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Abstract

This paper addresses the many instruments problem, i.e. (1) the trade-off be-
tween the bias and the efficiency of the GMM estimator, and (2) inaccuracy of
inference, in dynamic panel data models where unobservable heterogeneity may be
large. We find that if we use all the instruments in levels, although the GMM esti-
mator is robust to large heterogeneity, inference is inaccurate. In contrast, if we use
the minimum number of instruments in levels in the sense that we use only one in-
strument for each period, the performance of the GMM estimator is heavily affected
by the degree of heterogeneity, that is, both the asymptotic bias and the variance
are proportional to the magnitude of heterogeneity. To address this problem, we
propose a new form of instruments that are obtained from the so-called backward or-
thogonal deviation transformation. The asymptotic analysis shows that the GMM
estimator with the minimum number of new instruments has smaller asymptotic
bias than the estimators typically used such as the GMM estimator with all instru-
ments in levels, the LIML estimators and the within-groups estimators, while the
asymptotic variance of the proposed estimator is equal to the lower bound. Thus
both the asymptotic bias and the variance of the proposed estimators become small
simultaneously. Simulation results show that our new GMM estimator outperforms
the conventional GMM estimator with all instruments in levels in term of the RMSE
and in terms of accuracy of inference. An empirical application with Spanish firm

data is also provided.

Keywords: Dynamic panel data, many instruments, generalized method of
moments estimator, unobservable large heterogeneity.

JEL classification: C23.



1 Introduction

In cross-sectional data models, since the famous work of Angrist and Krueger (1991),
the many instruments (MI) problem, i.e. (1) the trade-off between the bias and the
efficiency of the two stage least squares (2SLS) estimator, and (2) inaccuracy of
inference, has been intensively discussed, especially in connection with the weak
instruments problem. For example, Bound, Jaeger and Baker (1995), Angrist, Im-
bens and Krueger (1999), Hahn and Inoue (2002), Hahn (2002), Hahn, Hausman
and Kuersteiner (2004), Chao and Swanson (2005), Okui (2005b), Hansen, Haus-
man and Newey (2005), Anderson, Kunitomo and Matsushita (2005), and Andrews
and Stock (2005) and the papers cited therein deal with this problem.!

Yet, while there are many studies on the MI problem in the context of cross sec-
tional data models, little research has been done for the case of dynamic panel data
models even though the MI problem also occurs in this type of model.? In fact, one
of the important features of dynamic panel data models is that the number of avail-
able instruments increases as 7', the dimension of the time series, gets larger.? One
paper that deals with the MI problem in a dynamic panel model is Okui (2005b)
which, based on Donald and Newey (2001) and Okui (2005a), develops a proce-
dure to select the instruments so as to minimize the mean squared error (MSE)
and improve the accuracy of inference. However, his method is computationally
cumbersome and there still remain size distortions when «, an autoregressive pa-
rameter, is large. Furthermore, although Okui (2005b) does not pay much attention
to the effects of large heterogeneity,® it is worth considering such effects, because in
empirical analyses we may come across situations where heterogeneity is large. For
example, Arellano (2002) set the ratio of the variance of the individual effects to
the disturbances to be 9 in the simulation, where its simulation design was roughly

calibrated to the real data of Bover and Watson (2004). The first purpose of the

1See also Kunitomo (1980), Morimune (1983) and Bekker (1994).
2 An analysis of the MI problem in the context of static panel data models with predetermined variables

is provided by Ziliak (1997).
3Since the MI problem becomes more serious when T is large, we focus on the case where T is greater

than 10. The case when T < 10 is beyond the scope of the present paper.
4Throughout this paper, by ”large heterogeneity” is meant that the variance of the unobservable

individual effects is large relative to the variance of the disturbances.



present paper is to consider cases where heterogeneity is large and especially to con-
sider the effects of large heterogeneity on generalized method of moments (GMM)
estimators where instruments in levels are used. The second purpose is to suggest
a way to overcome the drawbacks of Okui’s method by proposing new instruments
with which we can solve the MI problem even if heterogeneity is large.

The findings of this paper are as follows. If all the instruments in levels are used,
although the GMM estimator is robust to large heterogeneity, the size distortion is
substantial. In contrast, if we use the minimum number of instruments in levels,
that is, only one instrument in each period, although the size is close to the nominal
level, both the asymptotic bias and the variance are heavily affected by the degree of
heterogeneity. These facts indicate that, as long as instruments in levels are used,
we cannot obtain a GMM estimator with small bias and variance, and with less
size distortion when heterogeneity is large. To overcome this problem, we consider
the elimination of the individual effects from the instruments. Two methods are
employed to remove the individual effects. The first is simply to take the first dif-
ference. The second method we propose is to use the backward orthogonal deviation
(BOD) transformation. Asymptotic analysis shows that a GMM estimator with the
minimum number of first-differenced instruments is no longer efficient, though it is
robust to large heterogeneity. However, if we use the minimum number of instru-
ments transformed by the BOD transformation, the GMM estimator is robust to
the presence of large heterogeneity and has smaller asymptotic bias than the GMM
estimator with all instruments in levels, the LIML estimator, and the within-groups
estimator, while its asymptotic variance is equal to the efficiency bound. Thus both
the asymptotic bias and variance of the proposed GMM estimator become small
simultaneously. Furthermore, the simulation analysis shows that the size of the
newly proposed GMM estimator is close to the nominal level.

The remainder of this paper is organized as follows. Section 2 provides the model
and the basic GMM estimators. Section 3 considers the effect of large heterogeneity
on the GMM estimator when all instruments in levels and the minimum number
of instruments in levels are used. Section 4 considers the removal of the individual
effects from the instruments and derives the asymptotic properties of the proposed

GMM estimators. Section 5 reports the results of Monte Carlo simulations to assess



the theoretical implications. Section 6 then applies the proposed estimator to the

data of Bover and Watson (2004). Finally Section 7 concludes.

