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ABSTRACT

This paper presents a generalized seasonally integrated autoregressive moving average (SARIMA)
model that allows the two differencing parameters to take on fractional values. We examine the asymp-
totic properties of the estimators and test statistics when the mean of the model is unknown. The
findings show that standard asymptotic results hold for the tests and that the conditional sum of squares
estimators are consistent and tend towards normality. The paper provides a modelling application using

data on total power consumption in Japan.



1 Introduction

In the past decade, there has been burgeoning interest in time series with strong dependence properties,
especially hydrological and financial time series. These series generally have the property of slowly
declining serial correlations, such that the sum of the absolute values of these correlations may diverge.
In response, new classes of time series that have the property of strong dependence have been presented
by Granger and Joyeux (1980), Hosking (1981), and Gray et al. (1989), which allow the differencing
parameters to take on fractional values. Giraitis and Leipus (1995), Robinson (1994), and Woodward et
al. (1998) generalized Gegenbauer autoregressive moving average (GARMA) models, known as k-factor
GARMA(p, q¢) models, which allow the spectral density to be unbounded and peak at an arbitrary k
with different frequencies of v € [0, 7]:

k—1
S(L)(1 = L) (1 + L)™ T] (1 = 20l + L))" (2, — p) = 0(L)e, (1)
i=2
where {¢,} is iid (0,0?) and E[e} ] < oo. The polynomials ¢(z) = 1—>"F | ¢;z" and 0(z) = 1+ 3L 6;2°
have roots outside the unit circle. 7; = cos(v;) and 0 = v1 < we < -+ < V1 < v, = 7. When k = 1,
it is known as the fractionally integrated autoregressive moving average model, or ARFIMA (p, d;, q) for
short, by Granger and Joyeux (1980) and Hosking (1981). Giraitis and Leipus (1995) and Woodward et
al. (1998) analyzed the k-factor GARMA (p, ¢) model and showed that {x;} is stationary and invertible
if |di|] < 1/2fori=1,...,k.
This paper investigates a special case of the k-factor GARMA model, which is considered by Porter-
Hudak (1990) and naturally extends the seasonally integrated autoregressive moving average (SARIMA)
model of Box and Jenkins (1976):

G(L)R(L*)(1 — L) (1 = L*)* (¢ — p) = O(L)O(L")e (2)

where s is even, ®(2°) = 1-Y"1 | ®,;2°, O(2°) = 1+ Y7 0,2 and ¢(z)®(z*), 0(z)O(z*) have no roots
in common and all roots are outside the unit circle. Since (1—2)%(1—2°) = (1—2)**t?(1+42)" H;fl_l (1—
2 cos(27j /s)z+22)?, the model (2) is a (1+s/2)-factor GARMA model, which allows the integration order
to be a real number, and throughout this paper we refer to the fractional SARIMA(p, dy, q)(ps,ds, qs)s
model as the SARFIMA or SARFIMA(p, do, ¢)(ps, ds, gs)s for short.

In Section 2, we explain the parameter estimation of the SARFIMA model, using the conditional sum
of squares (CSS) method. It is shown that the CSS estimator is consistent and tends to normality. In
Section 3, the large-sample distribution of the residual autocorrelation is derived and testing procedures
using residual autocorrelations such as the Lagrange multiplier (LM) test are shown. We also explore the
asymptotic properties of the Wald test statistics. We note that Sections 2 and 3 impose the condition
{z; = p, t < 0} to simplify the proof of asymptotic normality, but do not impose the conditions of
normality of the model. The finite sample performance of these tests and the CSS estimators is examined
in Section 4. Section 5 illustrates the use of the SARFIMA model. Section 6 concludes.

Throughout this paper, let L be the lag operator, 0f(x)/0x|z=y = 0f(y)/0x. In addition, ‘RHS’
abbreviates ‘right-hand side’, ‘LHS’ abbreviates ‘left-hand side’, and C;, i = 1,2, ..., is used to denote
universal appropriate positive constants to economize on notation. All proofs are given in the Appendix.

2 Asymptotic Results for CSS Estimation

In this section, we examine the asymptotic properties of the estimators of the nonstationary SARFIMA
model, which is defined by

(1=D)*(1 = L) (2 —p) =0(L)ey, t21;  w=p, t<0, (3)



where V(L) = §(L)O(L*)/[¢(L)®(L*)]. We make the assumption that {z; = u, t < 0} in order to simplify
the proof of asymptotic normality. Following Chung (1996) and Beran (1995), we use the sample mean
as an estimator of u, and the CSS method to estimate dy, ds, SARMA parameters, and 0. For the

process {z;} in (3), we assume:

Assumption 1. (a) {g;}{2; is iid (0,0?) and E[e}] < oo. (b) s is known and an even integer. (c)
(do + ds,ds) € Di x D; = D;; for some i,j = 1,2,3 where D = [1,1/2 — 7], D5 = [-7,7], D =
[-1/2+7,—7], and 7 € (0,1/4). (d) Let 9 be (¢1,...,¢p,01,...,04,®1,...,P,,,01,...,0,,) and Dy
be a compact space such that, for any ¥ € Dy, ¢(z), ®(2°), 0(z), and O(2°) satisfy conditions given in

2

Section 1. In addition, o2 is in the interior of the compact space contained in R .

Since the model (3) assumes z; = p for ¢ < 0, the SARFIMA model (3) is nonstationary. However, the
model (3), which satisfies Assumption 1, is an approximate version of the stationary and noninvertible
SARFIMA model as ¢ — oo. This is because, when |dy + ds|,|ds| < 1/2, the model (2) for ¢t =
...,—1,0,1,..., is stationary and noninvertible as shown by Woodward et al. (1999).

Given a process {z;}}_, defined in (3), which satisfies Assumption 1, let § be a true parameter
vector (do,ds,d")" , let 5 bea corresponding parameter vector, and assume that 8 and & are in the same

compact parameter space defined by Assumption 1. Let £ = Zthl x¢/T, and let wk(g) be defined by

Yoo Te(8)zF = (1 - z)‘io(l — 2*)4:(2)~1, where 9(z) be given by replacing 9 in ¥(z) by ¥ € Dy in
o A
Assumption 1. Then the CSS estimator (8 ,52)" of (8’,02)" is obtained by maximizing the CSS function:

T

S T T 1 <
S(é,az)z—ilog%r—glogaz—ﬁ e2(0), (4)
t=1

where ¢,(8) is defined by &,(8) = &,(8,%) = ZZ;% Tk (0)(T4—p — Z).

Assumption 1 (c) is from Yajima (1985) where he proves strong consistency and asymptotic normality
of maximum likelihood estimators (MLE) of the ARFIMA(0,d,0) model with d € (0,1/2). Using the
techniques of Yajima’s proof, we can prove the consistency of the CSS estimators when (do+ds, ds) € Di
(see Lemmas B 4 to B 8 in Appendix B) and extend this result to the case of any D; ; (see Lemma B
9 in Appendix B). Note that the deviation of the asymptotic distributions of §’s CSS estimator 9§ is
independent on that of 02, 52 = Y., £2(8)/T, which is obtained in the same way as the MLE for the
ARMA model of Box and Jenkins (1976).

Then we have the following result.

Theorem 1. Let § and 52 be the CSS estimator of the parameter vector (8',0%)" based on a sample
{x }L, given by (3) and Assumption 1. Then it follows that, as T — oo,

65, 525 o2 (5)
and

VT (6 —6) -5 N(0, Is™"), VT (3 — 0°) -5 N(0, 20" + k4) (6)
where k4 = Ele]* — 304,

= Oe (0, ) =
_ i t\Y, — 2 : k
Ls = k:EI 5k6k7 and 7{95 2 (SkL Et, (7)

and each element of {0y} is given by (38) in the proof of Theorem 1.

The proof of Theorem 1 is given in Appendix B. Note that Z <% u, E[T — p]* = O(T?(do+d)=1) by
Lemma B 10, and if p is known and Z of z—:t(g) is replaced by u, then 6 and 52 are strongly consistent
and asymptotic normality of (6) holds (see Remark 1).



For the simple case of the process in (3) with p = ps =1, ¢ = ¢s =0, ¢(L) = 1 — ¢L, and
®(L*) =1— ®L?, Is can be written as

m2/6  w*/(6s)  —log(1—¢)/¢  —log(l—®)/(s)
I — w6 —log(l1-¢)/¢  —log(l-2)/® ®)
1/(1-¢%) ¢t/ (1-¢°®)
1/(1 - ?)

3 Tests Based on Residual Autocorrelation

This section discusses testing for the integration order, namely, the Portmanteau test, and the LM
test, which draws on LM tests for the integration order of the ARFIMA model by Robinson (1991),
Robinson (1994), Agiakloglou and Newbold (1994), and Tanaka (1999). For the purposes of practical
implementation, Godfrey’s (1979) LM approach is also used. Finally, this section shows that the Wald
test statistic has the same limiting local power as the LM test.

Box and Jenkins (1976, Chapter 8) pointed out that it is important to check the assumption of
independence of {e;} by using the residual autocorrelation function. If the fitted model is appropriate,
then the residuals should behave in a manner that is consistent with the model. A well-known method
is the (modified) Portmanteau test, which evaluates the sum of the squared residual sequences.

Under the Assumption 1, let {&;} be the residual sequence of the CSS estimator 8 in Theorem 1 such
that & = z—:t(g) and let 7(j) = ZtT:zj Et€iti/ Zthl £2. Then we have the following theorem.

Lemma 1. For any fited m > 1, let ¥ = (7(1),...,7(m))" be the m-dimensional vector of residual
autocorrelations using the CSS estimator under the same conditions as in Theorem 1. Then VTT is

asymptotically normal with mean zero and covariance matric I, — T Is T where J,, is the m X

m?’

(2+p+ q+ ps + qs) matriz with each (i,7) element of the partitioned matrix given by

1 * * * *
IJn = ( 7 | s | i | 07 | @7, | O s ) m,
L1 p q Ps qs
sj = s8/j for j = s,2s,...; = 0 otherwise, ¢%, 07, ®% and OF are the coefficients in the erpansions

¢ M(2) = YT ¢2 and 071 (2) = Y70 0527, @7N(2%) = Y2 @120 and ©71(2%) = Y05,
respectively and ¢ =07 = @7 =07 =0 for j <0.

An application of the Portmanteau test should be examined at this stage. Owing to the seasonal
components of J ,,,, corresponding to s;, ®;_;, and O},

using J! J,, for a finite sample of {x,}] ;. For the case in (8) with m = hs where h is an appropriate

some elements of Is are difficult to approximate

positive integer, we have

S 12 Y 1/(%s) S e i S @ (is)
POAIE VISR AP Lty LR SR Lyl

2?251 ¢2(i—1) 2?21 ¢is—1¢,i—1

Zh $2(i-1)

i=1

J T =

From Y70 1/i? = 72/6, Yoo p' = 1/(1 = p), Yooy p'/i = —log(1 — p) for |p| < 1 and (8), we found
that some elements of J., J,, with the finite sum with i running from 1 to h may fail to approximate
elements corresponding to Is (e.g., when T' = 100, s = 12, and m = 36, h is only 3). It follows that
the approximate covariance matrix of V77 is not idempotent unless 7' and m are sufficiently large.
Hence, and particularly in a small sample, the (modified) Portmanteau test statistics are difficult to
interpret. Specifically, Ansley and Newbold (1979) investigated a simulation study of individual residual
autocorrelations and the modified Portmanteau test statistics for the SARMA model and concluded

that agreement between asymptotic and empirical significance levels is very poor, even for samples of



100 observations. Furthermore, these test statistics have very low power in numerous examples used to
illustrate the finite sample properties of tests of model adequacy based on the (modified) Portmanteau
test for the ARMA model.

