 2.2),
l(P ′) < l(P )/4 ≤ l(Q′)/2. That l(P ) ≤ 2l(Q′) is shown as follows. We show in the
next paragraph that P must have its upper hole aligned with or below that of Q and
its lower hole aligned with or above that of Q′. Thus l(P ) is at most the vertical
separation between the upper hole of Q and the lower hole of Q′. Since condition
2 is violated, Lemma 4.11 applied to Q′ and Q implies that the vertical separation

between their upper holes is at most l(Q)
23∆ . Thus the vertical distance between the

upper hole of Q and the lower hole of Q′ is at most l(Q′) + l(Q)
23∆ < l(Q

′)(1 + 1
22∆ ), by

the violation of condition 4. Thus l(P ) ≤ l(Q′)(1 + 1
22∆ ) ≤ 2l(Q′), as required.

It remains to show that P must have its upper hole aligned with or below that of
Q and its lower hole aligned with or above that of Q′. By Lemma 4.8, Q r-spans P ,
and therefore the upper hole of P is aligned with or below that of Q. By the violation
of condition 1 and by Lemma 4.8, which states that all strips in Tr(C, 2.2) are in

distinct categories, there exists a strip R in Tr(C, 2.2) such that l(R) <
l(P )
2∆+1 <

l(Q)
2∆+1 .

Then, by the violation of condition 4, l(R) < l(Q′)/2. From the earlier part of this
proof, it follows that R lies completely above Q′. Clearly, R is to the left of P . By
Lemma 4.8, P r-spans R, and therefore the upper hole of P is above that of Q′.
Further, by Lemma 4.13, P cannot l-span Q′. Therefore, the lower hole of P must be
aligned with or above that of Q′.

Corollary 4.15. The number of strips in Class 2.2 is O(|OPT | ∗ ( logn∆ +∆)).

Proof. We consider four subclasses, depending upon which of the conditions in
Lemma 4.14 is satisfied. The number of strips P which satisfy the first condition is
clearly O(|OPT | ∗∆) because each clique in OPT has O(∆) such strips. The number
of strips P which satisfy the third condition is O(|OPT | ∗ logn

∆ ), using arguments
similar to those used for conditions 4 and 5 of Lemma 3.9 in the proof of Corollary
3.10. Next, consider strips P such that either condition 2 or 4 holds. Such a strip P
has a unique right follower Q in Tr(C, 2.2). Note that any strip in Tr(C, 2.2) is the
right follower of at most one strip. Thus it suffices to bound the number of strips
Q which are right followers of strips P satisfying condition 2 or 4. Using arguments
similar to those in Corollary 3.10, the number of such strips Q satisfying condition
2 can be shown to be O(|OPT | ∗ ∆), and the number of such strips Q satisfying
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(a) (b)

P P

Q

Ri Ri

Hole free
region

Q
R′

i

Fig. 18. The two scenarios in Lemma 4.17: (a) j = 2.3, 3.2. (b) j = 2.1, 2.2, 3.1.

condition 4 can be shown to be O(|OPT | ∗ logn
∆ ).

A similar argument as above works for Class 2.3.

Corollary 4.16. The number of strips in Class 2.3 is O(|OPT | ∗ ( logn∆ +∆)).

4.5.2. Classes 3.1 and 3.2.

Lemma 4.17. Consider a strip P in Tl(C, 3.1) or Tl(C, 3.2). Let Q be the right
successor of P . Let j be the class containing strip Q and C ′ be the clique containing
the left witness cell of Q. Then either j = 1.1 or j = 1.2, or Q is among the smallest
2∆ + 2 strips in Tl(C

′, j).
Proof. Since P belongs to Class 3.1 or Class 3.2 and not to Class 1.1, it has a well-

defined right successor Q. Further, since P does not define a right witness cell, the
upper holes of P and Q are horizontally aligned (see Figure 18). In addition, if P is
right nondoubling, then l(Q) < 2l(P ), and if P is right doubling, then l(Q) ≤ l(P )2∆,
as P is not a right jumper (i.e., it is not in Class 1.2). Note that if P is in Class
3.2, then it must be right doubling, as all strips in S are either left doubling or right
doubling or both (recall the definition of S from section 4). We consider various cases
depending upon the nature of Q.