2 The model and the estimators
We consider an AR(1) panel data model given by
Yit = QYit—1 + M + Vi i=1,..N and t=2,..T (1)

where « is the parameter of interest with || < 1 and v; has mean zero given

NiyYils - Yig—1. By letting xi = visr—1, vi = Wi2s-¥ir)s i = (@i2,...,zi1),

vr—1 = (1,...,1)" and v; = (v;2,...,v;7) , (1) can be expressed in vector form as
Yi = azi + Nitr—1 + v; (2)

We impose the following assumptions which are the same as those in Alvarez

and Arellano (2003).

Assumption 1. {v;} (t=2,...,T;i =1,...,N) arei.i.d across time and individu-
als and independent of n; and y;1 with E(vy) = 0, var(vy) = 02, and finite moments

up to fourth order.
Assumption 2. The initial observations satisfy
i .
Yl = T—— T wi fOT' ZZl:"'vN (3)
1—-«

where w; 18 wj; = Z?io ozjvi’l_j and independent of n;.

Assumption 3. 7; are i.i.d across individuals with E(n;) = 0, var(n;) = 0727, and
finite fourth order moment.
Under these assumptions, y;; can be expressed as
i
Yit = ——— + Wit = [ + Wit (4)

l—«o

where w;;— Z?io odvp—j, and p; = n;/(1 — ).



2.1 The basic GMM estimator

We shall provide the GMM estimator which is commonly used in the literature.?
Following Arellano and Bover (1995), Alvarez and Arellano (2003), Hahn, Hausman
and Kuersteiner (2002) and Okui (2005b), to remove individual effects from the
model, we employ the following matrix, F', called the forward orthogonal deviation

(FOD) transformation operator,

i 1 1 1 1 1]
I =7 —7= ~T—3 ~T=3 ~T-2
1 1 1 1
— - 0 1 =75 - —73 “T73 “T3

F = diag \/T—_y“"\/§] L : : : : (5)

1 1
0 0 0o .. 1 -1 -1

0 0 0o .. 0 1 -1

This matrix has the feature that FF' = Ip_o, F'F = Qp_1 = Ip—1 —tp_1thp_ /(T —

1) and Fup_q = 0. By premultiplying this matrix F' in (2), we obtain

*_

yi = axj +v; (6)

where y = Fy;, x7 = Fa; and v] = Fu;. v]. The t — 2-th element of v would be

1
U;kt = Ct |Vit—1 —T_—m(vi,t-l-“'—i-vij) t=3,..,T (7)
where
T—t+1
S (8)

T—t+2
la

In the literature it is common to use zjf = (z; 2, ...,.CL’Lt,l)/ as instruments.® Then

the moment condition based on these instruments can be written as

E[Z v =0 (9)

5We do not employ the first difference (Arellano and Bond, 1991), the level (Arellano and Bover, 1995),
and the system (Blundell and Bond, 1998) GMM estimators, because these GMM estimators suffer from
large biases when 7' is large and when substantial heterogeneity is present. As shown in Hayakawa (2006),
these GMM estimators are inconsistent when both N and T are large. Moreover, Bun and Kiviet (2006)
and Hayakawa (2005) demonstrated that the finite sample bias of these estimators heavily depends on

the degree of heterogeneity.
6See, for example, Alvarez and Arellano (2003), Hahn, Hausman and Kuersteiner (2002) and Okui

(2005D).



where Z! is a block diagonal matrix whose (t — 2)th element is 24"

%
2% O

la
@ 2 T ]
If we assume that v has a constant variance o2 given 7;, Yi1s--Yit—1, the optimal
weighting matrix is

Elz\"viv} 2} = oy B2} Z}%] (11)

This indicates that we do not need the two-step procedure to obtain an efficient
GMM estimator.” Therefore, the efficient GMM estimator is defined as
& = x*/Play* Zt 3T Ptla
"7 a7 Ploge Zt 3L Plaxt

(12)

where o = (23, ...,2%), y* = (yf,...yy), Pl¢ = Zlo(zi zlay-1zld = zla —
(2 2 ), 5 = @iy 97 = Uit PO = Z19(200 2101200

and Zl* = (th7 zf{%t)

3 The effects of large heterogeneity

In this section we consider the effects of large heterogeneity on the GMM estimator
with instruments in levels, especially in terms of the effect on its asymptotic biases
and variances. Since the many instruments problem occurs when T is large, we
consider the asymptotics where both N and T tend to infinity with 7/N — ¢, (0 <

c<1).

3.1 GMM with all available instruments in levels
Alvarez and Arellano (2003) showed the following asymptotic result.

Theorem 1. Let Assumptions 1, 2, and 8 hold. Then as both N and T tend to
infinity, provided (logT)?/N — oo,

é‘la —P « (13)

"Here, the term ”efficient” refers to the large N and fixed T asymptotics.
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Moreover, provided that T/N — ¢, 0 < c¢<1,

N(T —2) {ala - (a— %(Ha))] 4N (0,1 — a?) (14)

Note that Hahn and Kuersteiner (2002), using a Hajék-type convolution the-
orem, establish that N (0,1 — a?) is the minimal asymptotic distribution. Hence
(1 — a?) is the lower bound of the asymptotic variance.

We find that the asymptotic bias and variance of ¢&;, are not affected by any
potential large heterogeneity, since 0727 /o2 does not appear in the asymptotic distri-
bution. This is because, as the proof of Lemma C2 in Alvarez and Arellano (2003)
shows, the individual effects vanish as T gets larger. Hence, we can say that &,
is robust to large heterogeneity. However, Okui (2005b) has shown that the size
distortion of the test for the hypothesis Hy : o = « is very large and inference
based on &y, is therefore unreliable.

We suspect that the source of the size distortion is the bias which results from
using all instruments. Therefore it would be expected that reducing the number of
instruments would mitigate this problem since using fewer instruments reduces the

bias of the estimator.

3.2 GMM with the minimum number of instruments in
levels

In this subsection, we consider a GMM estimator that uses the minimum number
of instruments, that is, zZ” = x;4—1. This means that we use only one instrument
in each period. In this case, since the number of instruments does not grow as T
gets larger, we would expect the bias to become small. The GMM estimator with

instruments zZ” can be defined as

- Slaw Py
Qim = T «! Dlm . (15)
Zt:3 xy Pymay

where P/™ = zIm(zIm' zim)=1zIm' and ZI = (247, ..., 24)". The next theorem
establishes the asymptotic properties of ;.

