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Abstract

This paper attempts to extend the Markov-switching model with time-varying
transition probabilities (TVTP). The transition probabilities in the conventional
TVTP model are functions of exogenous variables that are time-dependent but
with constant coefficients. In this paper the coefficient parameters that express
the sensitivities of the exogenous variables are also allowed to vary with time.
Using data on Japanese monthly stock returns, it is shown that the explanatory

power of the extended model is superior to conventional models.

KEY WORDS: Gibbs sampling, Kalman filter, Marginal likelihood, Market dynamics,

Time-varying sensitivity.



1. Introduction

The classification of market conditions - for example, in the stock market, but also in foreign exchange
markets or the economy overall, i.e. the business cycle - into bull and bear markets has been broadly
accepted in both the academic and the practical world. The term “bull market” refers to a medium-
and long-term upward trend in the market and “bear market” refers to a downward trend. Despite
the apparent simplicity of these terms, their precise definitions in the analysis of the stock market are
far from clear. One way to define the terms is by using stock prices levels. Lunde and Timmermann
(2004), for example, define bull and bear markets as situations when a stock price index exceeds
locally defined thresholds. On the other hand, Biscarri and Gracia (2002) search the turning points of
bull and bear markets by checking if the current stock price index is at a local maximum (minimum)
within a certain time span. Both these definitions of bull and bear markets are computationally
simple; however, the determination of the thresholds in the former and the sample span in the latter
inevitably will be arbitrary.

A more rigorous method to determine bull and bear markets is to use the Markov-switching model
(MSM) proposed by Hamilton (1989). The stock price index is considered to result from one of
two unobservable regimes - the bull market and the bear market - and those regimes are estimated
using this model. The switching mechanism is expressed by a Markov model with constant transition
probabilities. Schaller and van Norden (1997) and Maheu and McCurdy (2000) apply the model to
analyze bull-bear conditions in the U.S. stock market. The Markov-switching model has also been
used to identify periods of expansion and contraction in the business cycle.

The basic MSM assumes that transition probabilities are constant, which in practice is rarely
the case. Diebold, Lee, and Weinbach (1994) and Filardo (1994) therefore developed an MSM with
time-varying transition probabilities (TVTP). The transition probabilities are expressed as functions
of the exogenous variables, and the probabilities vary over time through the time dependency of the
exogenous variables. Applying the model to exchange rates, Diebold, Lee, and Weinbach (1994),
for example, argue that the likelihood of a revaluation can be expected to depend on economic fun-
damentals. Filardo (1994), meanwhile, examining business cycles, considers time-varying transition
probabilities that are functions of leading economic indicators. Since the publication of these studies,
the approach has been used in a large number of studies on the business cycle and exchange rate
movements, but only a few have applied it to the analysis of stock prices. The paper by Schaller and
van Norden (1997) is the first application of MSM-TVTP to the U.S. stock market and Maheu and
McCurdy (2000) use the duration of the market condition as an exogenous variable.

This paper has two objectives. The first is to extend the TVTP model (MSM-TVTP with “time-



varying sensitivities”) to allow the sensitivities of the exogenous variables determining the transition
probabilities to vary over time; we do this by building on the time-varying logit model developed
by Kanoh and Li (1990). The second objective of the paper is to apply the model to the Japanese
stock market and analyze the market dynamics. The model is expected to detect changes of the
sensitivities to the exogenous variables over time. Recently, Lunde and Timmermann (2004) proposed
a model with time-varying sensitivities in which bull and bear hazard rates depend on the duration
of the market condition and the interest rate under the assumption that the states are observable.
The TVTP with time-varying sensitivities in this paper is constructed without the assumption of
observable bull-bear conditions and those conditions are to be identified within the model.

Some of the other characteristics of the model are as follows. First, the proposed model nests several
MSMs, in particular, the MSM with constant transition probabilities by Hamilton (1989), and the
MSM-TVTP by Diebold, Lee, and Weinbach (1994) and Filardo (1994). This enables us to evaluate
the importance of the extension of the model step-by-step. Second, though the time-varying sensitivity
is described by a state space model, it is not possible to employ the maximum likelihood estimation
using the Kalman filtering algorithm because of the nonlinearity of the model. The estimation and
evaluation of the results are conducted using Gibbs sampling, while the comparisons of the models
are made using marginal likelihood following Chib (1995).

The remainder of this paper is organized as follows. In Section 2, the basic framework of the
models is presented; moreover, the estimation procedure and the method of comparing models are
summarized. Section 3 describes the Japanese stock market data and other market-related data used
as exogenous variables in the estimation. Section 4 reports the estimation results of the MSM with
constant transition probabilities, the MSM-TVTP by Diebold, Lee, and Weinbach (1994) and Filardo
(1994), and the MSM-TVTP with time-varying sensitivities. Section 5 concludes.