Suppose j �= 1.1 and j �= 1.2. Then Q is not a left terminal strip. Let Tl(C
′, j)

have k strips smaller than Q. Let these be R1, . . . , Rk, in increasing order of length.
We need to show that k ≤ 2∆ + 1.

By Lemmas 4.8 and 4.9, the Ris and Q together form a left nested set of strips
and therefore belong to distinct categories. Note that since j �= 1.1, Q and each of
the Ris have left successors. Let R

′
i denote the left successor of Ri. There are two

cases now, depending upon whether j is one of 2.3, 3.2 or one of 2.1, 2.2, 3.1.

First, suppose j is one of 2.3, 3.2. Then Q and the Ris are all left nondoubling
(see Figure 18(a)). Then R′

i is in the same category as Ri. Since all Ris and Q are
left nested and in distinct size categories, l(R′

1) < l(R
′
2) < · · · < l(R′

k) < l(Q), and
2k−1l(R′

1) < l(Q). All R
′
is must be between P and Q. For R′

i cannot be to the right
of Q by Lemma 4.10. And, if R′

i is to the left of P , then the left witness cells of Q and
Ri are independent because Q’s left witness cell is on the horizontal line joining the
upper holes of P and Q. From Lemma 4.10, the upper hole of each R′

i is above the
upper holes of both Q and P . Each R′

i must r-span P because R
′
i must l-span Ri and

the hatched region is hole-free (because Q r-spans P ). Thus l(P ) < l(R′
1). Therefore

l(Q) > 2k−1l(R′
1) > 2

k−1l(P ). So if k ≥ ∆+ 1, l(Q) > l(P )2∆, a contradiction (see
the first paragraph of this proof; note that ∆ ≥ 1). It follows that k ≤ ∆ in this case.
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Second, suppose j is one of 2.1, 2.2, 3.1. Q and the Ris are all left doubling (see
Figure 18(b)). Note that the hatched regions in the figure must be hole-free, as Q
must r-span P and l-span Ri. Then the lower hole of each Ri must be below that of P ;
otherwise, the left witness cell for Ri will be on or to the left of P and independent from
the left witness cell for Q, a contradiction. Therefore, the vertical distance between
the upper hole of P (or of Q) and the lower hole of R1 is at least l(P ). Since the Ris
and Q belong to distinct categories, 2∆l(P ) ≥ l(Q) > 2k−1l(R1) (the first inequality
follows from the first paragraph of this proof). It follows that the vertical separation
t between the upper holes of R1 and Q is at least l(P )− l(R1) > (2k−1−∆ − 1)l(R1).
For k ≥ 2∆ + 2, t > (2.2∆ − 1)l(R1) > 2∆l(R1). This contradicts Lemma 4.11 (the
first part, applied to R1 and Q). Thus k ≤ 2∆ + 1 in this case, as required.

Corollary 4.18. The number of strips in Classes 3.1 and 3.2 is O(|OPT | ∗
( logn∆ +∆)).

Proof. Each strip in these two classes has a right successor, which in turn has a
left witness by Lemma 4.4. Further, by Lemma 4.5, any strip is the right successor
of at most two strips. By Lemma 4.17, either (a) the right successor of a strip in
these two classes is in Class 1.1 or 1.2, or (b) the right successor of a strip in these
two classes is in some class j �= 1.1, 1.2 and is amongst the smallest 2∆ + 2 strips
in Tl(C

′, j) for some clique C ′ in OPT . Strips in Classes 3.1 and 3.2 for which the
right successor satisfies the latter property are clearly O(|OPT | ∗∆) in number. And
strips for which the right successor satisfies the former property are O(|OPT | logn∆ ) in
number by Lemmas 4.6 and 4.9.