Theorem 2. Let Assumptions 1, 2, and 8 hold. Then as both N and T tend to
nfinity,

OAélm —P o (16)



and

JWT—@[mm—<a—NE%:5O+amﬁ>]HdNOLO—a%%ﬁ (17)

— 42/ 42
where k = oy, /0y and

_ 1+«
m$_1+k<1 a>21 (18)

Remark 1 We find that there is a notable difference between ¢;, and &y, with
regards to the individual effects. Although the individual effects in &;, vanish as T
gets larger, this is not the case with ¢;,,. The large heterogeneity crucially affects
the asymptotic bias and variance of ¢;,,,. Both the asymptotic bias and the variance
increase in proportion to k, the degree of heterogeneity.

2:

Remark 2 In the case of k = 0, i.e., o,

0, the asymptotic variance of &g,

2. In this case, the instruments that are not

is equal to the lower bound of 1 — «
used in the estimation, i.e., (z;2,...,%;¢—2), become redundant in the sense that
using them does not improve efficiency.® Hence, when k = 0, in terms of the bias,
using the minimum number of instruments is preferable, since the magnitude of the

asymptotic bias of &, is (14 «)/N(T — 2), while that of &, is (14 «)/N.

Remark 3 If the degree of heterogeneity is large, serious problems occur. Both
the asymptotic bias and the variance increase. This indicates that if we use the
minimum number of instruments to reduce the bias springing from the use of many
instruments, then a bias due to large heterogeneity will appear. Especially if T'—2 <
pl_ri, the asymptotic bias of &, will be larger than that of &;,, even though &;,, uses
a smaller number of instruments than &;,. Hence, if a large degree of heterogeneity
is present, reducing the number of instruments to reduce the bias may not work
well. Furthermore, the asymptotic variance becomes quite large. Based on these
findings, we conjecture that Okui’s method does not work well if heterogeneity is
large. If there is large heterogeneity, Okui’s method tends to use more instruments
to weaken the influence of individual effects.” However, if we use more instruments,

the estimator will be more biased and inference will tend to be inaccurate.

8See Breusch et al (1999) for a discussion of the redundancy of the moment conditions in GMM.
9See Table 1 in Okui (2005b) for the optimal lag length of the instruments.



The results in this section indicate that if we use all the instruments in levels,
although @&;, is robust to a large degree of heterogeneity, the size distortion is sub-
stantial. On the other hand, if we use the minimum number of instruments in levels,
the effect of a large degree of heterogeneity on the estimator is large. Therefore,
if a large degree of heterogeneity is present in the model, both &;, and &g, are no
longer desirable estimators. Neither of them has a small bias or a variance without
size distortion. This suggests there is a need for new estimators which overcome
the drawbacks mentioned above. We will present such a new estimator in the next

section.

4 Removing the individual effects from the in-
struments

Since the asymptotic distribution of &g, is heavily affected by a large degree of
heterogeneity through the instruments, we expect that if we use the instruments
without the individual effects, the GMM estimator will be robust to the presence
of large heterogeneity. In this section, we consider the removal of the individual
effects from the instruments. We employ two methods to remove the individual
effects. The first is simply to take the first difference. The second is to introduce a
transformation called the Backward Orthogonal Deviation (BOD) transformation.
BOD transformation is a modification of FOD transformation. Although the FOD
transformation induces a deviation from the mean of all future values, the BOD
transformation induces a deviation from the mean of all past values. To rid the

instruments of the individual effects, we only have to multiply the following matrix:

[ 1 1 0 - 0 0 0]
1 1
1 — S — 1 - 0 0 0
B = dzag [\/;,,\/ﬁ
1 1 1 1
—T7-3 ~T-3 ~T-3 -7 1 0
1 1 1 S E U
L T—-2 T-2 T—-2 T-2 T—-2 _

By multiplying this matrix by z;, we get the following:

1

(ki) (20)

b
Ty = bt |:xi,t_

10



= bt |wit—1 ; 2(wzl+ + Wi —2) t=3,..,T (21)
where
t—2
b= —= 22
] (22)
The GMM estimators with instruments z&™ = Az;; ; and 2" = xi?’t_l are
defined as
T *! dm *
R z; P
Agm = Zt 4 t d (23)
Pbm
G = Zt 227 BMyE (24)
Zt o7 PPy

where P = Zgm(zgm' zgm)=1zdm' zdm = (zdm o qmy pim = zhm(zpm zim) =Lz

and Zf™ = (24,280

There are two notable features in xﬁ’t. The first is that x?t has no individual
effects, and this is the main purpose of using the BOD transformation. The second
is that since xi-’t is composed of all past values, we would expect that it contains
more information than using only one instrument in levels or the first-differenced
instrument, i.e. we expect that the GMM estimator with minimum number of xi’t

will be more efficient than ¢&;,,, and &g,,. The following asymptotic analysis shows

that this conjecture is correct.

Theorem 3. Let Assumptions 1, 2, and 8 hold. Then as both N and T tend to

infinity,
dgm —F « (25)
and
N(T —3) |égm — | a — ;(1 +a)pgh )| =4 N(0,(1—a?)pyt)  (26)
N(T _ 3) dm ’ dm
where
2
o= 1 2
v = (122> (27)
Theorem 4. Let Assumptions 1, 2, and 8 hold. Then as both N and T tend to
nfinity,
&bm —P o (28)

11



and
VN(T = 3) [@bm - (a - N(T;_g)(l + a)>] -4 N(0,1 - a?) (29)

Remark 4 Compared with ¢;, and d;,,, the asymptotic biases and variances of
Qgm and Gy, are not affected by &, and this is the main purpose of using instruments
without individual effects. Therefore, we can say that &g, and &, are robust to

the presence of a large degree of heterogeneity.

Remark 5 If we compare Ay, and dy,,, there is a notable difference both in their
asymptotic biases and their variances. Since pgnll is strictly larger than one, both
the asymptotic bias and the variance of a4, are strictly larger than those of Gpp,.

Therefore, we can say that dp,, is superior to Qgp,.