For this reason, we propose an alternative test procedure based on the LM test.

For the SARFIMA model, {z;}L_,, given by (3), we consider the testing problem of the null hypothesis
Hy : SARFIMA(p, do, q)(ps, ds, qs)s against the alternative

HA,l : SARFIMA(F, dO + a07q)(psadsaqs)s (9)
or Hyo: SARFIMA(p,do,q)(ps,ds + as, qs)s, (10)

where the sets of the integration orders (dp,ds), (do + ao,ds), and (do,ds + a;) satisfy Assumption 1.
The assumed null model is obtained by imposing the restrictions ag (as) = 0 and the alternatives are
ag (as) > 0 and/or ap (as) < 0.

Under the testing problem Hy against H 4 1, as in Tanaka (1999), let the CSS function be S(ay, &, 0?),
where £ = (dy,9')" is unknown vector, whereas dy is any preassigned value. Then the score-like test
statistic is given by

: RO N
St = Semer| 1 (e e
Ho:a0=0, £=£, 02=52 i=2 \j=1
= TTilE (11)
=1 U

where carets denote CSS estimators with the null hypothesis imposed.
Similarly, under the testing problem H, against H 4 2, we have the test statistic

: (T-1)/s] ~ .
S s 8 2 7
ST(Oés|HA72) = % ~ — T E r(iS)a (12)
§ Hp:a5=0, £:£7 o2=52 =1

where & = (do,9")" is unknown vector, whereas d, is any preassigned value. This implies that the
residuals {&;} are defined differently from (11).
To obtain potentially useful measures of power with a fixed significance level, we consider a sequence

of local alternatives. Then we obtain the following results, which generalize Tanaka (1999, Theorem 3.3).

Theorem 2. Under the testing problem Hy against Hy 1 defined in (9) and oy = ¢/T with ¢ fized, it
follows that, as T — oo,

1 Sr(aw|Han) 4
—_2orl@lar) doNieg, 13
T - (cody, 1) (13)

where St(ag|Ha,1) is defined in (11), 0, = /05 , and 1/0] s the (1,1) element of Is~ defined in
Theorem 1.
Theorem 3. Under the testing problem Hy against Ha o defined in (10) and as = ¢/NT with ¢ fived, it
follows that, as T — oo,
1 Sr(as|Ha-
—7T(a [Ha,2) i>N(cads, 1) (14)
VT oq,

where Sy(as|Haz) is defined in (12), 04, = /o3, and 1/03 is the (2,2) element of Is~" defined in
Theorem 1.

The proof of Theorem 3 is omitted since it can be obtained similarly to the proof of Theorem 2 in
Appendix C. Note that a consistent estimator of o4, or o4, (64, Or 74,) can be obtained by inserting



the CSS estimator o into § in Is. In addition, using a T' X (2+p+ q + ps + q5) matrix X = (9e/0d")|m,
with each (i, j) element of the partitioned matrix:

[i—l

A

i—1 ~ ~ —~ ~
Ei—k Ei—ks Ei—j Ei—j Ei—js Ei_ijs
- | |u|u|f|u)T,
<k§ k ,; k é(L) ' 6(L) O(L*) o(L?)

1 1 P q Ds qs (15)

where (1,j) element is zero and & = 0 for ¢ < 0, we can also obtain a consistent estimator of I,
X'X/(T5?) where 6% = .1 &2/T.
Hence, we suggest the following test statistics:

Shao|Hay) = m) and  Sh(as|Has) = w (16)

VT 54, VT G4,
for the testing problems (9) and (10), respectively, which have a standard normal distribution under
the null hypothesis. Hence, for example, for the testing problem of (9) with a right-sided alternative
(ag > 0), we can reject the null hypothesis when S/.(cg|Ha,1) exceeds the upper 100a % of N(0,1) for
a test of asymptotic size a.

In many situations, researchers may wish to contemplate the following model:
V=@ B+z,  (L—L)yPteo(l —L5)%t gy, =9(L)e,  t>1, (17)

where {p,.} is a 1 X r sequences of fixed, nonstochastic variables, 8 is a r x 1 unknown vector, (do, d;)
is any preassigned vector (dp,ds > —1/2), and {z;} is a mean zero SARFIMA model. We assume that
we observe {(y:, ¢,.)} L.

The assumed null model Hy is obtained by imposing the restrictions e = (g, as)’ = 0 and the
alternative, Hy 3, is a # 0.

To deduce the LM statistic, let the “differenced” model of (17) be 4, = @,.8 + T;(a) and y = 8 +
2(@), where Ji = (1= L)#0(1— L*)tegy, @, = (1 L)(1— L), , Fy(a) = (1— [)®(1— L)z, y =
Wy 07), @ = (P).,...,07.)", and () = (Z1 (), ..., Zr(a))’. Then the least-squares estimator of
BisB=(®'®) 1®y=p+(®®) @ z(a)and CSS estimates of ¥ and 52 are obtained by maximizing
the CSS function S((do,ds,d')’,52) with the residual ,(9) = (1 — L)4 (1 — L)4d(L) {y, — ¢, B} =
1§(L)_1{17t — @t_a} under the null model. To investigate the large sample behaviour of least-squares
estimators, let the (,7) element of ® be &;; and Dy = diag{(¥_, (,52271)1/2,...,(2321 @2} =
diag{dTll, e ;dTrr}~

Let

Tl (T-1)/s] .

ST = ST(Oé|HA,3) =T (Z 7“(2_) Z 7“(2_8)) (18)

i=1 i=1

where the {7(i)} are obtained by imposing the null hypothesis (i.e., {¥(i)} are given by the residuals
{e,(9}). We assume:

Assumption 2. For the model in (17), (a) {z: = y: =0, ¢,. = 0, t < 0}. (b) Conditions (a), (b)
and (d) in Assumption 1 hold, (do,ds) is known, and do,ds > —1/2 for the process {z;} in (17). (c)
im0 dri; = 00,7 = 1,2,...,7. (d) limz_,o. D7'® ®DZ' = A, where A is nonsingular.

Then we obtain the following theorem.

Theorem 4. Under the testing problem Hy against Ha 3 defined in (17) and Assumption 2, for an LM
statistic St defined in (18) with a = ¢/v/T where c is a 2 x 1 constant vector, as T — oo,

SEE IS /T -5 y2(2, ¢S e), (19)



where £ is a 2 x 2 partitioned matriz in the north-west corner of Is~" defined in Theorem 1, and
x2(m, %) denotes a noncentral chi-squared variable with m degrees of freedom and noncentrality param-

eter T2.

N(0,1).

This variable is given by the relation x*(m,7?) = (Zy + 7)* + Y. ivy Z2, where {Z;} 7, is iid

The detailed proof of this theorem is given in Appendix C. Results in Theorem 4 not only generalize
Tanaka (Theorem 3.3, 1999) to the seasonal long memory case, but also coincide with Robinson (Theorem
4, 1994), which considers frequency-domain LM test statistics.

~—1

As discussed above, because the consistent estimator of ¥, ¥~ can be obtained, the test statistic,
a1

Ar(a|Haz) =S7E  Srp/T (20)

is asymptotically distributed as x?(2) when the null model Hy is correct. Hence for the testing problem
Hy against H, 3, we can reject the null hypothesis when Ar(ct| Hy4 3) exceeds the upper 100a % of x?(2)
for a test of asymptotic size a.

Furthermore, for practical implementation, we can calculate Ar (o] Ha,3) by using Godfrey’s auxiliary
regression method. First, imposing the integration order of the null hypothesis, estimate SARMA param-
eters by the CSS method and calculate the residual vector € = (£1,...,&r)" as the dependent variable.
Next, substitute & and the CSS estimates for the regressor X as in (15). Then conduct OLS regression
and calculate the corresponding 7' times R? statistic, T'&' X (X' X)™' X'€/ €'¢, as Ar(c| Ha3).

For an intuitive comparison with the limiting power envelope, we have the following result for the
simplest model.

Corollary 1. For the model, (1 — L)%z, = ¢, let & = x; and {x, = 0,t < 0}. Then it follows that, as
T — oo under dy = c/\/T ¢ > 0, for an even integer s, and fixed but appropriately large m such that

Y i ~ w6
ﬂ'z w2
\/TZ / >z | —Pr| 21 < —z4+c¢ 3
- 1)/s]AZ.S =
(B): <T /,/ >za>—>Pr<Z1< - —\/ >
< 6
! 2y € 2
STEZ St >X2a — Pr{x7| 2, 6 >X27a )
m 2,2
D):  Pr|T S 7 2 Pr( 2 (m, &5 2
(D) ( ;r<z>>xm,a>—> r(x (m ) > e,

where Z1 ~ N(0,1), St is defined by (18), z, is the upper 100a percent point of N(0, 1), anva is the
upper 100a percent point of a chi-squared variable with m degrees of freedom, and X4 is a 2 X 2 partitioned

(A):

N—

(C):

matriz in the north-west corner of Is.

Result (A) is due to Tanaka (1999, Corollary 3.1), who also shows that it is the locally best invariant
test under the local alternative dy = ¢/VT, ¢ > 0. We omit the proof since it follows from a slight
modification to the proof of Theorem 2.

Corollary 2. For the model, (1 — L*)%x; = ¢y, under the same conditions as in Corollary 1, it follows
that, as T — oo under ds = c/\/T, ¢ > 0, for an even integer s, and fixed but appropriately large m such



that 1M/ i=2 ~ 72/6,

ﬂ'z w2
(A"): Pr\/_z / >z | = Pr(Zi< s+ ST ),
. D/ 2is) ﬂz
> Za> —>Pr<Z1 < —Za+C\/€>

(B’): Pr| VT Z

, 1 1 2 CZ7T2 2
(C) STEZ ST > XZa — Pr X 27 6 > X27a ’

T i?‘z i) > P cr’ 2
Xm a — r m7 6 > Xm,a :

i=1

M|

(D’):  Pr

The corollaries above relate to the situation in which a researcher doubts that the process is iid
but cannot clearly determine what kind of long memory process applies. We note that the LHS of (A)
through (D) (and (A’) through (D’)) corresponds to Sh(a|Ha), Sh(a|Haz), Ar(e| Ha3), and the
(modified) Portmanteau test statistic respectively. It seems that not only both (A) and (B’) but also
(B) and (A’), (C) and (C’), and (D) and (D’) have the same limiting distribution.