4.5.3. Summing up.
Theorem 4.19. The number of rectangles needed to cover the given polygon is

Ω(#N/
√
log n), where #N is the number of necessary strips and therefore the number

of rectangles used by our algorithm.
Proof. From Corollaries 3.10, 4.15, 4.16, and 4.18, it follows that |S|= O(|OPT | ∗

max{ logn∆ ,∆}). By Lemma 4.3, |S| is at least a quarter of the number of rectangles
used by our algorithm, which is equal to the number of necessary strips. The theorem
follows by setting ∆ =

√
log n.

5. Counterexample. If the average family size was O(1) for all polygons, then
our claim that there always exist #F independent points will give a constant factor
approximation algorithm. Unfortunately, this is not the case. Here we give an example
of a polygon in which the average family size is θ( logn

log log n ).
This example can also be slightly modified in a way such that all right witness

points can be covered by O(#N log log n
logn ) cliques and the average right clique size is

Θ( logn
log log n ), but the average family size (both left and right) remains Θ(

log n
log log n ).

However, in this example, covering the left witness points requires Ω(#N) cliques,
and the maximum clique size is O(1) for these points. This example was the key to
our lower bound. We do not know whether there are examples where the average
clique size is superconstant for both the left witness points and the right witness
points. In this sense, our bound of

√
log n does not seem like an unnatural meeting

point.
Let l be a parameter, which we will ultimately set to log n. We give an example

where the average left family size, average right family size, and average right clique
size are all Θ(logl n).

Our polygon will have two kinds of holes, nonblocking and blocking. There will
be Θ(n) blocking holes and Θ(n logl n) nonblocking holes; so most holes will be non-
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Fig. 19. Arrangement of columns of sparsity i and i+ 1.

blocking. First, we will describe the arrangement of nonblocking holes and then that
of blocking holes. All subsequent references to strips will be to those formed by
nonblocking holes.

Nonblocking holes are arranged in columns. Each column has a certain sparsity.
A column with sparsity i will have n

li +1 holes in it, where 0 ≤ i ≤ logl n; these holes
will be put in rows 0, li, 2li, . . .. So the least sparse column will have n + 1 holes in
rows 0, 1, 2, 3, . . . , n, and the most sparse will have 2 holes in rows 0, n. There will be
li−1(l + 1) columns of sparsity i, i ≥ 1. Therefore, the total number of nonblocking
holes will be Θ(n logl n). The arrangement of these columns can be described by the
following sequential procedure.

The leftmost and rightmost columns will have sparsity 0. Between these two
columns, put l + 1 columns of sparsity 1; these l + 1 columns together constitute a
pack. Then, between each pair of consecutive columns of sparsity 1, put a pack of
l+1 columns of sparsity 2, and so on, as shown in Figure 19. Note here that a pack
of sparsity i+1 columns is put only between pairs of consecutive columns of sparsity
i which belong to the same pack; these sparsity i columns will not have any columns
of sparsity less than i between them.

Blocking holes will always be placed as follows. First, we form right families
comprising strips formed by nonblocking holes in columns which are not the last in
their respective packs. Note that most (all but Θ(n)) nonblocking holes lie in such
columns. Consider a column C with sparsity i which is not the rightmost column in
its pack. There are n

li strips in such a column. These strips are organized into groups
of l strips each, the strips in each group being vertically consecutive. Consider one
such strip which is the jth strip in its group. We define a right successor s′ for s,
where s′ is the unique strip in the column C ′ defined below which r-spans s; C ′ is the
jth leftmost column amongst the pack of l+1 sparsity i+1 columns nested between
C and the next sparsity i column to the right of C. The size of each right family
defined by the above right successors is clearly large, i.e., Θ(logl n).

We will now arrange blocking holes so that all strips in each right family defined
above will indeed have a common right blocking hole. For each right family defined
above, put a blocking hole immediately to the right of the rightmost strip in such a
way that it blocks all strips in this family. The number of blocking holes put is clearly
Θ(n).