2. Basic framework of the MSMs

The section starts with the description of the basic framework of the models. Consider the following

model for a stock return, Ry.

(1 - ¢(L))(Rt - :u'St) = €t; €~ N(O U?S}): (1)
ps, = (1= Spo + Sepa, po > pa, Se={0,1}, (2)
a%ﬁ = (1= 8102 + Sio?, o = (1+h)op, (3)

where ¢(L) = ¢p1 L+ ¢ L?>+---+¢,LP and L is a lag operator. The state or regime S; is an unobserved

random variable that takes zero or one. The evolution of S; is governed by a Markov process with the



following probabilities:

pill) = Pr[St = 1|St—1 = I:Zt—l] = Pr[SZ Z 0|St_1 = I;Zt—l]; (4)
P = Pr[S, = 08,1 = 0,2, 4] = Pr[S; < 0|S,_1 = 0,Z, 4],
St = f(Si—1,Z1—1;0) +us, ug ~ N(0,1), (5)

where S} is a latent variable, Z; is a vector of exogenous variables, and 6 is a parameter vector
specifying the function f. Note that pim) =Pr[S; =081 =1,Z; 4] =1 —pin), pim) = Pr[S; =
1|St71 - 0, thl] =1- piOO)‘

Let © be the parameter vector to be estimated:

@ = {ﬂo,ﬂ1,¢1, ...,Qﬁp,O'g,O'%,Sl, ---:ST:ST: S}H} (6)
S e N N——— —,—

1= 3] 3 ~§T S-;

In order to estimate O, the Gibbs sampling technique is employed and the following steps from

(a) to (f) are iterated. (k=1,2,... M, M +1,... M + N)

4l () w(k) g(Tk): g;(k):g(k)) :
a(k) a=(k
B0, 20, 50, 55,9,
o(k) ax(k
5| pFD | U S% ): ST( ):g(k)) :

ST‘ pOHD k1) Z(j{c+1): g;(k): a(k))

(a)  Generate p**1) from g

/N

(b)  Generate ®**1) from g

(¢c)  Generate S(**1 from g

TN TN /N

(d)  Generate §§1“+1> from g

/J'(k+1): "P(k—H): Z$+1): gé‘k-i_l): 9(’“)) 3

(e)  Generate g;(k"_l) from ¢ (S’}

(f)  Generate 8%+ from g (9| kD G+ Zg{cﬂ): S(Tk+1): g;(k+1)) _

where g denotes an appropriate density function whose specification is explained below.
At the end of the (M + N) th iteration, the first M results are dropped and the average values of
the remaining N results are calculated as the estimates.

M+N

E[O] = % > e, (7)

k=M+1
The generation of the estimates in steps (a) to (e) is summarized below. In step (f), the generation
of 8 depends on the formulation of f and, therefore, the details will be explained in the next section.
First, in step (a), p’ = [po p1] is obtained from the posterior distribution (9) using the prior

distribution (8).

prior distribution: plE ~ N(mo,, Zo,) rue>m]s (8)
posterior distribution:  pu|X ~ N(m1,,%1,) 1140501 9)
where



mi, = (55! + AL A TN (E mo, +TTTALY,),
T, = (S, +Z7ALA) T

. 1—¢(L) 1—¢(L)
" (1=o(L)Spr1 -+ (1—=9(L)ST |’

Y, =[1—=¢(L)Rpp1 --- (1 —¢(L))Rr],

and I[uo > p1] is an indicator function used to denote that the constraint pg > uy is satisfied.
Then, in step (b), & = [¢1 --- ¢;] is generated from the posterior distribution (11) using the

prior distribution (10).

prior distribution: |~ N(mo,, Xo,) 154 - (10)
posterior distribution: @[y~ N(my,, %1, )1.,, (11)
where

mi, = (S, + Ay Ags) (g, mo, + ApYy),
Ti, = (o, + 454071
R, - Ry,
Ag=| :
Ry - R?_p
Yj=I[Rpy -+ Ryl, R = (Rt — ps,)/0s,

and Is, is an indicator function used to denote that the roots of ¢(L) = 0 lie outside the unit circle.
In step (c), 03 and h*(= 1+ h) are generated from the posterior distributions (14) and (15) using

the prior densities (12) and (13), respectively.

prior distribution: oalp, ® h~IG <§ 5) ; (12)
B, ® ~ IG <”2ﬂ %) (13)

posterior distribution: o}y, ®,h ~ IG <V—21 %) ; (14)
W, ® ~ IG <%‘%> (15)

where
vi=v+(T—p), 0 =0d+YyYy,
V1 =Vho + Th,  Op1 = 0o + Y{Y7,

Yo =g -+ erls e = (L= ¢(L))(Be — ps,) /(L + Sih),

Ty, = count(Yy), Y{ = [, - &7l
et = (1- ¢(L))(Rt - ,UoSi)/O'(], if S =1,
t No sampling, if S, = 0.