Figures 1 and 2 illustrate the RHS of (A) through (D) changing s, m and ¢ with a = 0.95 by using
S-PLUS. For a calculation of (C) and (D), we used Imhof’s (1961) formula. It is apparent that (A) is
uniformly most powerful in ¢, (C) is higher than various (D)s, (B) depends on the value of s and tends
to (A) as s becomes small. It also indicates, for appropriately large s, that score-like test statistics from
incorrect alternatives cannot detect the true long memory model, while correct ones can detect it with
high power. Furthermore, (D) decreases as m increases. It also illustrates the difficulty of carrying out
the (modified) Portmanteau test since the approximation of a chi-squared variable needs large m while
power becomes low as m becomes large. On the whole, (C) has stable power compared to (A), (B),
(A’), and (B’) under the condition of Corollaries 1 and 2. Therefore, it seems reasonable to use LM test

statistics to test for the integration order.

Figures 1 and 2——

We can also derive the Wald test statistics, which have the same limiting local power as the LM test
using the arguments of Remark 3. Let (dp,ds)’ be the unrestricted CSS estimators of (do,ds)’ in (3) by
maximizing the CSS function (4). Then it follows that, as T' — oo,

Wro = \/Tado (Jg —dp) 4, N(cog,, 1), under Hy 1 with ag = c/\/T,

Wrs = \/Tads (Js —d,) LI N(coa,, 1), under H, o with ay = ¢/VT, (21)
~ ! ~
do — d do — d

Wros =T ( JO do > > < go dO ) LN X2(2, ¢ ¢), under Hy 3 with a = ¢/VT,

where 04,, 04,, and X are defined by Theorem 2, Theorem 3, and Theorem 4, respectively. The finite
sample performance of these tests and the CSS estimates will be also be examined in the next section.

4 Some Simulations

This section provides some evidence on the simulation results of the CSS estimation of the SARFIMA
processes and the power of modified Portmanteau tests, LM tests, and Wald tests. All experiments
are based on 1000 replications and in each replication, data series of size T' = 100 are generated. The
calculations were conducted using S-PLUS. Here observations of both models were generated by Cholesky
decomposition of the covariance matrix of the process [see Sections 11.3.1 and 11.3.5 of Beran (1994)].
We also performed some simulations using the Levinson—Durbin algorithm and obtained essentially the



same results as those using the Cholesky decomposition. In addition, the Gauss—Newton procedure was
used for the maximization of the CSS functions, the procedures of which are provided in Tanaka (1999,
Section 5).

4.1 Results on CSS estimates

The models employed here are

DGP 1:  (1-¢L)(1-L)* (1~ L?)"(z —1) =&,
and DGP 2: (1 - ®L")(1 - L)™(1 — L)% (z; — 1) = &,.

Tables 1 and 2 examine the finite sample performance of the estimates discussed in Section 2. For each
simulated data series, the sample mean, Z, is calculated and subtracted from the data points before the
CSS method is applied to obtain the other parameter estimates. For each cell of five columns denoted
“Simulation results” in the Tables, the first number is the estimation bias, the number in parentheses
is the square root of the mean squared error (SRMSE), the number in brackets is the mean of the
asymptotic standard squared errors (MASE)!, and the number in braces is the true asymptotic standard
error (TASE). For the CSS estimates, TASE is computed from Theorem 1. We omitted TASE for some
cells since it does not depend on the integration order. The results are quite similar to those obtained
by Chung and Baillie (1993) for the ARFIMA case. Since & — pu = O,(T%+%~1/2) by Lemma B 10
and Leipus and Viano (2000, Lemma 9), the rate of convergence of Z for true p depends on the value
of dy + ds, and the columns of u reflect this. Estimation bias and SRMSE of T gets smaller as dy + d;
gets smaller. For the CSS estimates, in this case, if ¢ = ®, we find that both the Fisher information
matrix of (Jo —do,p— ¢) and (c?S —d,, ®— ®)’ have the same elements by (8). It follows that the value
of TASE in Table 1 is comparable to the corresponding TASE in Table 2. It is also apparent that the
MASE and SRMSE in Table 1 and those in Table 2 are similarly symmetrical. Roughly speaking, if we
ignore the elements —log(1 — ¢*)/¢ and —log(1 — ®)/(Ps) in (8), the TASE of dy in Table 1 and d; in
Table 2 correspond to the results of Tanaka (1999, Table 9). It reveals not only a poor performance of
the CSS estimates depending on some of the SARMA parameters but also reveals an unstable limiting

power of LM tests for the integration order, which is considered in the next subsection.

——Tables 1 and 2——

4.2 Testing for the integration order

Next we examine testing the AR (1) or SAR(1) model against the following DGP 3-6:
DGP 3: (1 —9L)(1 - L)*x; =&;, DGP 4: (1 —9L)(1 — L**)*z; = &,
DGP 5: (1 —9L'?)(1 — L)*z; = &;, DGP 6: (1 —9L'?)(1 — L'?)*z; = &,

where we fixed ¥ = 0.8 or —0.8 and assumed E[z;] = 0 is known. Tables 3 and 4 are concerned with the
rate of rejection of the null hypothesis a = 0 of no long memory.
In Table 3, the statistics St and St s are, respectively, LM statistics defined from (16):

S :TZ* \/m i) g :[‘Ti’/s] \/m?(is)
TN T s, T T—is ioa,’

=1

where 74, and 74, are computed from (15). These have the same asymptotic results in Theorems 2
and 3 by (41). The statistics Ar s are also LM test statistics, obtained using Godfrey’s T R? statistics,

1Given the estimate a; for the true parameter a from the jth simulation trial and the average a of a;j, j = 1,...,1000,
bias is defined as @ — a, while MASE is the square root of Z;Ozolo(aj — @)2/1000. The SRMSE is the square root of
Z]l-golo(aj — a)2/1000, which is equal to the square root of (bias)? + (MASE)2.



which are asymptotically distributed as (20). The statistics Q%, and @3, denote modified Portmanteau
test statistics, which are assumed to be asymptotically chi-squared with 24 and 40 degrees of freedom,
respectively, under the null hypothesis. The number in parentheses denotes the theoretical limiting
power derived from Theorems 2-4. The general feature of Table 3 is that the modified Portmanteau test
statistics perform poorly. St or St s is the most powerful if an alternative model is correctly specified,
while the other is the least powerful. The powers of At s are monotonically increasing in each case,
though it is not the most powerful. It is similar to the corollaries in Section 3. It is also worth noting
that, and as in Tanaka (1999), the discrepancy between the finite sample and limiting powers is related
to the fact that, by (8), the estimators of @ and ¥ are negatively correlated, and the correlation is much
higher for the case of (a,¥) = (dp,¢) (and = (ds, ®)) with ¢ = 0.8 than for the other cases. In these
cases, LM statistics have not only quite low limiting powers but also a large discrepancy between a finite
sample and these limiting powers.

Finally, in Table 4, we conducted LM test statistics Ay assuming alternatives, 7-factor GARMA
models with v; = (j —1)7/6, j = 1,...,7, which is considered by Silvapulle (2001). We also conducted
the Wald test statistics Wro, Wr,s and Wr s defined from (21). To compute consistent estimators
of o4,, 0a,, and X, we used a Hessian (the second-order derivative) matrix from the Gauss-Newton
procedure (see Tanaka, 1999, Section 5). The statistics Wy and W ¢ perform similarly to S7o and
St,s, respectively. The statistics Wr s and A7 also perform similarly to Sts.

It implies that the impact of SARMA parameters on integration orders is quite complicated so that
the LM test and the Wald test may perform poorly for testing for the integration order of the SARFIMA

model without strong evidence of SARMA parameters when the sample size is 100.

——Tables 3 and 4——

5 An Example Using Japanese Total Power Consumption

As an illustration of the use of the SARFIMA model, we consider monthly total power consumption
data in Japan from the Federation of Electric Power Companies (FEPC) between January 1990 to
December 2001 (sum of the ten electric power companies, unit: MWh, sample size: 144) 2. Since
the storage of a large amount of electricity is impossible, we can regard total power consumption as
electric energy demand. A large number of statistical and numerical methods have been applied to
modelling Japanese electric energy demand and total power consumption data including, amongst others,
(non)linear regression, Box-Jenkins SARIMA models and neural networks [see Yamamoto (1988) and
Honda (2000) and references therein]. One efficient method is SARIMA modelling, however residual
analysis by Yamamoto (1988, Section 7.6) and Honda (2000, Section 11.2) provides evidence of cyclical
behaviour around the peak and bottom and the modelling results are generally unsatisfactory.

Figure 3 displays the total power consumption data, {z;}. Figure 4 displays the autocorrelation
function (ACF) of the transformed data {z;}. Note that the ACF decays very slowly and exhibits
cyclical behaviour.

—— Figures 3 and 4 ——

To search for the best representation of this data, we first fitted differenced data y; = (1 —
L)(1 — L*?)z; by the CSS method where we used a sample mean of {y;}, ¥ as an estimator of
Ely:] = p and set s = 12. BIC and AIC criterion are also used under the assumption of nor-
mality [see, e.g., Brockwell and Davis (1991, Section 9.3)]. Calculations of BIC and AIC are
given by —25 (3, 72) +log(sample size used for CSS estimation) x (number of estimated parameters) and
—25(3, 72) + 2(number of estimated parameters), respectively. Fitting SARFIMA models or SARIMA

2These data are available from the website of the FEPC: http://www.fepc.or.jp/.



models are limited to having SARMA parameters with 0 < p,q,ps,¢s < 4 and the total number of
estimated SARFIMA parameters (dg, ds, SARMA parameters, and ¢?) is less than 8. The total number
of models is 772. From among these estimation results, we selected four models in terms of BIC and
AIC that satisfy the following conditions: (i) Modified portmanteau tests are not rejected with the sig-
nificance level 5% until 36 degrees of freedom. (ii) The estimated SARFIMA parameters all converged
and satisfy Assumption 1 (c) and (d). Condition (i) uses results of Section 3. All calculations were made
using S-PLUS 3.

Table 5 shows the best four models in terms of BIC model selection with estimators. ID denotes
the model identification within 772 models. NE indicates the corresponding parameter is not estimated
and set to be 0. The numbers in parenthesis in the columns of BIC (AIC) denote the ranking of models
in terms of BIC (AIC). These four models have the same number of parameters and show that similar
models are selected. Our main concern is whether the {z;} is seasonally overdifferenced (ID 518 and ID
521) or not seasonally overdifferenced (ID 148 and ID 151) because the estimator of d; in ID 518 (521)
appears to relate to the estimator of ©; in ID 148 (151).

—— Table 5 ——

Table 6 shows p-values of testing for the integration order corresponding to those four models using
the LM test statistics in Section 3. In this table, models ID 518 and ID 521 correspond to some models in
alternative hypotheses of the first and second rows of SARFIMA models, and models ID 148 and ID 151
correspond to null hypotheses of the third and fourth rows of SARFIMA models. Our findings are as fol-
lows: (i) Results for SARFIMA(1, ag,0)(3, as,0)s and SARFIMA (0, g, 1)(3, as,0)s support estimation
of ds and restriction of dy = 0 for models ID 518 and ID 521. (ii) Results for SARFIMA(1, ap,0)(3, s, 1)
and SARFIMA(0, ag, 1)(3, as, 1)s show relatively small p-values. Therefore, we cannot conclude that {z,}
is not overdifferenced and d, should set to be zero.