Thus, what we have achieved above is an arrangement of Θ(n logl n) holes where
all but O(n) strips lie in right families of size Θ(logl n). We remark here that all but
O(n) strips lie in left families of size Θ(logl n) as well in this arrangement. The picture
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Fig. 20. A basic block.

of a “basic block” shown in Figure 20 will be helpful in seeing that this is true.
A basic block comprises the following holes.
1. holes bounding a group of strips on a column C of sparsity i, where C is not
the rightmost column in its pack. Let h, h′ be the topmost and bottommost
such holes (see Figure 20);

2. all blocking holes whose vertical position is between h and h′ and whose
horizontal position is between C and the next column in the pack containing
C;

3. all nonblocking holes which are located vertically between h and h′ and are
on columns of sparsity i + 1 between C and the next column in the pack
containing C.

5.1. Getting large right cliques. We need to make a modification to the above
construction to get large right clique sizes while leaving left and right family sizes as
before.

The modification is that columns containing nonblocking holes need to be shifted
downwards by varying amounts while maintaining most (but not all) of the right and
left families as such. This shifting is described by the following sequential procedure.

The shifting procedure is carried out in rounds. In the ith round, only columns
of sparsity i or more will be shifted. Assume that the procedure has already been
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executed for i rounds. At this point, for any column C of sparsity i, all columns
of sparsity i + 1 or more which appear between C and the next column in its pack
will not have experienced any shift relative to C. For each strip s in a column C of
sparsity i which is not the rightmost in its pack, let map(s) denote that strip which
has the same right blocking hole as s and lies on a column of sparsity i+ 1 between
C and the next sparsity i column in C’s pack. It can be verified from the shifting
procedure below thatmap(s) is always well defined and that a basic block (such as the
one shown in Figure 21) has blocking holes for strips in C forming a group distributed
diagonally (this basic block requires forming groups of l consecutive strips on column
C, leaving the first l − 1 strips out of this grouping; this is to account for the shifts
made to C so far). So each basic block formed by groups on C looks like the one in
Figure 21, except that holes in this basic block on sparsity i+ 1 columns between C
and the next sparsity i column D in C’s pack are all aligned with h, the top hole of
this group. The i+ 1st round proceeds as follows.

For each column C of sparsity i which is not the rightmost column in its pack,
consider any group of strips on C. Let h be the topmost hole in this group. Each
strip s in this group is considered in turn. Let P denote the pack of sparsity i + 1
strips nested between C and the next sparsity i strip to the right. The column C ′′

immediately preceding the column C ′ containing map(s) in P is shifted down so that
the hole which was horizontally aligned with h is now aligned with the upper hole of
s (see Figure 21). In addition, all columns nested between C ′′ and C ′ will also be
shifted down so that no relative shift is introduced between C ′′ and these columns in
this round. For future reference, we denote the strip on C ′′ which now r-spans s by
cmap(s) and the strip on C ′ which now r-spans s by newmap(s). Note that cmap(s)
is defined unless s is the first strip in its group. Figure 21 shows a basic block after
this modification.

The above shifting procedure modifies right families, because right successors of
strips could have changed. For each strip s in C, the right successor changes from
map(s) to newmap(s). Families defined by this new definition of right successor are
also large, essentially because a right successor can be defined for every strip other
than those which are on the last columns in their packs. Thus, all but O(n) of the
strips will continue to be in right families of size Θ(logl n).

Also, the average right clique size is Θ(logl n). To see this, note that the right
witness points of s, cmap(s), cmap(cmap(s)), . . . form a right clique and that cmap(s)
is defined for all those s which are not the first strips in their respective groups or
in the last columns in their respective packs. Since there are only O(n) strips s
which are either the first strips in their respective groups or in the last columns in
their respective packs, the total number of right cliques is Θ(n) and the average right
clique size is Θ(logl n).