Remark 6 The magnitude of the asymptotic bias of apy, is (1 4+ «)/N(T — 3),
while the asymptotic biases of &y, &y, and éyyy, are (14+a)) /N, (1+a)p;ﬂ% J/N(T —2),
and (1 + a)p(;?l1 /N(T — 3), respectively. Also, as shown by Alvarez and Arellano
(2003), the magnitude of the asymptotic biases of the within-groups estimator and
the LIML estimator are (14+«)/(7T'—2) and (14+a) /(2N —(T—2)), respectively. Thus,
the magnitude of the asymptotic bias of ¢, is smallest among these commonly-used

estimators.

Remark 7 The asymptotic variance of dgy, is strictly larger than the lower bound
and can never be efficient. But the asymptotic variance of &y, is equal to the lower
bound, and &, is therefore asymptotically efficient. Also, it is notable that al-
though &;, becomes asymptotically efficient by using all instruments, &gy, is asymp-
totically efficient by using the minimum number of instruments. This implies that
the instruments which are not used, i.e., (:cg?,, ...,x?,td), are asymptotically redun-
dant.

Thus, the new estimator &y, addresses the trade-off between the bias and the
variance: the asymptotic bias of &gy, is smaller than that of other GMM estimators,
whereas the asymptotic variance is equal to the lower bound.

We can say that the main advantage of &g, lies in its variance. To examine

the variance properties in greater detail, we analytically compare the asymptotic

12



variances of &4, G, Gdm, and dg,y, under the fixed T' asymptotics. The asymptotic
variances of &g, G, Ggm, and Qg under large N and fixed T asymptotics are

given in the following lemma.

Lemma 1. Under Assumptions 1, 2, and 3, the asymptotic variances of &u, Qum,

Qgm, and Qpy, under large N and fized T asymptotics are given by

-1
Avar(dg4) = (1 — o?) [NZwt < TR +( )— )( )})] (30)

T -1
Avar (éy,) = (1 — a2)pl_w} [NZ%Q] (31)
t=3
T -1
Avar (@) = (1 - a?)p] [N 3 ¢3] (32)
t=4
T ad 2 -1
A _ 2 2 t—3 —1
Avar (Gpm) = (1 — o) [N;% <1— t—3> A, ] (33)
where
1—al ;

= — e j—1

?; T = l+a+- 4+« (34)
APP—t41 ?

2 2 et

@ o= @i g (35)
203 1 (t—3)1+a) 2a(l—at3)

A = |1— — 36

! [ -3 +(t—3)2{ I—a 1—a) (36)
Provided that 03) = 0, then the asymptotic variances of &;, and &gy, reduce to

-1
Avar(dq4) = Avar(Ggy) = (1 — o [N Z wt] (37)
and provided that 0727 — 00, then
2 O\
Avar(dy,) = (1—-a*) |N —< < 00 38
w0 = oofrEaf ) e

Avar(éy,) — 00 (39)

We find that the asymptotic variances of &;, and &, are exactly the same if

0727 = 0. This coincides with the case where both N and 7' are large. However

13



if 0727 — 00, then the effect of large heterogeneity on &y, is unbounded, while &;,
receives a bounded influence.

We showed that under the double asymptotics where N and T tend to infinity,
the asymptotic variances of ¢&;, and &, are the same. But by comparing the
asymptotic variance of &;, and &, when T is fixed, we find that the forms of the
asymptotic variances are quite different. To examine this difference, we compare the
asymptotic variances numerically. Figures 1 to 3 present the asymptotic variances
for the case of @« = 0.8 and N = 50 and k£ = 0.2,1, and 10 (Figures 1, 2, and
3, respectively). The horizontal axis shows T from T' = 10 to T" = 29, while the
vertical axis depicts the magnitude of the asymptotic standard error calculated from
Lemma 1, that is, the root of the asymptotic variances. An inspection of the figures
shows that the asymptotic variance of &g, is heavily affected by the presence of
large heterogeneity. Note the difference of the scale of the vertical axis in Figure 3.
We also find that there is a significant difference between ¢4, and Qpy,. Although
we find that there is a difference between &;, and &, when T is not so large, this
difference shrinks as T gets larger. This fact coincides with the double asymptotic

analysis.

5 Monte Carlo simulation

In this section we conduct Monte Carlo experiments to examine the performance of
the estimators discussed above. We first consider a simple AR(1) model and then

extend the analysis to consider the case where a predetermined variable is included.

5.1 Cases without covariates
We consider the following AR(1) model:
Yit = OYit—1 + 1 + Vi (40)

where 7; ~ iidN(0,07), yi1 ~ iidN(n;/(1 — a),05 /(1 — a?)), and vy ~ dN(0,07).
Here we consider N = 50,100, T' = 10,15,25 and o7 = 0.2,1,10. o7 is set to 1. The

number of replications is 1000 for all cases.

14



For each estimator, we compute the mean (mean), standard deviation (std),
standard error (se), the root mean squared error (rmse), and the size of the Wald
test for Hy : o = ay, where oy is the true value.!©

These experiments fulfill five aims. The first is to discover how large the bias
and the size distortion of &g, are. The second is to examine how seriously the bias
and variance of ¢, are affected by the presence of a large degree of heterogeneity.
The third is to see how large the differences in the bias and the variance of &g, and
Qpy, are. The fourth aim is to compare the variances of &;, and &p,,. And the final
aim is to compare the power of &y, G and Gpy,.

We begin the examination of these five issues by first considering &;,. Tables 1
and 2 respectively report the simulation results for &;, for the case of N = 50 and
for N = 100. In the case of T' = 10, the bias of &y, is quite large and as 0727/03
gets larger the magnitude of the bias increases. In the case of T' = 25, although
the magnitude of the bias is smaller than in the case of T' = 10, a large bias still
remains. Although the magnitude of the bias increases as 0727 /o2 gets larger, it is
still much smaller than in the case where T=10. This result supports the theoretical
prediction that the individual effects vanish as T' gets larger. With regards to the
sizes, they are no longer close to the nominal level. Especially when a = 0.8, the
size distortion is substantial and we can say that inference is inaccurate.