T}, is the number of non-zero elements of Y7.

Step (d) follows the method developed by Albert and Chib (1993).

( t4p
P(St|St—1)P(St+1|St)P(Rt: RP|SP) H f(Rk|Rk—1:Sk): if ¢ S D;
k=p+1
N t+p R R
P(Si|Rr,8-1) < $ P(SiSt-1)P(St1|SO[[ f(RulRier. Sk, i p+1<t<T—p+1,  (16)
k;t ] ]
P(Si|Si-1)P(Se1|S) [ [ f(Rr| Rie, i), # T —p <t < T,
\ k=t

where R, = {R1,..., R;}, St = {S1,...,S;:}, and S_; = {S1, ..., St—1,St41, .., ST }-

In step (e), for a given formulation of f, S; is obtained by sampling u; from a truncated normal
distribution in such a way that S} satisfies the inequalities given in (4).
The comparison of the different models (My, ..., M) is conducted based on marginal likelihood

following Chib (1995), i.e.,
Inm(Yr|M;) = Ing(Yr|OF, M;) + In7(OF|M;) —In#(OF|Yr. M), i=1,2,..1, (17)

where ©F is the estimated parameter vector in the model M;, and g(Yr|OF, M;), m(0F|M;) and
#(OF|Yr, M;) are the likelihood function, the prior density and the posterior density, respectively, for
any model i (M;).

3. Data description and summary statistics

The Tokyo Stock Price Index (TOPIX) is used as an indicator of movements in the Japanese stock
market (Figure 1(a)). The TOPIX is published by the Tokyo Stock Exchange and is one of the major
value-weighted indices used in Japan. The sample period is from January 1970 to December 2003 for
a total of 408 observations. The following three variables, which are often claimed to influence the
stock market, are used as exogenous variables in Z: (1) TOR: the turnover ratio (calculated as the
aggregate trading value / aggregate market value of the shares listed in the First Section of the Tokyo
Stock Exchange), (2) DPR: the dividend price ratio (calculated as the average dividend / average price
of the share listed on the First Section of the Tokyo Stock Exchange), and (3) ONR: the short-term
interest rate (overnight call money rate). The movements of these variables during the sample period
are depicted in (Figures 1(b), 1(c), and 1(d).

Baker and Stein (2002), for example, analyzing the U.S. stock market, suggest that market liquidity
indices, such as the turnover ratio, are good proxies for market sentiment. Schaller and van Norden
(1997) examine whether the price/dividend ratio (the inverse of the DPR) influences the transition

probabilities in a MSM using U.S. stock data. Lunde and Timmermann (2004) analyze how hazard
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Figure 1(d): ONR

Table 1: Summary statistics

M @) @)
TOPIX TOR DPR ONR
% % % /month % /year
Average 0.573 4.10 1.31 4.72
Stdev. 5.173 2.18 0.73 3.45
Minimum -20.417 1.15 0.39 0.001
(date) (90/9) (92/2) (89/12) (01/10 -)
25% -2.409 2.64 0.78 1.06
Median 0.635 3.55 1.14 4.85
5% 3.725 4.95 1.60 6.98
Maximum 18.153 15.16 4.03 13.48
(date) (90/10) (88/6) (70/12) (74/8)

rates depend on the interest rate using U.S. stock data. As can be seen, all of these studies concentrate
on the U.S. stock market. In this paper, we use these variables and examine their effect on the
transition probabilities using data for the Japanese stock market.

Table 1 lists the summary statistics for these variables. The average monthly return of the TOPIX
is slightly positive. The maximum change is observed between 1990/9 and 1990/10. The maximum
of the turnover ratio and the minimum of the dividend price ratio are recorded in the late 1980s
when the stock price index approached its peak (see Figure 1(a)). In contrast, the maxima of the
dividend price ratio and the overnight call money rate are recorded in the first half of the 1970s when
stock prices were at their lowest during the sample period. The minima of the turnover ratio and
the overnight call money rate are recorded after stock prices reached their peak. Since 2001/10, the

overnight call money rate has not changed over time and stayed at the lowest level in history. In the



following analysis, the explanatory variables are standardized.

4. Empirical Results

In the estimation, the parameters of the prior distributions in models (1)-(3), which describe the
return process, are set as mg = [0 0], 2o, = I,mq, = [0---0], X0, = I.v0 = vho = 1,00 = oo = 1,
where [ is a unit matrix. The dropped draws M and the remaining draws N are 3,000 and 7,000,

respectively.
4.1 The Markov-switching model with constant transition probabilities
Let us express function (5) as follows:
f(St=1.Zt—150) = v0(1 — Se—1) + AaSt—1,  where 6 = {70, Ao} (18)

This is the model proposed by Hamilton (1989). The estimates of the parameters 8’ = [yy dg] are

obtained from the following posterior distribution (20) using the prior distribution (19),

prior distribution: 6|St, Sk ~ N(ma,, Zo,), (19)
posterior distribution: 8|Sz, S ~ N(my,, $1,), (20)
where

my, = (zg; + A;Ag)—l(za;moa + ApYy),

1, = (o, +A540) 7",

P [1_51 o 1= S

- S, - Sr. 5 =[5 --- S7l.