—— Table 6 ——

The model ID 518 is the best model in terms of BIC and AIC among the 772 model candidates. The
estimated model of ID 518 is

(14 0.221L)(1 + 0.162L'? + 0.292L** + 0.393L3%) (1 — L**) =384 (y, + 18770.34) = ¢,
ye = (1—L)(1 — L**)xy, and 7 = 298563.4.

Figure 5 shows the standardized residuals of Japanese total power consumption data using this model.

The behaviour of this residual sequence resembles a white noise sequence and presents no cyclical pattern.
—— Figure 5 ——

Note that we also conducted other transformed series {(1 — L)x;} and {(1 — L'?)z;}. However, the
best of these were inferior to the above four models in terms of BIC and AIC. In place of the sample
mean, we specified the sample median because the electric energy demand can be affected by excessive
changes in air temperature and the sample median is robust to additive outliers. Nonetheless, model
ID 518 is still selected as the best model in terms of BIC and AIC among the 772 candidates and the
rankings and estimates are almost the same.

On this basis, we conclude that the SARFIMA model is effective and can be usefully employed as a
substitute for the SARIMA model when fitting Japanese total power consumption data.

3These programs are available on request.
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6 Concluding Remarks

This paper has examined a seasonal long memory process, denoted as the SARFIMA model. The
paper provides evidence of the consistency and asymptotic normality of CSS estimates and the testing
procedures of two differencing parameters.

This paper is based on parts of Chapters 1 and 2 in the author’s Ph.D. thesis [Katayama (2004)].
Sections 2 and 3 in this paper are an extension of the results of the author’s Ph.D. thesis to the case
of unknown mean, and can be applied to the k-factor model, though we must assume that Gegenbauer
frequencies, vy,vs, ...,y in (1), are known.

Section 2 discussed the estimation problem by using the CSS method. We obtain a unified approach
to fitting traditional SARIMA processes as well as non-stationary (seasonal) ARFIMA processes [see
Box and Jenkins (1976) and Beran (1995)]. However, we cannot extend the model (2) in Section 1 to

the following linear regression model:
Yt :bet-ﬁ+xt7 (I_L)do(l_Ls)dsmt :19(L)6t7 (t: 1727"'7T)'

In this case, consistency of the least-squares estimator of 3, B, depends on differencing parameters, i.e.,
Var[DT(B—ﬂ)] is O(T?4)if d € (0,1/2);and O(1) if d € (—1/2,0), as T — oo, where d = max{dy+ds,ds}
because autocovariances, v(j), is O(j2?~1) as j — oo and Var[Dr(B — 8)] = O(Z]-T:0 |v(5)]), as T — oo
[see, e.g., Section 9.1 in Fuller (1966) and Section 2 in Yajima (1988)]. But we cannot prove consistency
and asymptotic normahty of CSS estimates (6 72). The main difficulty is the case of max{dy+ds,ds} > 0
and max{—dy —d,, —ds} > 0, typically, (do +ds,ds) € D7 5, which is different from that of the ARFIMA
model. In Section 3, we cannot formulate a linear regression model as in (17) under the testing problem
Hy against Hy 1 (or Hy ) because the LM test statistics have a differencing parameter ds (or dp) in

nuisance parameters.

APPENDIX

A Results on a fractional filter

A recursion formula and asymptotic results for a fractional filter are given by following results.

Lemma A 1. Let F(z) be a fractional filter defined in (1) such that

k—1 k oo
Fz)=(1-2)"(1+2) " [JQ-2mz+2") % =[]0 -2z +2%) P = 2, (22)
=2 i=1 j=

|z| < 1, where n; = cos(v;) and 0 =v; <wvo < -+ < vy <wvp =7, and Dy =dy /2, Dy, =d/2, D; = d;
fori=2,...k—1. Then

1. o =1, and
o i1 K
Y = EZ Z D, cos[(j — i)vm] i, for j > 1, (23)
i=0 m=1

2. [Asymptotic results by Giraitis and Leipus (1995, Theorem 1), Leipus and Viano (2000, Lemma
1), and Viano et al. (1995, Proposition 7)].

k .
Kild) a1
1111] ; F(dl) ] Y as .7 — OO, (24)
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where k) = k1 (5) = 2% T520 (2 — 2cos(wi)) ™%, kg = ke (f) = 274 [T12) (2 + 2 cos(14) ™%, and

ki(J) = 2{2 sm(’;’)}idl{g cos(%) }7dk{28in(lji)}_di

k—1
x JI [12(cos(ws) = cos(un)) || cos [”i( Eh Zd + ) dl%d)ﬂ

fori=2,3,....k—1.

3. Let ¢ ;(d) be defined by (1 — 2)~% = 372 4h1,;(d)2?, ¢3(d) = T(j + d)/{T(AL(j + 1)}, and
de (-1,00U(0,1). Then

;m(d) = S Vtnsa(d) = vuald+ 1) ~ g, (25)
d
n 2’1/11,] ~ T if d € (0,1),
1)
i@l =9 5 y (20
J=0 2—¢17n(d+1) ~2— m, lde (_1,0),

where f(n) ~ g(n) means f(n)/g(n) = 1, as n — co.

4. [The summability of Gegenbauer porlynomials by Theorem (2.1) in Zayed (1980)]*. Let Gegenbauer
polynomials be de(n), §=0,1,2,..., which are defined by the generating relation (1—2nz+22)"4 =
Yo Cf(n);j, Inl < L,|z| < 1. Ifd e (=1,0)U(0,1), A= 377" a; is convergent, B = 372 b;
and bj = Y1 _ga; kCi(n), then C =372 CF(n) is convergent, and B = AC.

5. Let ¢y ;(d) be defined by (1+2)"¢ = Yo VY (d)z9, Py ;(d) = (=1)4; j(d), and d € (—1,0) U
(0,1), where 1 ;(d) is given by 3. Then Z;io Y, ;(d) is convergent.

6. Let, in (22), d; € (—1,0)U (0,1) fori=1,2,... k. If dy € (—1,0), then Z;io Y; is convergent,
and

n Ky .
;%‘ ~ K1 (d+1) ~ mn 1 asn — oo, (27)

where k1 and Yy n(d+1) are given by 2 and 3, respectively. If d; € (0,1), then Z?:o ¥; = O(nh),

as n — oQ.

Proof of Lemma A 1. 1. By the nth derivative, we have F(™) (0) = n !4, while for the middle term
of (22), the first derivative is given by

k—1

- —2d;(z — n;)
FO() =F ! b I =F .
O =FO| T+ T+ L ey | =FEGE, )
Using the nth derivative, we have
k—1
GM(0)=n'd + (=1)"nldy + ) 2d;n ! cos[(1 + n)y;].
j=2

Hence, by F((0) = {F(0)G(0)}(»=Y = n !4, and the nth derivative of a product formula [Leibniz’s
rule, see 0.42 in Gradshteyn and Ryzhik (2000)], we obtain the result.

4Theorem (2.1) in Zayed (1980) shows that 20 ay C;i(n) converges for any d > 0, where a; < M(j+1)F,j=0,1,2,...,
for some integers M and P. However, we assume d € (0,1) for simplicity and modify Zayed’s results multiplication of

summable series.
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3. By (23) and 91 ,(d) ~ n?=1/I'(d) as n — oo, we obtain (25). It is also obtained from properties of
Cesaro numbers and the Pochhammer symbol [see, e.g., Section 1 of Chapter 3 in Zygmund (1968) and
Proposition 1.2.3 in Dunkl and Xu (2001)]. To demonstrate (26), we note that I'(v) > 0 for v > 0 and
I'(v) <0 forve (-1, O). For the case of d € (—1,0), since

- ]+d _ - (]+d

we obtain the result by (25). The case of d € (0, 1) is obvious because |1/117]-( )| = v1,;(d), 5 > 0.
4. The proof of the case of d € (0,1) draws heavily on Theorem (2.1) in Zayed (1980). Consider the

function

G(T’) - Z% - (] + d) a’L —J sz al_]‘
i=0 j=0 i=0 j=0

where di(n) = (=D'C{(m)/{(j + d)*'} and 21 > 2d + 1. Since C§(cosv) is expressed as Cf(cosv) =

i—o ¥1,i(d)1j—i(d) cos[(2i — j)v], we have [Cf(n)| < C1727", |di(n)| < C172*71/{(j + d)*'}, and

Z;’;O d;(n) converges absolutely by our choice of I. Using the same argument as in the proof of Mertens’

Theorem [e.g., see Chapter X of Hardy (1991)], the RHS of

n i n n—j n O, i2d-1 n—j
Z Z d; (U)ai—j = Z d; (1) a;| < Z (Jlj_id)ﬂ Z a;
i=0 j=0 j=0 i=0 j=0 i=0

is convergent as n — oo and G(n) is uniformly convergent. Borrowing the differential operator in (2.5)
of Zayed (1980), D = (1 —n?)8%/0n? — (2d + 1)nd/dn — d*, and Weierstrass’s Double Series Theorem,
we have D!G(n) = B. Since A, B, and C are all convergent, B = AC by Abel’s Theorem [see Chapter
X of Hardy (1991)].

The case of d € (—1,0) can be treated similarly because 37~ Cf(n) is absolutely convergent.

5. To prove the case of d € (0,1), it is sufficient to check the conditions of Leibniz’s Theorem:
(i) ¢1,5(d) > 0, for all j, (ii) 91 ;(d) — 0 as j — oo, and (iii) ¢1,;(d) > 1 j+1(d), for all j because
Ym0 Uni(d) = 32720 (=1)711,5(d) is the alternating series. Since T'(v) > 0 for v > 0, 11,;(d) is positive.
Furthermore, equation (7) of Yajima (1985):

%Snt_l, for0<t<l,andn=12,... (28)

implies (ii) and (iii).

(n+1)71 <

The proof of the case of d € (—1,0) is obtained easily because » 7”9, ;(d) is absolutely convergent.
6. We first rewrite ( 2) as F(z) = Gl( )G2(2), where G1(2) = (1 —2)~% = 3272 (41 j(d1)2’ and

G2(2) = (14 2)~% Hl 5 (1 — 2z + 2%) "% = Z;'io 92,27
For the case of d; € (—1,0), by 4 and 5, G2(1) = 3_72 g2 ; is convergent, and, by 3, 3721 ;(d1)
is absolutely convergent. Then Z;’;O ®; is convergent and

=) v = (Z¢1,j(d1 ) (Zgz,g) =G1(1)G2(1) = (29)
=0 =0

where we have used Mertens’ Theorem and Abel’s Theorem again. It follows from (29) and (25) that,

as n — 00,
n n n n ndl
;wj ~ (gwl,j(d1)> (jz%gz,]) ~ (]Zéwl,j(dl)) G2V ~ 5 g G2 (V-
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For the case of d; € (0,1), since )77 g2 ; is convergent and 37 [¢1 ;(d1)| ~ n™ /T (14dy) by (26),
we have, as n — oo,

Dol =D wni(d) D gk <Y1t s(dh)]
=0 k=0 j=0 k=0

Jj=0

> I i(d)] | = O(n®).
j=0

B Asymptotic Results Relating to CSS Estimates

In this appendix we present some details of the proof of Theorem 1 and some remarks. For simplicity
we mainly focus on the proof of Theorem 1 with ¥(z) = 1.