The second aim of the Monte Carlo study is to examine the effect of large
heterogeneity on &g,,. In the case of 0727 / 012) = 0.2, &y, performs very well. The
RMSE of ¢, is smaller than that of &;,. However, as 0727/03 gets larger, the
performance of &;,, dramatically worsens. Even in the case of 072] /o2 = 1, the
RMSE of &y, is larger than that of ¢&;,. Especially in the case of 0727/0,2} = 10, with
a few exceptions, the biases of ¢y, are larger than those of &;, even though &y,
uses a smaller number of instruments than ¢&;,. These results coincide with the
case where T' — 2 < p;ni holds. In this case, the asymptotic bias of &g, is larger
than that of ¢&;,. For example, in the case of T' = 25, £k = 10. and a = 0.8,
1+ k(1+a)/(1 —a) =91 >T — 2= 23. With regards to the sizes, they are much

closer to the nominal level than those of &;,.

10The standard errors are calculated under the large N and fixed T asymptotics, i.e.

62(x* Px*)~1, and the size is based on the usual Wald test using a 5% level of significance.

15

se(

o)

)



Third, we compare &g, and &y,,. Tables 3 and 4 report, respectively, the sim-
ulation results for &g, for N = 50 and N = 100, while Tables 5 and 6 report the
simulation results for &, for N = 50 and N = 100. For the purpose of com-
parison, we also consider the case where all available instruments are used. The

corresponding GMM estimators are as follows:

T «' pda, *
P
by = 2=t B (41)
d
Zt =47T P “ry
Pba *
OAéba — Zt 4 t (42)
Zt 4T Pba *

where Pl = Zgo(z' zda)=1 zdd' = zda — (yda zjlvé;) 200 = (Aziz, ., Axig1),
P — 202 2P 2, 200 = (4,2, and 2B = (ol )

Looking at the tables, we find that &4, and &g, are numerically equivalent and
that none of the four estimators are affected by 0,2] /o%. With regards to the bias,
there are almost no differences between ¢y, and &g, when o = 0.2 and 0.5. How-
ever, in the case of a = 0.8, &y, has smaller bias than &g4,,. Next we compare the
variances of &g, and &gn,. The tables indicate that there are significant differences
in the magnitude of the variances of &g, and d&p,,. The variance of &y, is much
smaller than that of &g,,. This result is in line with the theoretical prediction. In
particular, if we compare &g, and ¢y, the increase of the variance of &, compared
to that of dy, is quite large, and as a result the RMSE of &g, is larger than that
of &g, in many cases. In contrast with &g,,, the degree of increase of the variance
of Ay, compared to that of &y, is very small. As a result, the RMSEs of &y, are
smaller than those of &y, in all cases. Furthermore, the sizes are very close to the
nominal level.

Fourth, we compare the variances of &, and ¢;,. In the case of T = 10, the
variance of Gy, is a little larger than that of ¢&;,. However, as T gets larger, the
difference gets smaller. Especially in terms of the RMSE, &y, has smaller RMSE
than ¢, in almost all the cases. The exception is when T' = 10 and 0727 /ag = 0.2.
Taking into consideration the size distortion, we can conclude that &, performs
better than &y,.

Lastly, we compare the power of &y, Qgm and d&p,,. We do not consider the
estimators with all instruments since their sizes are far from the nominal level.

Figures 4 to 12 show the result. In each case, N = 50 and o = 0.8 are fixed.
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Figures 4 to 6 depict the cases when T'= 10 and k£ = 0.2,1, 10, while Figure 7 to 9
depict the cases when T'= 15 and k = 0.2,1,10; finally, Figures 10 to 12 depict the
cases when T = 25 and k£ = 0.2,1,10. Looking at all these figures, we find that the
power of &y, is crucially affected by the degree of heterogeneity, whereas the power

of &g and &gy, is not. Furthermore, we find that &y, has higher power than &g, .

Reducing the bias

The simulation results above show that the magnitude of the bias of &, in the case
of T'= 10 is not negligible, although the size is close to the nominal level. Here we
show that we can reduce the bias by using the matrix, which is different from (10)

where the instruments are on the diagonal:

zbm —

Let us define Zibm as follows:

b b (1)
me/ _ :I/‘Z,3 e ‘Ti,_—l O _ Z’L O (44)
(2 !’
0 :1:2’5 xlij,Tfl 0 Zi(2)
where ¢ = [(T — 3)/2] + 3. | | denotes the integer part of the argument. Then

it follows that the GMM estimator with Zzbm, Qpm, 1s derived from two moment
conditions. As &y, uses a smaller number of moment conditions than d&,,, we
expect that dy, has smaller bias than dy,, at the cost of efficiency.!! Table 7
summarizes the simulation results. We find that &g, is very close to the true value
although its variance increases a little. In terms of the RMSE, &y, performs best
in almost all the cases. Therefore, dp,, may be an option when we are interested in
the value of a coefficient. In the simulation that follows, we focus only on &g, since

it has a smaller RMSE than &y, .

1 See Wooldridge (2005).
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5.2 Cases with an additional regressor

In this subsection, we consider the case where a predetermined variable is included
besides the lagged dependent variable. The aim of this design is to investigate the
effect of an additional regressor. We consider the following dynamic panel data

model with a covariate:

Vit = i1+ X +ni+vie = Wio +m; + vy t=2,..,T (45)

Xt = pXi—1+70 +0v,1 +e (46)

where Wi = (yi41—1, Xit) and 6 = (o, (). Initial observations are generated to be
covariance stationary and we discard the first 10 periods. In this model, X;; is a
predetermined variable. Also note that X; is correlated with 7;. In the experiment,
we set « = 0.8, 3 =05, p=0.5,7=0.2,and § = 0.2. N and T are N = 50,100
and T = 10,15,25. In addition, we set var(v;;) = var(e;) = 1 and 0727 =0.2,1,10.
Define y; = (viz,-vir)'s i = (Wi, vir-1), Xi = (Xig, ., Xir)', Wi =
(Wi, ... Wir) and v; = (v4a,...,v;7)". By multiplying F by y;, W; and v;, (45)

becomes
yip = oaxy + X5 v = Wi+ oy t=3,..T (47)

Let z;; denote the generic instruments for W and let Z; = (z14,...,2n¢), P =
Zy(Z,Z;)~'Z;. Then the GMM estimator has the following form:
T L7
6= (Z Wt*’PtW:> (Z Wfﬂyf) (48)
t=to t=to
where ¢y = 3 if the instruments do not contain x?}t_l and tp = 4 otherwise.