6=

Table 2 shows the estimation results from different settings of the model. The transition probabil-

ities listed in the last two rows are calculated as:

{ pill) — Pr[ut > _50] =1 \IJ(—50), Vt, (21)

pioo) = Prus < —yo] = ¥(—70), Vi.

U (-) refers to the cumulative density function of the standard normal distribution.

The first column reports the results when the monthly return of the TOPIX follows an AR(0)
process that takes two states for the conditional mean (mean switching model). The second column is
for the case when the AR(0) process takes two states for the conditional variance (variance switching
model). The third column is for the combination of the two cases when the AR(0) process takes two
states for the conditional mean and variance (mean-variance switching model). Among these three
cases, the third one displays the highest marginal likelihood. The estimates of the parameters in the

third case are similar to those in the second case, implying that the shift in the variance rather than



Table 2: Comparing MSMs with constant transition probabilities

AR(p) p=0 p=0 p=0 p=1

Ks, po + p1S Iz po + p1St po + p1St

o3, o2 Sio2 + (1+ Sp)o?  Siod + (1 + Si)o?  Siod + (1 + Si)o?

Inm -552.23 -542.52 -540.95 -543.86
¢ — — — 0.064 (0.052)
o 0.253 (0.209)  0.035 (0.041) 0.086 (0.048) 0.090 (0.053)
w1 -0.662 (0.389) — -0.131 (0.082) -0.140 (0.090)
o2 0.922 (0.099)  0.256 (0.043) 0.267 (0.046) 0.269 (0.052)
02 — 1.331 (0.132) 1.347 (0.129) 1.336 (0.137)

v -0.581 (0.858)  -1.694 (0.278) -1.640 (0.296) -1.597 (0.276)
8o 0.403 (0.780) 2.093 (0.308) 1.996 (0.291) 1.963 (0.283)
p(00) 0.688 0.949 0.942 0.938
p(tD 0.627 0.977 0.972 0.970

in the mean is an important factor. The last column presents the case when an AR(1) process is
assumed in the mean-variance switching model. Table 2 also shows that the marginal likelihood value
decreases and the estimated AR parameter is near zero and insignificant. Therefore, the addition of
the AR term does not improve the performance of the model. Based on these results, the extension
of the Markov-switching model below uses the AR(0) specification.

A closer look at the estimation results of the mean-variance switching model reveals that state 0 has
a positive mean and a smaller variance, while state 1 has a negative mean and a larger variance. Thus,
if market conditions are classified into two states, one of these is a rise in stock prices following a stable
trend, while the other is a decline in stock prices characterized by fluctuations. This classification
coincides with that in the study by Maheu and McCurdy (2000) on the U.S. market. Therefore,
bull-bear conditions in the Japanese market have the same characteristics as those in the U.S. market.
The probability of staying in the state is 0.942 in the case of state 0 and 0.972 in the case of state 1,
indicating that the transition between the states is not likely to occur frequently.

Figure 2 displays the probability for the market to be in state 1. It is instructive to look at this
figure together with Figure 1(a) depicting the movement of the TOPIX. Thus, Figure 2 suggests that
in the period from 1975 to 1985, the stock market was mainly in state 1, and a look at Figure 1(a)
reveals that, indeed, during this period the TOPIX followed an upward trend with small fluctuations.
In contrast, for the period after 1990, the graphs show that market conditions were characterized
by state 1, i.e. a downward trend displaying large fluctuations. The period between 1986 and 1989
is, however, classified as state 0 in spite of the abrupt upward trend observed in Figure 1(a). This
classification is due to the large fluctuations of the stock price index during the period. It is found

from the estimated figures that the classification of the period is more affected by the variance than



by the mean value.
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Figure 2: Probability of state 1, mean-variance switching model

4.2 The Markov-switching model with time-varying transition probabilities

(MSM-TVTP)

4.2.1 The MSM-TVTP with constant sensitivities and its application to the Japanese
market data

Having outlined the basic model with constant transition probabilities, we now introduce a model
with time-varying transition probabilities. The model builds on work by Diebold, Lee, and Weinbach
(1994) and Filardo (1994), who extended the MSM to include time-varying probabilities that are
expressed as functions of exogenous variables. Because the coefficients of the exogenous variables in
such models are constant, these are termed as MSM-TVTP with constant sensitivities.