From the definitions in Section 3, we first introduce some notations. Let § = (do, ds)" be the true
parameter vector and let & = (do, ) 8,6 ¢ D; ; for some i,j = 1,2,3,

t—1

1(0) = Zﬂ do, ds) (2 — 7), M+Z¢k do,ds)eg—, fort=1,2,...,
k=0

be the residual process for evaluatlng the CSS function,

E T (do, ds) (zi—k — p E i (do, ds)vi— ( E Ui (do, ds)er—r,

fort=1,2,..., be the counterparts of the re51dua1 process,
T T o e "
1 - 5) 1 . 0%25(0 . 0%Q(6
0 = =1 0606 0600

(1-2)*(1-2% Zﬂ']ab , and (1—2)7*(1-2% Ziﬁ]ab
We show that 8 is a consistent estimator of & by showing that

Zﬁt 2 2, E[ Ut(5)]2, as T' — oo uniformly in = vaj (30)

because & is the estimator of & that minimizes the objective function Zthl €2(§)/T. This is sufficient
condition for weak consistency by Fuller (1996, Lemma 5.5.1 and Lemma 5.5.2) because E[uZ(8)] reaches
its minimum at & by the fact that — Y ;- | mx(do, ds)ve—x () uniquely determines the best linear predictor
of v;(d) on the basis of the mean squared error based on the infinite past vi—1(d), vi—2(d),... (ie.,
gt = u(0) = v(0) + Xy Tr(do, ds)vi—k(d)), which establishes the condtion (5.5.7) of Lemma 5.5.2 in
Fuller (1996).

We prove the following lemmas that are needed subsequently.

Lemma B 1. Let the {a;} and {b;} satisfy |a;|,|b;| < C1(j + 1)~ for some Cy,7 > 0, and any
§ >0 and let {c;} be defined by c; = S _, arbj—r, j > 0. Then |¢;j| < C 5=V for some C > 0 and
any j > 2.

Proof. By the definition of ¢;, dividing the inner summation into two: 1 <k < [j/2] and [j/2]+1 < k < j,
we have

[5/2]

Cl|ak| ! Cl|bj—k|
R D v = D D e
o Ukt e D
[i/2] J
Cy G
i . ag | + bj—t
(G—1[j/2]+ 1)+ kZ:o |ax] ([7/2] +2)7+1 k:[jz/;]Jrl -]

< G2+ <O
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for j > 2 because j/2 -1 <[j/2] <j/2 and {a;} and {b;} are absolutely summable. O

Lemma B 2. Let § € D3 . Then (i) there exist absolutely summable sequences {m;o(7)}, which do not
depend on &, and which satisfy |mi(do, ds)| < mjo(t) for all § >0 and mjo(t) = O '"7) as j — oco.
And (ii) there ea:z'st absolutely summable sequences {m; i (1)}, which do not depend on &, and which
satisfy |07 * i (do, dy) [ (3dh0d¥)| < 7jivx(7) for all § > 1, and 714 (7) = O((log )% /517 as j — oo
fori+k=123.

Proof. By (1 —2)*(1 — 2°)" = (1 — 2)***(1 + 2)" [ (1 — 2cos(2mj/s)z + 2%)* and Lemma B 1,

it is sufficient to show that absolute value of coefficients of the expanded series of each factor can be

dominated by some absolutely summable sequences. Let a; be defined by (1 — 2)¢ = o a;j(d)z7.

Then, equation (28) implies |a;(do + ds)| < C1(j —1)"" ! for j > 2. The coefficients of the expanded
series of (1 + z)% can be treated similarly. By (1 — 2 cos(f)z + 22)~" = Y520 Cy (cos )2,

-1

v+ )CY (1) = 20 [CH (1) — tCrHL (1), and  |CY(cosb)| < 21—"(Smja)w (31)

(0,1), 8 € (0,7) from 8.933.3 of Gradshteyn and Ryzhik (2000) and 22.14.3 of Abramowitz and

Stegan (1974), it immediately follows that [C¥ (t)| < Ca(j — 1)¥~" for j > 2 and v € (—=1/2,0). Hence

|C’]7d3( )| < Ca(j — 1) 7! for each t € (0,7) and thereby demonstrates (i).
We omit the proof of (ii) since these results are obtained in the same way as those in, e.g., Section
2.11 and (8.8.6) of Fuller (1996). O

forv e

Next, consider the lemma for the strong law of large numbers (SLLN) by Yajima (1985, Lemma 3.3)
and Doob (1953, Theorem X 6.2).

Lemma B 3. [SLLN by Yajima (1985) and Doob (1953)]. If random variables {x;} satisfy E |x;x;| < oo
for all i,5 > 0 and E(ZZ Lzi/T)? < C/T* for some a,C > 0, then, as T — o, Z;T:1 x; /T almost
certainly converges to zero.

Lemma B 4. Zt 15t(5 w)/T — Zt 1ut( )/T — 0 a.c. as T — co uniformly zn5€D11

Proof. Rewriting &,(8, 1) and u,(8) as

1

_ t—j—
e(0,p) = ZWJ (do,ds) > t(do,ds)er—j—« —ZW] (do, ds)es—(6),
7=0 k=0
w(d) = ij (do, ds)ve( +Z7r] (do, ds)v; ()
= ij do, er—;( +Z7T] do, Yoy_ ;( +Z7r] do, Yui—;(0)

= Zﬂ'] d(), Ut ] Zﬂ-] d07 Ut ](6)
= Et(auu)+wt71 +w 2, (say),

where v,(8) = 32,2 Y (do, ds)er—r = ZZ_E Ur(do, ds)er—k + 252, Yr(do, ds)er—k = ex(8) +vy(6), (say),
by Lemma B 2, we have |8t(5 w)| < Z] 07r]7 (T)|€t_j(5)| = 210, (say), |we1] < Z;;é mi0(T)|vy_;(0)] =
z,1, (say), [wea] < 3070, mi0(7)|ve—(8)] = 2.2, (say), and

T 1 I 9 I 9 I 9 I Lz | I
2(& 2 2
; )—th:;ut(zs T; tOZt,1+T;Zt,OZt,2+T;Zt,lzt,2+T;Zt7l+T;Zt72. (32)

'ﬂ |
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Using Lemma B 2 and the Cauchy—Schwarz inequality, we have, as t — oo,

- 1/4 ' . (1) ' =l !
j,0
Blaal' < | mo{Bel, '} | =0\ G+ 3 mol)
j=0 j=0 .] j:[t/?}—‘,—l
[t/2] 4 - 4
= Ol e Fy 2 meln) e f =0,
j=[t/2]+1
5 (e )\
Elzz2]" < [Zﬁj70(7){Evtj(5)4}l/4J =0 ZW]',O(T) =0(t ),
j=t j=t

and Ez/, = O(1). Therefore, using the Cauchy-Schwarz inequality and Lemma B 3, the RHS of (32)
almost certainly converges to zero, which proves the lemma. O

Lemma B 5. Zt Lu2(8)/T — E[u2(d)] a.c. as T — oo uniformly in & € Dj

Proof. For fixed 8, we have Zt 1 u2(6)/T — E[u2(8)]. Therefore, the rest of the proof is devoted to
showing uniformity in = D3 ;. By Lemma B 2, we have |ut(6)| < wg and |8ut(6)/85| < wy 2 where
Wy = Z]O'io i0(7)|ve(8)] and ws = 352, mia (P[5 (8)]- Let Q1 = {wllimr o 3o, wd, /T =
Ew?;, i =1 2} and Dy = {&;li = 1,2,...} be a countable dense subset of Dj,. Put Qs; =
{w[lim7_ 00 Zt Lui(0:)/T = E[u(0:)]°} and Q = Q1 N; Qg(5), we have Pr(2) = 1 since u,(d;) and
wy,;’s are ergodic processes. The rest of the proof is obvious from the proof of Theorem 1 by Yajima
(1985). Hence, the proof is omitted. O

Lemma B 6. Y., e2(8, 1) /T — E[u2(8)] a.c. as T — oo uniformly in § € D3 ;.
Proof. Using the triangle inequality, Lemmas B 4 and B 5, we immediately obtain the result. O

Let ugi) (8) and 5( )(6', 1) be the i-th derivatives of u;(d) and &, (8, 1) with respect to . Then, similarly

to Lemmas B 4 and B 5, we obtain the following lemmas.

Lemma B 7. Y. 1ut ( > oy - S eV @we @ /T > 0, ac, and

ZtT:luE (&)u(8)/T — Zt 1€ (6 we (8, u)/T — 0, ac., i = 1,2, as T — oo uniformly in

d €D,

Lemma B 8. Y1 1u(1)(6) P 0)/T = Bl @)u” (8)] = 021(8) a.c., and T, uy” ($)us(3)/T
Elu g)(é)ut(é)], a.c.,i=1,2, as T — oo uniformly in 6 € Di,

We omit the proofs since these results are obtained in the same way as those in Lemmas B 4 and B
5. Note that I(8) is continuous on D;; and I(d) =I5

Lemmas B 4 to B 8 concentrate on the case of 4,5 € D ;. However, the next lemma shows that
these results hold even if 8,4 € D;; fori,j=1,2,3.

Lemma B 9. Lemmas B J - B 8 still hold if Df , is replaced by D; ; fori,j =1,2,3.

Proof. For the case of 8,6 € D3, rewrite £¢(8) and u () as

) t—1 t—j—1 t-1 .1 1
Et((S) = 4 <d0+ ) Z ¢k<do+ )Et_]‘_k:Zﬂ']‘<d0+Z d)et ]<d0+4 d),
j=0 j=0
.. .ot 1 . ad 1
uw(8) = et(6)+;7rj <d0+1,ds>v;j <d0+ > +]Z;7r] <d0+ s)vt ]<do+1,ds>,
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where

oo t—1 oo
b) =Y trla,berr =D vr(a, ek + Y vi(a,b)er—r = es(a,b) +vj(a,b), (say)
k=0 k=0 k=t

and we have used the fact that Y3 Th ar; = Yio doneo @kj—k and mi(a + bc+ d) =

Zi o Tk(a,c)mj_k(b,d). Using the proof of Lemma B 2, we again establish the absolute summable
sequences {m} ;. ,(7)} such that |07tk m;(do + 1/4,d,)/(8diddY)] < (1) and whL (7)) =
O((log )% (j=7"1 4 j75/%) for i + k = 0,...,3 because dy + ds + 1/4 € (1/4 — 7,1/4 + 7) and
d, € (1,1/2 — 7). Tt follows that the rest of the proof relating to D3 , is obtained in the same way as
those in Lemmas B 4 to B 8. Since other D7 ;s can be treated similarly, we omit the proof. O

The following lemma implies that strong consistency and order in probability of sample mean, Z =
Zthl x/T, such as Lemma 9 of Leipus and Viano (2000) are unaffected if z; —pu =¢, =0, for all t < 0.