We consider three type of instruments for W;. The first is zﬁa
where all available instruments are exploited. The second is 2™ = (@ip—1,Xit—1)
where the minimum number of instruments are used. The third is z2/™ = (:ci?’t_l, X?%)
where 20, | and X} are the (t — 3)th and (¢ — 2)th elements of 2? = Bx; and
Xf’ = B(Xj 2, -+ ,X; 1), respectively. Let - (dla,ﬁla)’, Sim = (dlm,ﬁlm)’, and
Spm = (G Bbm)’ denote the GMM estimators corresponding to z/?, zl", and 2™,
Tables 8 and 9 show the simulation results. With regards to the effect of large

heterogeneity, the result is similar to the AR(1) case, that is, &, is not greatly

affected by large heterogeneity and becomes more robust to large heterogeneity as
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T gets larger. However, the size distortion is very large and the degree of distor-
tion is more serious than in the AR(1) case. Unlike &yq, &y, is sensitive to large
heterogeneity. As 0727 /o? gets larger, the RMSEs increase. Turning to Ay, we find
that by construction it is robust to large heterogeneity. The RMSEs of &, are
smaller than those of ¢&;, and &, except for the case of 0727 / Ug = 0.2 for any N
and T'. Furthermore, the sizes of &y, are close to the nominal ones. When we are
interested in the estimation and inference of (3, either Bbm or Blm work well since

both estimators exhibit a similar performance.

6 An Empirical application

In this section, we apply our new estimator to a partial adjustment model for
employment dynamics using the data employed by Arellano (2002). The data consist
of a panel for 385 Spanish firms, starting in 1983 and spanning 14 years. For a more
detailed description of the data, see Bover and Watson (2004). The model is given
by

N = ony—1 + Bwi + 10 + vy (49)

where n;; is the logarithm of employment at firm ¢ at time ¢ and w;; is the logarithm
of wages paid by firm ¢ at time ¢. w;; is treated as a predetermined variable.

We computed Sla, Sbm and Sbm and their standard errors. The estimation results
are presented in Table 10.'2 The results show that the GMM estimators proposed
in this paper alleviate the bias of ¢;,. Based on the simulation studies in Section 5,
which imply that the empirical sizes of &p,,, and &y, are close to the nominal level,

we should make inference by Gp,, and dpyy,.

7 Conclusion

In this paper, we addressed the many instruments problem in dynamic panel data

models where unobservable heterogeneity may be large. We proposed a new form

12Time effects are removed by subtracting the cross-sectional averages of each period prior to the

estimation.
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of instruments with which we can overcome the many instruments problem. The
proposed GMM estimator has smaller asymptotic bias than the conventional GMM,
LIML and within-groups estimators, whereas its asymptotic variance is equal to the
lower bound even if there is large heterogeneity in the model. Simulation results
showed that in many cases the RMSEs of the proposed GMM estimators are smaller
than the conventional GMM estimators. Furthermore, the size of the test for the
parameter hypothesis was very close to the nominal size. The analysis of the new
estimators was then extended to the case where additional regressors are included
and it was found that the estimator performed well in such cases. Finally, we applied
our new estimator to the data of Bover and Watson (2004) and were able to confirm

that it alleviates the bias problem.
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A Mathematical Proofs

Throughout the appendix, T° denotes:

lm.

T — 2 when the instruments are z;;"*; and

dm bm

T — 3 when the instruments are 2™ or z;;".

Before we prove the theorems, we provide some lemmas.

Lemma 2. Let k3 and k4 denote the third and fourth-order cumulants of vy, and let

P; denote Ptlm or Ptdm or Ptbm. In addition, let d; and ds be N X1 vectors containing

the diagonal elements of P, and Ps, respectively, so that tr(P;) = djuy = tr(Ps) =

diuy =1, and djds < 1. Then under Assumption 1 forl>r >t, p>q > s, and

t>s,

/ /
cov(v Pyvy, v, Psvg) =

where

| E(d; Povg)| < 00

Proof of Lemma 2

204t (PPy) 4+ vy B(dyd,) < 208+ ky if l=r=p=q

k3E(d}Psvy) if l=r=p#q<t
oltr(P,P,) < o} if l=p#r=q
0 otherwise

(51)

Like Alvarez and Arellano (2003), we begin by showing the following:

/ !/
covy1(v; Pyvp, v, Psvg) =

203 + katr(PPs)djds if l=r=p=gq

kadi Psv if l=r= <t

3di Psvg f p#q (52)
aytr(PFy) if l=p#r=q
0 otherwise

where E; 1 denotes an expectation conditional on 7; and {vi,t,l,j };";1 To prove

this, note that the conditional covariance can be expressed as

covi_1(v,Pyvy, vll,Pqu) = Et_l(vf]%vrv;,Pqu) — Et_l(vZBUT)Et_l(v;,Pqu) (53)

Firstly the conditional mean terms in (53) are

Etfl(vllptvr) = Etfl(v;;Pqu) =

o2 if l=rorp=q

v

0 if l#rorp#gq

(54)
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Next, with regards to the leading term of (53),we have

( E;_1(v] Py, Psuy) if l=r=p=gq
Eor (01 Pyt Prvy) — E;_1 (v]Pyup]) Pyvg if l=r=p#q<t (55)
tr[PE 1 (vp0p) P By (vvy)] if l=p#r=q
(0 otherwise
For the first type in (55)
Ei 1 ()P Peoy) = (302 + ky)didg + ol[tr(P)tr(Py) — didg) + 20 [tr(P:P,) — d}d,)
= wydds + ot + 20ktr(PP,)
For the second type in (55),
Ey_1 (v} Poowy) Psvg = k3dy Psv, (56)
and for the third typein (55),
tr[ BBy (v,vl) Py By (v0))] = ottr (P, Py) (57)
The results follow from the fact that
cov(letvr,v Py,) = E|cov_ 1(letvr,v Pug)] —l—cov[Et_l(vavr)7Et_l(v;Pqu)}
= E[covt,l(vath,v;Pqu)} (58)

The inequalities in the case of =7 =p =gq and [ = p # r = ¢ in (50) are due to
the Cauchy-Schwarz inequality

;1 P thﬁzszé
tr(PPs) = triz(zz) 2zs(2s2s) 26 = tr m
t 8§78
/ / 2
ZiRs / (ths)
= —tr(zgz,)) = ———— <1 o9
(2t20)(242s) () (zt20)(242s) ~ i

The proof of (51) will be omitted since it is the same as in Alvarez and Arellano

(2003).