One study applying the TVTP model empirically to U.S. stock market data is that by Schaller
and van Norden (1997). Using the maximum likelihood method, the study found that, on the one
hand, the price/dividend ratio had little effect on the transition probability when the stock market was
following a low-variance upward trend. On the other hand, the ratio did have a substantial impact on
the probability when the stock market was on a downward trend with high variance. However, as the
coefficients on the price/dividend ratio were insignificant, the overall evidence on the link between the
ratio and the transition probability was inconclusive. Here, in order to examine the time dependency
of the transition probabilities, the TVTP model is applied to the Japanese stock market using the
variables listed in Table 1 and the bubble dummy (“D90”) that takes 0 until 1989/12 and 1 after
1990/1.

10



The model is formulated as follows:

K K
f(Si—1,Zi—1;6) = (70 + Z'Ykzk,tl) (1—=Si—1)+ (/\o + Z /\kzk,tl) Si—1, (22)

k=1 k=1
where 9’ = [’YO:’YI: ---:’YK:AO:AI: AK]

The estimates of the parameters are obtained in step (f) of the previous section from the following

posterior distribution (24) using the prior distribution (23),

prior distribution: 6|St, Sk ~ N(ma,, Zo,), (23)

posterior distribution:  0|S7, S5 ~ N(my,, %1,), (24)
where

my, = (zg; + A;Ag)—l(za;mos + ApYy),

1, = (S, +Ap4s) 7",

1-5; e 1-Sr
(1 - 51)2’1,1 tee (1 - ST71)Z1,T71
1-57)z o 1=Sr_1)zrT— " "
Ay = [y, ] = | g0 (ESTDRT |y g sy
5121,1 ST—1Z1,T—1
Si1zr 1 e ST_12K,T-1

The transition probabilities are calculated as:

% K
pi'") =Pr [ut > =X — Zz\kzk,t_1] =1-v (_/\0 - Z/\’fz’“vt—l) L
k=1 k=1
K
=7 (—70 - Z’Ykzk,t—l) . Vit
k=1

Table 3 summarizes the values of the marginal likelihood for the combination of the variables in Table

K (25)

pio(J) = Pr [ut < —v — kazk,t_l
k=1

1 and the dummy variable. Here, mg, = [0 --- 0] and £g, = I in the prior distribution. Panel A shows
the results when only one of the three variables or the dummy variable is used as the explanatory
variable. The marginal likelihood shows that none of the three variables plays an important role in the
TVTP model with constant sensitivities. The marginal likelihood values are less than the one for the
mean-variance switching model. The thin line in Figure 7(a) indicates the probability of remaining in
the state of low returns with high variance (pioo)) and that in Figure 7(b) indicates the probability
of remaining in the state of high returns with low variance (pﬁn)). The figures show that pioo) varies

substantially with the DPR but pin) is hardly affected by the DPR. These findings are consistent

11



Table 3: Comparing TVTP models with constant sensitivities

Panel A. K =1 Panel B. K =2
Zt Inm Zt Inm
{TOR} -545.46 {TOR, DPR} -548.18
{DPR} -547.67 {TOR, ONR} -544.16
{ONR} -543.12 {DPR, ONR} -546.46

{D90}  -536.96 {TOR, D90}  -538.22
{DPR, D90}  -542.88
{ONR, D90}  -538.16

with those obtained by Schaller and van Norden (1997). Panel B in Table 3 shows the results when
two out of the three variables plus the dummy are used in combination. When the dummy is not
used, no effects resulting from the combination of two variables are observed.

To summarize the above, the models of time-varying transition probabilities through exogenous
variables cannot explain the dynamics of the Japanese stock market. However, the model with the
dummy variable distinguishing the periods before and after the burst of the bubble has some explana-
tory power. The marginal likelihood, when the bubble dummy is used, generally become larger than
that of the mean-variance switching model except when combined with the DPR variable. Note that
the model only with the dummy, i.e. without any market-related variables, has the largest marginal
likelihood among the TVTP models with constant sensitivities. These results suggest it is necessary

to consider the nature of the time dependency of the transition probabilities more carefully.
4.2.2 A new model: a TVTP model with time-varying sensitivities

The explanatory power of the models with the dummy variable suggests that the sensitivities to

the market-related variables may change over time. In order to capture the time dependency of

the sensitivities to the market-related variables, the sensitivities in the TVTP model are formulated

with a time series structure under the assumption that the impact of market-related variables on the

transition probability may differ depending on economic conditions. The extended model is as follows:
K K

f(Si=1,Zi—1;61) = ('YO,t + Z'Yk,tzk,t—l) (1—=Si—1)+ (/\o,t + Z/\k,tzk,t—l) Si—1, (26)

k=1 k=1
where

92 = [’YO,t:’Yl,t: e VKt A0t ALt ---:/\K,t]

and

Ykt = Wry, + Py Vk,t—1 + Myiets Tt ™ N(OO'?}%) k= 0: 1: K
Ak,t = Wi, + Py Ak,t—l + Mp,ts Mgt ™~ N(O Ug\k): k= 0: 1: K

Note that the coefficients of the explanatory variables follow an AR(1) process.