Lemma B 10. Under the Assumption 1, it holds that, as T — oo,

X5 and E(@—p)’ = O(TQ(dO"'dS)_l). (33)
Proof. We assume that ¥(z) = 1 for simplicity. Since ZtT:l(;vt —p) = Zthl Z;;B Yi(do,ds)er—j =
1 Y1 ¥i(do, du)er, we have, by Lemma A 1,

2

T t—1
E(—n)’ = ;—Z S D wi(do,ds) ( . ZtZ(doer > (TZ(do+d )= )

t=1 \ j=0
as T' — oco. The general case can be treated similarly because (1) converges absolutely by our assump-

tions. It follows from Lemma B 3 that Z =5 pu. (]

Finally, we consider lemmas for the weak uniform law of large numbers relating to £,(8) = &,(8, z).

Lemma B 11 () 7,,5"@)="@)/T — T, “’(6 we! @' /T L 0, and
Zt 1Etl)( 8)e()/T — Zt 16tl)(6 wer(d,1)/T +50,i=0,1,2, as T — oo 1-¢.mformly inde D3y f.or
J,k=1,2,3. (ii) Lemmas B 4, B 6, B 7 and B 9 still hold in probability if €0(0, p) is replaced by £4(0).

Proof. (i) First we consider Y., 2(8)/T — Y., e2(8,u)/T. Since e(8) = e(8,p) — (& —
) Z;;B 7j(do,ds), it is sufficient to show that

T
. 1 .
(& — p)? sup T E E me(do,ds) | =0, as T — oo. (34)

By Lemma A 1, there exists a number a > 0 such that | Z] o 7 (do + a,ds)| < oo uniformly in § € D3,
(i.e., do + dy 4+ a € (0,1/2)). Similar to the proof of Lemma B 9, the RHS of

t—i—1 t—1 t—i—1

Zw]do, Zm —a,0) > mi(do +a,ds)| <D |mi(—a,0)| > wi(do + a,d)
= 7=0 =0

=0
is O(Zf;é |mi(—a,0)]) = O(t*), as t = oo. Therefore, by Lemma B 10,

2

and (34) holds. Other cases can be treated similarly because each derivative of Z;;E mi(do + a,ds) is
bounded by Weierstrass’s Double Series Theorem, which establishes (i). Using triangle inequality and
(i), we immediately obtain (ii). O
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Proof of Theorem 1. For simplicity we focus on the proof of Theorem 1 with ¥(z) = 1.
First, we prove weak consistency of 5 by showing (30). Using Lemmas B 6, B 9, B 11, and

T 1 T L
TZEt —Eut TZ:: _T;{‘:t(a,ﬂ)z

the condition (30) is established.
For 52 =Y, f—:f(g)/T Since E[u2(d)] is continuous on D?

T .
+ TZEt(&M)Z — E[w (0)],

i j» by Lemma B 11, as T' — o0,

o] = [ e |io -]

IN

T

Z /T Eut

+‘Eut )]—UQ‘LO.

IN

sup

We now establish the asymptotic normality of the estimates. For §* on the line segment joining d and

0 we have
1 95(9) ( 1 9*S(6%) =
—0= W (2 TG -6 35
JT 06 \F (7 gs05 ) VIO~ 9. (35)
in probability. Since I ( ) is continuous on Dy ;, by Lemma B 11, we have, as 7' — oo,
S (%) /T — 15‘ < ‘5(2)(6*)/T — QP (8% /T‘ + ‘Q@) §)/T — I(6")| + ‘I (6%) — I,;‘
< sup ‘s@) )/T — Q™ (8) /T‘ +Sup ‘Q §)/T — 1(8 ‘ + ‘I (6%) 15‘ 0.

Therefore T‘182S(6*)/(6685) — Is in probability, as T — oo. Since £:(6) = &(d,p) — (z —
t-1
0] Z]’:o i (do,ds),

T [t-1 2 T =t o (do, d.) 2
e—p)® Y | Y mido,ds) | =0,(1) and (z—p)* ) Z # = 0,((log T)?) (36)
t=1 \j=0 t=1 || j=0
by the same argument as in the proof of Lemma B 11, Lemmas A 1 and B 10, we have, as T" — oo,
1 95(9) XT: ast a deu(8, 1)
- +0p(1). (37)
\/_ ol —
Therefore, as T — oo, we can rewrite (35) as
T
1 ast(é, ,U,) <
=P IsVT(8 — 8) = 0,(1).
\/To_z tzzgst((s?/j’) 8(5 5\/_(6 6) OP( )

Since the process e.(8, u){0e(d, 1) /(00)} is a martingale difference, the central limit theorem follows
from the central limit theorem for martingale differences, which proves the theorem [see, e.g., Fuller
(1996, Theorem 5.3.4 and Theorem 5.5.1)]. Now the first derivative of €,(d, ) with respect to d is given
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by (7) and each element of {d;} is defined as follows:

62’:}(6,/},) = 1 88t(57/j’) - 1 - k
=1 - — =1 - L
“od, 8! Z RV Taq, el kz:: k ; A
Oe¢ (4, _ . = . .
1;9((25./1) =—¢ 1(L)L-75t:_LJZ¢ Lke, = ZﬁbkijkEt for j=1,....p,
J k=0 k=j
Oc(0 . =
% =—0"'(L)7e, = —L7 ) _6;L'e, = Zek jLFey  forj=1,....q,
J k=0
Oc: (0 . .
% =& Y(L°) L%, = —L7° Z@;Lkst =— Z Gp_j Lrer  forj=1,...,p,
J k=0 k=js
aEt((S,/J,) _ @71 LS L_]S _ L]s - @*Lk _ — @* Lk f . 1
0. (L°) L% = —=L° Y " OjL's; = = Y Oj_;, L= org=1-s (38)
J k=0 k=js
where s; = s/j for j = s,2s,..., ;= 0 otherwise, ¢¥, 67, ®% and O are defined by Lemma 1. The second
derivatives can be obtained similarly, which establish I. O

Remark 1. If p is known and Z of z-:t(('s') = Et(('s',i“) is replaced by p, then Sisa strongly consistent
estimator because Lemmas B 6 and B 9 hold and E[u,(d)]? reaches its minimum at  simiarly to (30)
2

[see, e.g., Fuller (1996, Lemma 5.5.2)]. It implies strong consistency of 6 and asymptotic normality of

(6) similarly to the proof of Theorem 1.

Section 3 considers (un)constrained estimators in order to study the behaviour of test statistics for
the testing problems about dy and ds under local alternatives. The following remarks show the proof of
strong consistency of estimators under local alternatives.

Remark 2. For the local model, (1 — L)47:0(1 — L)%z, =¢;, t > 1, dro = do + 6 and § = ¢/\/T, if the
CSS estimator d, is given by evaluatirlg the residual, &} (d,) = Z; éw] (do, ds)z:—; in place of &,(3,z),
the property of strong consistency of ds is immediately obtained.

For the case of Dj,, let ub(dy) = > o ™ (do, dy)v) ; where {v;} is given by v, =
Z]O.';O Y;(dro,ds)ei—j. Then by the proof of Lemma B 4, we have Zt Lun(dy)?/T — Zt LE(ds)?/T =0
a.c. uniformly in d,. Now rewrite u}(ds) as

u(d) = (1—L)®(1— L)) = (1 - L)% (1 - L¥)% (1 — L) @+ (1 — 1)~
= (1-L)7°(1—1%) " @d)e, = (1= L) w,(d)
where w; (ds) = (1 — LS)*(dFJS)z—:t. By a Taylor expansion around 6 = 0, we have

L . ¢ < wi (dy) . ¢ -
uy(ds) = we(ds) + ﬁ ; kT = wy(ds) + ﬁzt(ds): (say)

where w} (d,) = (1— L)~ w;(d,) and #* is on the line segment joining # and 0. Note that absolute value
of coefficients of expanded series of (1 — L*)? are dominated by absolute summable sequences {m;o(7)}

as in the proof of Lemma B 2, which do not depend on d;. It follows that there exists a number T > 0,
"€ (0,7), and for all T > Ty,

wdd)] = |0 L1 = L) < 3 mio(n)](1 - 19"
j=0
|2(da)] = [log(1—L)(1— L)~ (1— L) @dg,|
. _os/2—-1
= (1—L)ds—9*(1+L)ds H (1—2C0S(27T]/S)L+L2 {log 1—L) 1_Ls Sat}

=1

ijo )| log(1 - L)(1 — L)~

IN

19



where 7/ < 7—6 and 1/2 — 17— 6 < 1/2 — 7'. Therefore, the RHS of
lem ,, 70 1o _— RIS
TZu;(ds) - fzwt(ds) ﬁzzt(ds) +
t=1 t=1 t=1

is bounded by some nondegenerate random variable, zp (7, 7'), say, which does not depend on d, and

0*, and as T — oo, zr(7,7") — 0 almost certainly by pointwise ergodic theorem. It follows that, as
T — oo, ZtT L uy(d 1,)2)T — ZtT Lwe(d I,)2/T — 0 a.c. uniformly in d,, and hence Zthl el(d,)?)T —
Zt L wi(ds)?/T — 0 a.c. uniformly in dj.

An almost certain convergence of Zt L wi(ds)? /T is shown similarly to the proofs of Lemmas B 5
and B 9. Therefore, thl e!(dy)?/T — E[w:(d,)]? a.c. uniformly in d, which implies strong consistency
of &; similarly to the proof of Theorem 1.

When d, is given by evaluating the residual, e;((do, d;)’ ,T), a weak consistency of dy is obtained from
Lemma B 11.

Remark 3. For the model defined in Remark 2, in order to estimate the true parameter § = (dr,ds)’,
if the CSS estimator 6 = (JT@,JS)’ is given by evaluating the residual z-:t(('s') = 2;10 wk(c'i'o,c'l's)mt,k
similarly to Section 3, the property of strong consistency of § is obtained by modifying Remark 2.

For the case of D7 ;, let w () = Y ore Owk(do,d Yoi—k(8), v:(0) = D pe o Yr(dr0,ds)er—k, and w(8) =
ZFO Y;i(do — do, dy — ds Yer— i Then by a stralghtforward extension of the method used by Lemmas B
4 and B 5, we have thl e2(8)/T — Zt Lu2(8)/T = 0 and Zt L w2(8)/T — E[w?(d)] a.c. as T — oo
uniformly in § € Dj,. Using the argument as in ul(dy), we(dy), and z(dy) of Remark 2, we again
establish that 37/ 1ut( ) /T — S w2(d )/T — 0 and E[u(0)]? — E[w(8)]2 — 0 ac. as T — oo
uniformly in § € DS i1. It follows that Zt:l €2(8)/T — E[us(8)]> = 0 a.c. as T — oo uniformly in
b e Df ;. Hence, by Gallant and White (1988, Theorem 3.3), the proof of strong consistency of J is
obtained easily by the fact that — Y, | mx(dr,0,ds)vi—r () uniquely determines the best linear predictor
of v;(d) on the basis of the mean squared error based on the infinite past v;_1(d),vi—2(8),. . ..