It now remains to show that left families continue to be large after the above
modification. Consider a column C of sparsity i and the next column D to its right
in its pack. As is clear from Figure 21, left successors can be defined in the pack P
for each of the strips in D, except those strips which are either the first or last in
their respective groups. Defining left successors recursively in this way ensures that
the average left family size is also Θ(logl n).

5.2. Large left and right cliques? In the above example, it can be seen with
some effort that all left cliques have size O(1). We do not know whether this example
can be modified so that the average left and right cliques sizes are both large.
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Fig. 21. Two basic blocks obtained after the i+ 1st round of shifting. White holes are blocking
holes. One large clique has been highlighted. The crosses are right witness points.

6. Conclusions. A number of loose ends remain for this problem. The main
question, of course, is whether the approximation factor can be brought down to
O(1). Another question is whether there exists a polygon whose clique cover and
independent set numbers are small-o of the number of necessary strips.

Related problems. We briefly mention some related problems and the current state
of knowledge on these problems.

Non–axis-parallel rectangles. One variant of the above rectangle covering problem
is when the covering rectangles need not be axis-parallel.

Our techniques do not seem to extend to this case. However, they do extend
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(a) (b)

Fig. 22. Covering with non–axis-parallel rectangles.

even when all the covering rectangles must be inclined at the same angle or at one
of a constant number of angles. But there are examples where rectangles inclined
at an arbitrary number of angles are involved in the optimal cover. And, in this
case, the issue seems to be different and related to the problem of covering a given
set of points using a minimum number of straight lines. We do not know the exact
nature of this relationship though. No o(log n) approximation factor is known for this
problem either (see [1]). We describe an example below where the optimum cover
has size O(n) when non–axis-parallel rectangles are allowed, whereas it is Ω(n

√
n) if

only axis-parallel rectangles are allowed. This gives support for the intuition that the
size of the minimum cover should be much smaller if non–axis-parallel rectangles are
allowed.

Partition the n× n grid into a2 tiles of size n2/a2 each (as in Figure 22(a)). One
such tile is shown in Figure 22(b). Each tile has dimensions n/a×n/a. The structure
of the tiles results in a partition of the grid into triangles along the boundary and
rhombuses inside. Each rhombus has n/a holes on each of its sides. First, consider
the case when only axis-parallel rectangles are allowed. Each rhombus needs n/a
axis-parallel rectangles for covering. Similarly, each triangle needs n/a rectangles to
be covered. The total number of triangles is 4a, and the total number of rhombuses
is Θ(a2). Therefore, the optimum has size Θ(a2n/a+4an/a). Next, consider the case
when arbitrarily oriented rectangles are allowed. Now each rhombus can be covered
by just one rectangle. Therefore the cover size is Θ(an/a+ 4an/a). For a =

√
n, the

cover sizes are Θ(n
√
n) and Θ(n), respectively.

Nonrectilinear polygons. When the polygon itself is not rectilinear but has only
obtuse angles, suitably discretizing the problem so as to apply the greedy set covering
algorithm [10] is itself nontrivial. Levcopoulos and Gudmundsson [14] showed that
this can indeed be done. So this problem too has an O(log n) factor approximation
algorithm, and no better bound is known.

Rectilinear polygons and fat rectangles. When the covering objects are squares or
rectangles with bounded aspect ratio, then Levcopoulos and Gudmundsson [15] give
a constant factor approximation algorithm.



COVERING RECTILINEAR POLYGONS 1541

Acknowledgment. We thank the referees for extensive comments that have
helped to improve the presentation.

REFERENCES

[1] V.S. Anil Kumar, S. Arya, and R. Hariharan, Hardness of set covering with intersection
1, in Proceedings of the 27th International Colloquium on Automata, Languages and Pro-
gramming, Geneva, Switzerland, 2000, pp. 624–635.

[2] P. Berman and B. Dasgupta, Approximating rectilinear polygon cover problems, Algorith-
mica, 17 (1997), pp. 331–356.
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