12



The estimation of the parameters in the AR(1) process is carried out using the Kalman filtering
algorithm. For a discussion of Kalman filtering and Gibbs sampling, refer to Carter and Korn (1994).
Recently, Lunde and Timmermann (2004) estimated a model with time-varying sensitivities in which
bull and bear hazard rates depend on the duration of the market condition and the interest rate.
Their model assumes that the states are observable and the estimation is conducted by maximizing
a penalized log likelihood function. Instead in this paper the TVTP with time-varying sensitivities is
constructed without the assumption of observable bull-bear conditions; instead, those conditions are
to be identified within the model.

In order to estimate p;' and p® in (25), {Yk,1, o Yo, T Mky15 o Ak, T Wrvgs Py s Wi Pags Oy T3, 1
k=1,..., K, are obtained using the following procedure.

First, 6; (t = 1, ...,T) is generated by

T—1
p(07|Sr, S3) = p(Or|ST, S§) H p(0¢|0111, St, Sp), (27)
t=1
where p(+|-) denotes an appropriate conditional density and Or = [0, .....07]. (27) implies the sampling
of Oz is conducted by first generating 67 from p(9T|5’T, 5’}) and then 6, from p(6;|6+1, S, 51}) from
t=T—1tot =1 recursively.

O7|St, S5 and 6;|6:11, Si11, S4 in (27) follow

07|Sr., S ~ N (077, Pri7), (28)
0110111, Se41, Sy ~ N(Orjiossrs Prjtgrnn) t=1,2,.,T =1, (29)
where
Orir = E(0r|ST, S7),
Pryr = Cov(07|Sr, 57),
Olt,641 = EO:]S:. 57, 0:1) = E 01041, 6r41),
Pyton = COV(9t|§t= §f=9t+1) = Cov(6¢|64¢, Or41)-
Here 677 and Ppp in (28) are obtained from the following Kalman filtering algorithm. For ¢ (=
1,...,7),
One—1 =w+ PO 1pt—1,

Pyi—1 = pP_qp1p’ +Q,

where W = [Wyg; Wy s ees Whge s Wags Wags --s Wi |'s p and @ are diagonal matrices whose diagonal ele-

2 2 2 2 2 2 : _
ments are [Py, Pyy s - Pyic s Pras Prrs - Pagc] and [05 .03, .05, 05 0% ;-..; 05, ], respectively. Sy is

13



generated conditionally on S; and S;_; by :

N0, Dpus>—ag, 000 115 if St =1,

St =ag,Oyp—1 +ur, up~ {N(O, 1)[ui<—asi Bujea]: if S, =0.

By letting
Njt—1 = S; — a919t|t—1:
feji—1 = ag, Pyj—1ap, + R,
8y: and P, are obtained as:
Ot = Oppe—1 + Kinype—1,
Pt|t = Pt|t—1Ktaﬂi Pt|t—1:

where K; = Py;_iap, ftTtl—l and R is the variance of the observation error that is normalized to
be 1. In the above, 0,1 = E(6:/Si—1,571), bie = E6:]S:,5;), Pyi—1 = Cov(0:|Si—1,S;_1).
P, = Cov(6:|S:, Sp).

The backward estimation of 8y, 9,,, and Py g,,, (t = 1,2,..,T — 1) is carried out by

9t|t,6i+1 = 9t|t + Pt|tp’(th|tp’ + Q)_l (9t+1 —w— p9t|t):

Pyt,6,11 = Pir — Puep' (0P’ + Q)™ ' pPye.

Then, ®! = [w,, p,] in the v, ;-series is obtained from the posterior distribution given below.

prior distribution: P [Fk,m ~ N(mo,, ; Yo, sy, s (30)
posterior distribution: &, |jr 7 ~ N(mlﬂ”c 21, )Is(%), (31)
where

1

ml“fk = (Zav + AiYkA’Yk)il(Z(;flk 777'07]c + AiYkY’YIc)

k
1 _

Zl"f}c = (Zowk +A£YkA’Yk) 1:

Al =g - ol Yy =I[nwa - w1l

kT = [Vk L5 wons Vhots v Ve, T

and Is is an indicator function used to denote that the roots of ~vi(L) = 0 lie outside the unit circle.
The generation of &/ = [w,, p,,] is iterated from k£ = 0 to k = K. Then, after replacing the
k¢-series with the A ;-series, the generation of <I)’>Uc = [wx, pa,] is iterated from £k = 0 to k = K
under the similar prior and posterior distributions of ®) = [wx, px,]-
Lastly, O'?Yk is obtained from the posterior distribution given below.