When 4§ is given by evaluating the residual, st(('i' ,T), a weak consistency of (/l\s is obtained from Lemma
B 11.

The asymptotic normality of the estimates is obtained in the same way as those in Theorem 1.
Therefore, as T — 0o, VT'(6 — 6) LN N(0, Is71),

VT (drp —dro) ~2 N(0, 0,2), and VTou,(dro —do) —= N(cog,, 1), (39)

where 03 = (7%/6)(1 — s72). The case of general SARFIMA model (3) can be treated similarly.

C Asymptotic Results Relating to Residual Autocorrelation

Functions

Proof of Lemma 1. The proof of Lemma 1 is obtained similarly to the proof of Theorem 1 of McLeod
(1978).

First we assume that p is known and & = z—:t(g, 1). By a Taylor series expansion of ¥ around 5= 4,
we have, as T — oo,

VTF =VTr + 86,\/_((5 (5) +0,(1) = (—Jm Im) < \/T\(/‘;; 5) ) + 0,(1), (40)

where r = (r(1),...,r(m))’, r(j) = ZtT:_lj 5t5t+j/ZtT:1 €2, j =1,...,m, and the last equality follows
from equations (32) and (33) of McLeod (1978). Note that, as T — oo, Var(r(j)) ~ (T'— 4)/{T(T +2)}
and Cov(r(j),r(k)) ~ 0for j # k. As T — oo, \/T(g— ) N N(0, Is™') by Theorem 1 and it is
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known that VT r -4 N(0, I,,). Using the same argument as in the proof of Lemma 2 and Lemma 3
of McLeod (1978), we obtain

598 It 7
VT 4y N o, T T ) as T — oo,
T I Is I,
which yields Lemma 1 by (40). When g is unknown and &; = st(g ,T), it can be shown that by Lemma

B 11, (36), and (37), existence of Z does not affect the limiting distribution of v/T7, which establishes
the lemma [see also the proofs of Lemma 2 and Theorem 1 of McLeod (1978)]. O

We prove the following lemma that is needed to prove Theorems 2 to 4.

Lemma C 1. Let wy 1j, w21, and ws rj, j = 1,2,...,T be triangular array of random variables such
T > T T

that 35, wi ;= 0,(T'/?), >t w3 ;= 0y(1), and >t w3 ;= Op(1) as T — oo and let {a;}

be positive sequences such that a; = O(j~') as j — co. Then

T-1 T
lim limsupPr | | 771/2 E ak E v1,T,j—kV2,Tj| >€| =0
m— 00 T—00 3
k=m-+1 j=k+1
for every e > 0, where (vi,1j, v21,;) = (Wi,T5, W2,15), (W2,T,5, W1,T,5), (W2,T,5, W37T,5)-

Proof. By using the Cauchy-Schuwarz inequality and the fact that > ;7 ., k7'7* < a~'m~" for any
a > 0, there exists a number Ty > 0 and for all T' > Ty,

1/2 1/2
= T = T T
NG doowm Y WLTj-kW2Tj S Tpm Yook D winge > wi,
k=m+1  j=k+1 k=m+1 j=k+1 j=k+1
T—1 oo
_o, <T‘1/4 3 ak> _ 0,,( 3 k‘1/4ak> —0,(m),
k=m+1 k=m+1
[ Tl T | Tl T V2 12
77 PO w2 Tk 15 < dooan| D whiay > Wi,
k=m+1 j=h+1 k=m+1 j=k+1 j=k+1
1 T-1 oo
=0, <T Z ak> = Op< Z k_l/Qak> = Op(m_l/Q),
T k=m+1 k=m+1
as m — oo. The case of (v1,7;, v2,1;) = (wa,1,;, w1,T,;) can be treated similarly. O

Proof of Theorem 2. An outline of the proof is due to Tanaka (1999, Theorem 3.3).

Strong consistency of E is given by Remark 2 in Appendix B. First, we consider the limiting distribu-
tion ofg—g. Let € = (d,,9") = (&,...,€p), p+q+ps +qs +1 = P and the CSS function be S(ay,£).
Then, as T' — oo, we have

1 950, _,_ 1 9S(a0,€) _ c 9*S(ap.€) . lz”: 0508 87) e e
T J J
j=1

VT 0& VT 06 T 9agdg 0, 0¢;

for i = 1,..., P where ||(a3,5*’)’ — (a0, &) < ||(0,§I)’ — (a0,&")'|]. Tt follows from Lemma B 11 and
(37) that, as T' — oo,

- B 185(a0,€)\ [ 1 8S(ap,&) ¢ 8*S(ao,£)
ViE-¢) = (‘T DEOE ) (ﬁ DE T DaodE )*‘“”
L N(I{'agec, ITY)
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where Iz = —limr_, o T E[0%S(, &)/ (0€0€")] and Inpe = —limg_yoo T E[0%S (0, €)/(0cgOE)].
For 7, since 7(i) consists of E and ag = 0, by a Taylor series expansion as in (40), we have, as T — oo,

VTF = (s—g,fm) \/T\sé%;g)]_c%+op(l)
- (—ng Im) < \/T\sgf; E) > + < CI‘SSIO‘OE ) + T ey ¢ + 0p(1)

where J,¢ is an m x P matrix with the first column vector of J,, removed, J,,o, is an m-vector
defined by the first column vector of J,,, E is the unrestricted CSS estimator of & under Hy4 1, and
0 is an m x 1 zero vector. By the argument in Appendix B, it follows that, as T — oo, VT 7 LN
N(O, Iy = JmeI ' ) + (Jimag — Jme I age) c. Hence VT J), 7 is asymptotically normal with
mean J,, o (Jmay = Jmel Tage) ¢ and variance J',, o (Im — Jmele " J1e) Jmay- Using, as m — oo,

maog

oI may = 7 /6, I Ime = I, ¢, we obtain the asymptotic distribution of (13).
Finally, we will show that
lim limsup Pr VT —7( ‘ =0 41
T Toeo ( k ;1 .

by Brockwell and Davis (1991, Proposition 6.3.9). We assume that £ = 0 and g = 0 are known for

simplicity. Since &; = & + (¢/VT) Y4_ 5] k/k+0,(1/T) and ST 82/T 25 62, as T — oo, we have,

j=1 &;
as 1" — oo,
-1y -1y -1 T
VI'Y e = VT Y 1 S 5 /Z VI Us a5 [T+ 0,0
k=m+1 k=m+1 j=k+1 k=m+1 j=k+1
Jj—k—1 1
= g\rZ 25] v+ Z Z > ei-k-ig
o k= m+1 j=kt1 k= m+1 j=kt+1 =1
P T ] ;] Tl T
tor 2 2 2 isEt Ol D 2 L +a)
k=m+1 j=k+1 [=1 k=m-+1 Jj=k+1
- AT7m + BT7m + CVT7m + DT7m + Op(]-); (SaY)'
For At m,
1 { T-1 2 T S © c
. 2
E[AT,m]ZZT—UL; Z Z Ei-kSj| = > =<0 > =S
IJc m+1 Jj=k+1 J k=m+1 j=k+1 k=m+1

It follows from Chebyshev’s inequality that there exists a number Ty > 0 and for all T' > Ty, Ay, =
O,(m~"/?), as m — co. Proofs of other cases can be obtained by using Lemma C 1. For a proof of the

general case, since e;((do, €)', ) = =1 ((do, & ', ) ~ (& — ) S e (do, €)',
5o €0 = &5 + (—c/ﬁ, (& 5)') S sici1+0,(3)
Zm do; Zm ((do, &) + (z — (5 5) Zaﬂ 7

where ||6* — 8|| < ||(—¢/VT, (€ — €)')' — 6| and (€ — &) = O,(T'/2), it can be treated similarly by
Lemma B 11, (36), and Lemma C 1. O
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Proof of Theorem 4. First, we consider weak consistency of least-squares estimates and CSS esti-
mates. Let £,(9) = 9(L) {7, — 3,8} = (L) ‘Z(a) = (L) '5,.(B—B) = & 1(9) +&1,2(9). To prove
consistency, it is sufficient to check that

1 L " N2 1 N
sgp T ; {stvz(ﬁ)} =0, (T) and Var [DT (ﬂ - B)} =0(1), asT — oo, (42)

because the strong uniform law of large numbers of Zt 1{5t 1(9)}?/T is obtained by using the same
argument of Remark 2. By (d) in Assumption 2 and DT(,B B) = D7 (®'®)~ 1DTD;1<I> z(a), if
Var[D;'®'z(a)] = O(1), then Var[Dr(8 — B)] = O(1). Let 9(z) = diso Uiz, up = I(L)ey =
Z;’;O Vjer—j — Z . Ujei—j = ug1 + uy 2, then, by a Taylor series expansion of :vt( ) around a =0, we
have

T(a)=(1— L)~ (1 - L*) "% us = us —

c log(1—L) 1y .
JT ( log(1 — L) > ur + O (T) =wu+ugp, (say),

Elu; ;> =0T~ ") fort =1,2,...,T as T — oo, and ith element of D;'®'z(a) is d); Zthl Prixi(a) =
drl S0, Pri(ues +uro +uf 7). By the proof of Theorem 9.3.1 of Fuller (1996), Eldrl Y, Priuei] =
O(1). By using the Cauchy—Schuwarz inequality, [thl u o] = O(Zt:1 at) = O(1) for some a €
(0,1) and 3 Bluir)* = OQ), Bl ¥y Pratnz)® < (47530 B)E(Ee, uo) = O(1) and
Bldrf; iy Privir)” < (dpfi Simy 811 B(uir)*} = O(1). It follows that Var[D7'! &'x(a)] =
O(1). Let 9(z)~! = PRy 27, then

XT:{EU } iiﬁﬁ(ﬁ ,B)DTD gotlgot]D DT(ﬁ ,@)
t=1 t=1i,j=0

(ﬁ 8) DrD;'G,_. 1.0 Dr (B - B)‘ 0,(1)  (43)

T
< ¥;
- (;y |> 0<i,g<T {—

because, by Assumption 2 and @,. = 0 for t < 0, Y., |9;| is uniformly convergent, each element of
the 7 X r matrix Zthl DT1<,~02 i Prj D}l is less than one in absolute value for any 0 < i,j < T, and
Var[DT(,B — )] = O(1), which establishes (42).