Lemma 3. Let Assumptions 1, 2, 8 hold. Then as N — oo regardless of whether

T — oo or is fixed,

T 2
o
NTO Zwt 2P W¢—2 —P Pim (1 _'Ua2> (60)
1 £l o
NTO Z wéfzptdmwm = pam (1 _va2> (61)
t=4



where

-1
1+
o = 1+ (=) o] (62)
l-«
pm = (5% (63)
and as T — oo, regardless of whether N — oo or is fized,
1 d o2
NTO > wi o P wy g =P (1 _”a2> (64)
t=4

Proof of (60)

After some algebra, we have

Wi_oT¢1 —02
E (%) = Blwir-ayie-2) = 7 5 (65)
’U),é_gxtfl 1
var T — Nva,r(wi7t72yi,t*2) (66)
oo o2 o2
E(I21) g2, ) = —20 y o7
< N ) (yz,t—2) (1 _ a)Q + 1— aQ ( )
/
AT | 1
(T) = yuar(¥ieo) o

Since we have assumed the finite fourth order moment of wv;;,

2 2
g,
var (wis—yi-2) = Ewit_2>+E<w3,t_2>E<u?>—(1—” )

( —

= 0(1) (69)
var(yit_Q) = E(M?) + 2E(M?)E(wz‘2,t—2) + E(w:‘l,t—2) - [E(yzg,t—Z)}Q

= 0(1) (70)

Proof of (61)

‘We have

wh_oAxy_q o2
E(2——) = EBE(wis 2Ayis o) =—2
< N > (wz,t 28Yit 2) 1+

(71)
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/ Az 1
var (M) — NUCLT(wZ‘,t—QAyi,t—2) (72)

N
Az, Axi_q 202
B 1T ) B(AY2 = v 73
(S = B - (73)
Az, Az 1
var (—t N > = NUW(Ayztﬂ) (74)
Since we have assumed that v; is finite up to the fourth order,
o2 \?
var(w;—2Ay;—2) = E(w;‘{t—2 + wz?,t—sz?,t—?) - 2wi2,t—2wi7t*3) - <1 J:a>
= 0(1) (75)
202 2
UaT(Ayzg,t—2) = B(wiso—wiy3)" — (1 —i—voz)
= 0(1) (76)

Thus, as N gets large, (72) and (74) tend to zero. Therefore, as N — oo

T T

1 1 _

NTO > wi o P wey P 70 > B(wis—2Ayis—2)[E(AY}_2)] " E(Ay;—owis—2)
t=4 t=4

2
Oy
Pdm (1 _a2>

Proof of (64)

To begin with, we provide some results which are useful in the proofs. Let ¢; =

(1-a?)/(1—a) =1+a+---+ai L and b? | = (t—3)/(t —2). After some algebra,

we have
oy aPr—3
E(wi,t,gxi”t_l) = bt,1 <1 — a2> (1 — m) (77)
1 2
El(a},1)?] = b,E [wz‘,t—2 — it wi,t—3):| (78)
2 2003 1
b2 Ty 1— E . .. . 2
t—1 |:1—042 < t—3 >+(t—3)2 (wz,1+ +wz,t 3) :|
(79)
Using the result of (A8) in Alvarez and Arellano (2003), we have
o2 [t—=3)(1+a) 2a(l—-al3)
E(w; )2 = v _
(wz,l + + wz,t 3) 1 _ 062 l: 1 — (1 - Oé)2 :| (80)

By substituting this term into (79), we get

Blat, )% = b?1< & )[1_ 20005 1 {(t—S)(1+a) - 2a(1—at—3)H

1—a? t—3  (t—3)2 -« (1—«)?
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2
2 Oy
= b (1—a2> Ay

where A; is given by (36).

Let &; denote the N x 1 vector of errors of the population linear projection of

wy_o on ZPM:

Wi_g = ZV™5 + & (82)

where § = E(2}{"w;y—2)/[E(")?] = E(a},_ywie—2)/[E(z7;1)?]. Then

Eit

where

A1

A2
A3

A

= Wit-2— 5.%2)571 (83)

{—aﬁbt—:i + (t_32,$1_5)a()1__25;¢t73] Wi t—2

EDI
[(meleoalizles] (1 — a)(uwsy + -+ wiys)
i t—3)A;
Mw;—2 + Ao(1 — ) (wi1 + -+ + wis—3)
A3
)\lvi,t—2 + (5\1 + )\2)1)@'775_3 + -t (ozt_55\1 + )\2)1)1‘72 + (Oét_45\1 + )\Q)U)Ll
A3
(84)

_ (t—=3)(1 —a) —2a¢;_3
_ (A=a)t=3)—a(l—a)g3
= A=) i-3) (86)
= (t—3)As (87)
_ ) —a? (- (t=3) —dis
= a()\1 )\2) = < ¢t—3 + (t _ 3)(1 — Oé) (88)

Since (84) is a linear combination of independent variables,

E(e;

B o2 [(1 — AN+ {1 -2+ 1IN+ 21 +a— at—3)§\1)\2]
) = (1 —a?)A3

_ 0 (%) (89)

Now we consider the decomposition:

wi_o P = wi_gw—a — wi_(In — P )w—s (90)

= wy_ywi— —&(Iy — B™)er (91)
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The second equality is due to the fact that (Iy — PP™)w;_o = (Iy— PP™)(ZIm5+ey).
Hence we have

T T

1 1

N0 Z E(w;_oP™wy_s) = E(w},_y) — N0 Z E(ej(In — B/™)er)  (92)
t=3 t=3

Since the maximum eigenvalue of (Iy — PP™) is equal to 1,

TO ZE (el(In — PI™)ey) TO ZE (eher) =70 ZE —O(logT) — 0(93)