V’Yk,o 6%,0
27 2 ’

prior distribution: U?Yk Wy s Py T, ~ IG < (32)

14



v 0
posterior distribution: J?Yk|w7k,p%,'§fk’T ~IG < 7;’1, 75’1) ; (33)

where

Vior = Vo +(T—1), 8y, =0y, + 7YY,

*

Yo =[5 - 07l 05 = Yht — Wy — Pose Ve yt—1-

The generation of O'?Yk is iterated from k£ = 0 to kK = K. Then, after replacing the <. ;-series with
the Aps-series, the generation of aik is iterated from &k = 0 to £k = K under the similar prior and
posterior distributions of a?\k.

The transition probabilities are calculated as:

K K
o =Py [ut > —Xo,t — ZAk,tzk,t—I] =1-v (—/\o,t - Z /\k,tzk,t—l) . Vi,
(34)

k=1 k=1
K

= (_'Y(M - Z’Yk,tzk,t—1) , Vi
k=1

In the following experiment, for the sake of simplicity, it is assumed, as in Lunde and Timmermann

K

00
p§ ) = Pr [ut < —70,t — Z'Yk,tzk,t—l
k=1

(2004), that the sensitivities in the equations specifying the transition probabilities follow a random
walk. The parameters of the prior distributions are set for k = 0,1, ..., K as mf]ﬂfk =[0 --- 0], Lo, =
I, mf]Ak =100 --- 0. %0,, =10, =0r,=1 and §,, , =0x,, = 1.

The estimation results of the experiment are presented in Table 4. They show that the likelihood
values increase by a large margin in all of the three cases and the differences are as great as 10.
However, the values of the marginal likelihood in the three models do not differ much. The estimation
results are similar to those presented in Table 2, with state 0 showing a positive mean and a smaller
variance and state 1 having a negative mean and a larger variance. In other words, the observed
pattern is in line with the distinction of bull and bear markets proposed by Maheu and McCurdy
(2000), suggesting that their criteria can also be applied to the Japanese market.

Figures 3 to 5 display the transitions of the sensitivities in the three models. It can be seen that
the sensitivities change greatly during the sample period in all three models.

Figures 6 to 8 display the probabilities of remaining in each state with each variable used as
an explanatory variable. The thick lines express the probabilities for the model with time-varying
sensitivities and the thin lines express those for constant sensitivities. While the probabilities for
the model with constant sensitivities move within a narrow range near 1.0, the probabilities for the
model with time-varying sensitivities fluctuate widely between O and 1. This is particularly the

case with pin).

Notice that such large fluctuations of the transition probabilities are detected only
by the MSM-TVTP with time-varying sensitivities. This suggests that the time dependency of the

sensitivities must be taken into consideration in describing market dynamics. Reflecting the differences
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in the movements of the variables, particularly after 1989, the movements of the various probabilities
of remaining in the same state show very different patterns. The probabilities in Figure 6 display
irregular fluctuations that also reflect the irregular movements of the variable TOR.

The three panels in Figure 9 show the probabilities of the market being in state 1 (bear) for the
three explanatory variables. The three figures show more or less similar patterns with some differences
after 1989. The similarity comes as no surprise given the closeness of the marginal likelihood values.

Though it would be possible to identify the reasons underlying the different patterns in relation
to the movement of each variable, this is an empirical matter that would distract from the theoretical
concerns of this paper. Below, the model with TOR is briefly addressed. The reason for this choice
is that even though market sentiments play an important role in determining market dynamics, the
relationship represents an underinvestigated phenomenon and so far, no one has attempted to examine
it using the TVTP-MSM.

Turning to Figure 6, conspicuous differences in the transition probabilities can be observed when
compared with the other models. For example, in the late 1980s, the probabilities of the bull market
continuing remains relatively high and the probabilities of the bear market continuing swing widely
between 0 and 1. In Figure 9(a), there is a considerable drop in the probability of being in state 1 in
the late 1980s which is not observed in the other two cases. Figure 9(b) and 9(c) depicting the DPR
and ONR models show a large dip in the probability around 1995 which does not show up in the TOR
model. As TOR is regarded as a good proxy for market sentiments (e.g. Baker and Stein (2002)),
these features shown by the model with TOR may be considered to reflect investor sentiments at
that time. A possible explanation is as follows. In the late 1980s, the market participants’ optimistic
sentiments drove market behavior. This is confirmed in (34) by the fact that large positive values

)

of z;_1 combined with large negative values of 7;; make pioo close to 1. When they are combined

with moderate negative values of A4, pin) becomes volatile. On the other hand, market participants’

pessimistic sentiments around 1995 intensified the possibility of a bear market. This is also confirmed

by the fact that large negative values of z;_; combined with large negative ~v1+’s make pioo)

0. Note that Ay takes large positive values during this period and keeps pin) close to 1. Since

the absolute values of A\y; are small, 2;_y does not affect pin). Further, in Figure 6(a), it can be

nearly

noticed that the probability of the bull market continuing deviates from zero after 1999 while the
probabilities stay at zero for the models with DPR and ONR. The increase in the probability of the
bull market continuing in the TOR model reflects the abrupt increase in TOR. and suggests that
investors’ confidence in the continuation of the bull market has grown in recent years in parallel with

the recovery of the Japanese economy.
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Table 4: Comparing TVTP models with time-varying sensitivities