Next, we consider the asymptotic distribution of 9 — 9. Let the CSS function S((do,ds, 1.9,)’, a?) be
S(a, ), er(e,¥) = (1= L) (1 — L*)e; 1 (9) + (1 = L)* (1= L*)*e;2(D) = er1(,9) +12(, D), and
£¢(9) = £,(0,9). Then, as T — oo, we have

1 95(0,9) 1 8S(a,9) 9°S(a*,9%) ¢ 13S(a*,9") =/~
=0= — — — " T — 44
T o0 VT o9 990’ T T 0990 (’9 ’9)’ (44)
where [la* — 0]| < [la — 0]| and [|9" — || < ||9 — D] Let [|*|| < [la]| and |a;| = O((logj)*j*~*) for

some k > 0 and 0 < a < 1/2, then

5t72(a719) _ {-:t,z('l?) " c ( log(l — L) ) Et,z(a*;'ﬂ);

VT \ log(1 —L*)
Oero(a, ) log(1—L)
det2\ V) ) 9
O log(1 — L*#) fua(a D),
Oeto(a, ) o o, 0€t2(0) Og2(09) c log(1 — L) Oet o(a*, )
— "~ = (1-=L)*(1 = L%)* ’ = ’ Zete\™ 7
99 (1= L)®0 - L9™ =5 99 T VT \ log(l— L) 90

T t—1 2 T 2
Z {Zajat_j,z(ié)} =0, {Z |aj|} = 0,((log T)**T%*) = 0,(T), (45)
. =

23



where the last equation follows from (43). It follows from (43) and (45) that

1 05(a, ) aeta ) 85“((1 )
VI 09 Tzzgt 0 Tzzg“aﬂ o5 torl)

as T — oo. Using (42) and (45), we find that, as T — oo, each term of the RHS of (44) divided by
T is unaffected by Et,z(a,ﬁ) in probability uniformly in 9 € Dy. The rest of the proof of asymptotic
distributions of \/T(@ — 1) is obvious from the proof of Theorem 2. Hence, we omit the proof.

Finally, we will prove (41) to derive asymptotic distribution of S. Since 5]-(':9) = 5_]‘71('@) +ejo (9),
5j71(1A9) =¢; + (= /VT, 0 —9)) Zi;g Orej—r + Op(1/T), and 9—9 = 0,(T~'/?), it can be treated
similarly to the proof of Theorem 2 by Lemma C 1 and (42). O
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Figure 1: RHS of (A) through (C) in Corollary 1 changing s and ¢ with a = 0.95.
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Figure 2: RHS of (C) and (D) in Corollary 1 changing m and ¢ with a = 0.95.
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Figure 3: Japanese total power consumption data {z;}, January 1990 to December 2001 (sum of the ten
electric power companies, unit: MWh, sample size: 144).
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Figure 4: The sample autocorrelation function (ACF) of the transformed series, where A is {z,}, B is

{1- L)z}, Cis {(1 - L*)2}, and D is {(1 - L

)(1 — L'*?)z,}. Dotted lines are approximate 95 %

confidence limits of the ACF of the white noise random variable.
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Figure 5: Standardized residuals from the SARFIMA(1,1,0)(3,1 + ds,0)s model (model ID: 518) based
on Japanese total power consumption data.
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Table 1: Simulation on the estimation of SARFIMA(1,dy, 0)(0, ds, 0)s processes

True value Simulation results

do ds ¢ 1Y dO ds ¢ 02

035 0.0 0.80 -0.2011 -0.0910 -0.0332  0.0177  0.2181
(5.8311) (0.2376) (0.1018)  (0.1648)  (1.5346)

[0.2195]  [0.0962] [0.1638]  [1.5190]

{02327} {0.0787} {0.1786}  {0.1414}

035 -0.10 0.80 -0.1471 -0.0923 -0.0075  0.0202  0.4389
(2.1311)  (0.2622) (0.0919) (0.1833)  (5.3401)

[0.2454]  [0.0916] [0.1822]  [5.3220]

035 030 080 -0.0012 -0.0864  0.0352  0.0208  0.8343
(0.1926)  (0.2464)  (0.0998) (0.1725) (14.7717)

[0.2308]  [0.0934]  [0.1712]  [14.7481]

035 0.10 -0.80 0.0094 -0.0604 -0.0276  0.0259  -0.0234
(0.6519) (0.1218)  (0.1011)  (0.0808)  (0.1417)

[0.1058]  [0.0973]  [0.0765]  [0.1398]

{0.0835}  {0.0785} {0.0641}  {0.1414}

035 -0.10 -0.80 -0.0161 -0.0595  -0.0279  0.0320  -0.0290
(0.2259) (0.1192) (0.1031)  (0.0827)  (0.1418)

[0.1033]  [0.0993]  [0.0763]  [0.1388]

035 030 -0.80 -0.0007 -0.0103  0.0282  0.0211  0.0803
(0.0292)  (0.1031)  (0.0983) (0.0738)  (0.1988)

[0.1026]  [0.0942] [0.0707]  [0.1819]

DGP 1: (1,02, s) = (1.00,1.00,12)
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Table 2: Simulation on the estimation of SARFIMA(0, dy, 0)(1, ds, 0)s processes

True value Simulation results
do ds P 12 do ds P 0'2

035 0.0 0.80 00778 -0.0343 -0.0321  -0.0169  0.4140
(5.5191)  (0.1201) (0.2923) (0.2453)  (1.1311)

[0.1151]  [0.2905] [0.2447]  [1.0526]

{0.0782} {0.2308} {0.1775} {0.1414}

035 -0.10 0.80 00194 -0.0264  0.0204  -0.0508  0.2242
(1.7547)  (0.1088) (0.3307)  (0.2926) (1.2578)

[0.1056]  [0.3301] [0.2882]  [1.2377]

035 030 080 -0.0045 -0.0676 -0.1502  0.0427  1.1938
(0.1443)  (0.1616) (0.2563)  (0.1758)  (1.3322)

[0.1468]  [0.2077]  [0.1705]  [0.5912]

035 0.0 -0.80 0.0074 -0.0509 -0.0455  0.0163  0.1405
(0.6598) (0.1083) (0.1127)  (0.0825)  (0.2307)

[0.0956] [0.1031]  [0.0809]  [0.1830]

{0.0782} {0.0833} {0.0639} {0.1414}

035 -0.10 -0.80 -0.0046 -0.0513  0.0142 00131  0.2162
(0.2507) (0.1112)  (0.0968) (0.0773)  (0.2984)

[0.0987]  [0.0958] [0.0762]  [0.2056]

035 030 -0.80 0.0000 -0.0070  0.0036  0.0088  0.1617
(0.0330)  (0.0979) (0.1017)  (0.0783)  (0.2372)

[0.0976]  [0.1016]  [0.0778]  [0.1735]

DGP 2: (1,02, s) = (1.00,1.00,12)
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Table 3: The rate of rejection of the null hypothesis @ = 0 for DGP 3-6 at the 5% level

9 = 0.8 0.8
a= 0 005 010 015 020 0 005 010 015 020
DGP 3
Qi 65 65 63 78 76 6.7 75 126 243 405
Q, 68 61 77 89 99 77 97 140 245  39.1
Sro 53 7.7 141 184 254 31 107 303 514 709
(5.0) (7.7) (11.3) (16.0) (21.8)  (5.0) (14.9) (33.0) (56.4) (77.8)
Srs 65 53 71 60 56 69 75 95 154 221
Aros 41 44 67 81 112 47 59 138 329 516
(5.0) (54) (64) (83) (11.1)  (5.0) (7.8) (17.4) (34.7) (56.9)
DGP 4
Qi 65 85 105 192 350 67 80 109 188 338
Qi 68 97 119 209 352 77 100 115 208  34.7
Sro 47 71 86 91 107 20 41 59 60 7.9
Srs 38 162 345 590 806 36 153 348 582 799
(5.0) (158) (35.8) (60.9) (82.1)  (5.0) (15.8) (35.8) (60.9) (82.1)
Aros 41 62 157 312  56.6 47 59 141 309 577
(5.0) (82) (19.2) (38.7) (62.6)  (5.0) (8.2) (19.2) (38.7) (62.6)
DGP 5
Q; 61 68 155 266 488 52 58 121 253  40.2
Qi 62 48 114 224 445 56 57 129 224 358
Sro 47 180 377 623 825 50 133 304 533 723
(5.0) (15.7) (35.7) (60.8) (81.9)  (5.0) (15.8) (35.8) (61.0) (82.1)
Srs 55 50 60 54 82 53 68 75 116 174
Aros 54 64 221 405 658 41 67 170 323 532
(5.0) (82) (19.1) (38.6) (62.4)  (5.0) (8.2) (19.2) (38.7) (62.6)
DGP 6
Q 61 38 55 64 69 52 50 75 98 204
Qi 62 35 80 49 47 56 45 61 97 191
Sro 47 55 64 66 84 50 41 63 75 74
Srs 55 42 40 6.0 4.0 53 121 254 423 63.6
(5.0) (7.7) (11.3) (16.0) (21.8)  (5.0) (14.9) (33.0) (56.4) (77.8)
Aros 54 33 89 70 85 41 48 89 186 365
(5.0) (54) (64) (83) (11.1)  (5.0) (7.8) (17.4) (34.7) (56.9)
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Table 4: The rate of rejection of the null hypothesis @ = 0 for DGP 3-6 at the 5% level

9 = 0.8 0.8
a= 0 005 010 015 0.20 0 005 010 015 020
DGP 3 DGP 5
Wro 7.0 104 112 169 227 48 154 377 588 803
(5.0) (7.7) (11.3) (16.0) (21.8)  (5.0) (15.7) (35.7) (60.8) (81.9)
Wros 111 118 114 137 143 106 122 265 445  67.8
(5.0) (54) (64) (83) (11.1)  (50) (8.2) (19.1) (38.6) (62.4)
Are 27 31 48 45 55 43 54 135 304 507
(5.0) (5.2) (5.7) (66) (7.9) (5.0) (6.5 (11.9) (23.2) (41.2)
DGP 4 DGP 6
Wrs 34 120 287 470 745 40 45 65 71 96
(5.0) (15.8) (35.8) (60.9) (82.1)  (5.0) (7.7) (11.3) (16.0) (21.8)
Wros 111 141 221 372 594 106 105 117 121 128
(5.0) (82) (19.2) (38.7) (62.6)  (5.0) (5.4) (6.4) (83) (IL1)
Are 27 48 74 155 326 43 51 58 93 121

(5.0) (6.5) (12.0) (23.3) (41.4) (5.0) (52) (5.7 (66) (7.9)
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Table 5: Summary of BIC and AIC model selection and estimates

ID BIC AIC do ds o1 0, P, ®, L 0, o? (x107)
518 (1) 3573.0 (1) 3555.7 NE -0.384 -0.221 NE -0.162 -0.292 -0.393 NE 8914
521 (2) 3573.3 (2) 3556.0 NE -0.376 NE -0.208 -0.174 -0.297 -0.389 NE 8935
148 (3) 35741 (3)3556.9 NE NE -0.211 NE 0.019 -0.282 -0.371 -0.571 8993
151 (4) 35744 (5) 3557.1 NE NE NE -0.200 0.007 -0.286 -0.369 -0.563 9008
7§ = —18770.34
Table 6: P-values of testing for ay = a, = 0 of the SARFIMA models
Alternative hypotheses
Model ap>0,a;,=0 ap=0,a,<0 ap#0,as;#0
SARFIMA(1, ag,0)(3, as,0) 0.4016 0.0084 0.0062
SARFIMA(0, g, 1)(3, as,0)6 0.3207 0.0089 0.0041
SARFIMA(1, ap,0)(3, s, 1) 0.2838 0.2876 0.2052
SARFIMA(0, ap, 1)(3, a5, 1) 0.2287 0.2866 0.1673
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