0 ) ®)
const. only TOR DPR ONR
Inh -536.46 -533.84 -533.35 -534.61
o 0.081 (0.050) 0.082 (0.052)  0.080 (0.048)  0.084 (0.048)
w1 -0.123 (0.083) -0.134 (0.091) -0.133 (0.088) -0.130 (0.084)
o2 0.237 (0.046) 0.265 (0.055)  0.274 (0.052)  0.245 (0.043)
o2 1.321(0.121) 1.387 (0.133)  1.419 (0.140)  1.367 (0.131)
o, 1.013(0.921) 1.099 (1.037) 5.326 (4.085)  2.757 (2.971)
o — 3.467 (3.661)  6.276 (10.08)  2.056 (2.725)
oy, 1.005(0.907) 0.607 (0.329) 3.736 (5.621)  1.463 (0.913)
o3, — 0.702 (0.605)  1.516 (1.626)  1.459 (1.307)
40 - B -
20
0'0 ,,,,,,,,,,,,,‘, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
197 197513 1990/3 1995/3 2000/3
2.0 \
40
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80 ©

Figure 3(a): vo,. (thin line), v1,, (thick line) at state 0, TVTP model with time-varying sensitivities (TOR)

Figure 3(b): Ao, (thin line), A1 (thick line) at state 1, TVTP model with time-varying sensitivities (TOR)
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Figure 4(a): 7o,+ (thin line), v1,+ (thick line) at state 0, TVTP model with time-varying sensitivities (DPR)
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Figure 4(b): Ao, (thin line), A1+ (thick line) at state 1, TVTP model with time-varying sensitivities (DPR)
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Figure 5(a): 7o, (thin line), v1,+ (thick line) at state 0, TVTP model with time-varying sensitivities (ONR)
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Figure 5(b): Ao,: (thin line), A1+ (thick line) at state 1, TVTP model with time-varying sensitivities (ONR)

19



1.0
0.9
0.8

0.7

0.6

0.5

04 -

03 -

0.2

Wl |

1970/3 1975/3 1980/3 1985/3 1990/3 1995/3 200073

constant sensitivity = time-varying sensitivity

Figure 6(a): Transition probability pﬁoo), MSM-TVTP (TOR)
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Figure 6(b): Transition probability p{'", MSM-TVTP (TOR)
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Figure 7(a): Transition probability pioo), MSM-TVTP (DPR)

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

1970/3

H

U

1975/3 1980/3 1985/3 1990/3 1995/3 2000/3

—— constant sensitivity = time-varying sensitivity

Figure 7(b): Transition probability p{'", MSM-TVTP (DPR)
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Figure 8(a): Transition probability pioo), MSM-TVTP (ONR)
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Figure 8(b): Transition probability p{'", MSM-TVTP (ONR)
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Figure 9(a): Probability of state 1, MSM-TVTP with time-varying sensitivities (TOR)
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Figure 9(b): Probability of state 1, MSM-TVTP with time-varying sensitivities (DPR)
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5. Conclusion

The purpose of this paper was to extend the Markov-switching model with time-varying transition
probabilities (MSM-TVTP) proposed by Diebold et al. (1994) and Filardo (1994) by allowing the
coefficients of the exogenous variables to vary over time. Since the state probabilities were nonlinear
functions of the sensitivity parameters, the estimation was conducted employing the Gibbs sampling
technique.

Using Japanese stock market data spanning a period of 34 years, we found that the marginal
likelihood values improved by a large margin when compared with conventional MSMs. The estima-
tion results also showed that the sensitivities changed considerably over the sample period and the
estimated transition probabilities displayed large fluctuations between 0 and 1. These characteristics
could be detected only by the MSM-TVTP with time-varying sensitivities. These results suggest that
the time dependency of sensitivities is an important factor in explaining market dynamics. While these
findings are on the Japanese market, it would be interesting to try the MSM-TVTP with time-varying
sensitivities to study the dynamics of the U.S. market.

The empirical analysis suggested that the distinction between bull and bear markets proposed by
Maheu and McCurdy (2000) also applies to the Japanese market. When the turnover ratio was used
as an explanatory variable, the estimated patterns of the state probabilities and of the transition prob-
abilities could be interpreted based on investor sentiments, which is compatible with the hypothesis
that market sentiment affects market dynamics.

As Maheu and McCurdy (2000) points out, the duration of the state can be an important factor
as a determinant of the transition probabilities. However, to our knowledge, empirical research on the
Japanese stock market has shown the duration of a state as a determinant of transition probabilities
to be insignificant, e.g. Shibata (2004). A possible extension of the empirical research presented in
this paper would be to allow the sensitivities of the transition probabilities to the duration of states

to be time-varying.
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