Hence, as T' — oo,

T
1 o2
75 O Blw) oM wis) = B(w?, o) = 7 (94)
t=3

With regards to the proofs that the variance of (NT®)"' S°7 o w! jwy_gand (NT?)~1 ST ele,

tend to zero, see Alvarez and Arellano (2003).
Lemma 4. Under Assumptions 1, 2, and 3, the following results hold:

E(z¥ Py*) = (Jﬁl) (?T_ll - 1) (95)

E(z* Py = E(z P'™v*) = <1i3a> <;T_‘22 - 1> (96)

Proof of (95)

Let P; denote P/™ or P#™ or P/™ Decompose z} as

Ty = Yawi_o — 1,71 (97)
app_
oo = a1 7 @9
B 1
Vp_17-1 = T_—t_’_l((ﬁTﬂ%l'Utfl + -+ drvr—1) (99)

Following Alvarez and Arellano (2003), by using ¢; = ¢;—1 + =1, and ¢ + -+ +
¢j—1=(j — ¢;)/(1 —a), we get
E(a Pof) = E(uwi_yPio}) — Blei_y 71 Pivy)

= _E(Ct5£—1,T—1PtU?)
2
—0y dr—t+--+
= — % _4(P o
T—ir2 t)[¢T tH T—t+1 ]
—o; tr(P,) Pr—t41  Pr—t42
T—1t42 T—-t+1 T—-1t42

(100)
Since tr(P;) = 1, the result follows.
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Lemma 5. Let Assumptions 1, 2, 8 hold. Then, as both N and T tend to infinity,

z* Plmoy* o2
var W —  Plm m (101)
o pdmy* 03
var W —  Pdm m (102)
o pbmy* 03
var W — m (103)
Proof of (101)-(103)

Let P, denote the generic projection matrices which can be P/™, P#m pim. By

using the fact that v} = (v;—1 — U4—1,7)/ct, we get the following decomposition:

T

1 . 1
VNTO Pot = <W > wigPvry = Tunr — T12NT> — (Taivr — Toont)
t=to

(104)
where
_ Vi1 + -+ v
Up—117 = %_’_QT (105)
A
Tunr = > wi Pty (106)

VNTO P—

T
Yoonr = 1 Z CaPT 441 W
VNTO = T—t+1 =2

P} (107)

T
1
T = — V1 P 108
21NT \/Wgtl”flttl ( )
1 T
Toont = \/W;'Dél,Tlpt@tl,T (109)
=to

The variance of the leading term in (104) is

T T T
1 1 1
(W 2 “’Q—QPt”t‘l) = 70 2 var(wi-aPe) = 5o ) Bl pPiwr—)

t=to t=to t=to
(110)
This is because for t > s, cov(w,_oPv;_1,w._4Psvs_1) = 0. Thus, the leading
term converges to the form obtained by Lemma 3. Next, since E(w;_oP,0;_17) =

E(T);_LTPSU}S_Q) =0,

T T
1 _ _
var(Tiint) = NTOE E E(w;_o Py 110,y pPsws_2)

t=to s=to
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1 — _
- NTO > cov(w) o Pite1,r, Uy p Powss)

t=tg s=to

T T
1 —
= NTO 2.2 \/E(wé_QPt’Dt*LTV\/E(U;fl,TPswsz)Q (111)

t=to s=to
Since the maximum eigenvalue of P, is equal to 1, we have

2

_ a.
B(wi_yP17)” = T_—;_i_2E(w£—2tht—2)
& /
S Topg ol Wieati-2)
No? 9 ol N
= —F(w; = e 112
(T —t+2) (Wi1=2) (1—a2 T—t+2 (112)
Thus,
4 T T
loj 1 1
var(Yiint) < ( va2> ﬁZZ\/ —t+2\/T—s+2

t=tg s=to
4 T T
1 1 1
B ( a)TOZ T—t—i—QZ\/T—s—i—Q
t=to s=tp

ol O(logT)
o <1_a2> T0 — 0 (113)

Next, by using the result that for t > s, Ey,_1(vi_jv¥ |) = 0, and cov(w)_, P, w)_o Pv¥) =

0, we have
var(Tiany) = NTO Z — ti i’T :[z:+_1 = 2)var(w£72Ptv;‘)
- NT0 Z — ti fT t+_1 t+2) E(w;_oPawy—2)
= (1 jiz) %i (T — tofqijT(TH_l o) 0 (114)

We then turn to consider var (Yo n7)

T

1 1
var(Y2inT) o var Z ——— 0, 1 Pipr—p1vi-1 + - + drur_1)
NTO | ST =41
= QoNT + QINT (115)
where
a o 1 Z ¢T t—HUQT(Ut 1Prog_1) +--- + ¢1UC””(U1/&71PtUT—1)
ONT = NTO (T—t+1)

t=to
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: Z G5y 1 200tr (PePy) + k4 B(dydy)] + (0F_, + - - + ¢})tr (PiPy)oy

0 p—
NT t=to (T t+ 1)
and
. 2 2 [ ¢h_scov(v_ Pror, v P vy)
T NTO & (T —t+ 1)(T —t)
=l
T fcov(v;_ Pror_1,vp_ Prup_1)
(T—t+1)
_ ¢%,t/€3E(dg+1PtUt71) . tk3B(d}yPog—1)
= NTO & | (T —t+1)(T - ¢) (T —t+1)

Using the fact that qb? <1/(1 —a)?

T
1 Z ¢%F—t+1[2‘7§ + k] + (PF_y + -+ + ¢1)oy

aoNT 0 5
NT = (T'—t+1)
(20 —|—/£4 + (T —t)o?
< v
- 1—042NTOZ T—-t+1)2
o 20 + Ryg 1 T 1 4 Z
 (1-a)? NT® & (T —t+ 1) 1—a2NT0 —t—i—l
— 0 (116)

In view of the triangle inequality and the fact that |E(d}, ; Pvt)| < oy,

2|/€3|0U 1
< e
e < 2NTOZ[ —t+1(T n +(T—t+1)}
2|kg|oy,
ﬁNTOO(lOgT) — 0 (117)

Finally we consider the term YToon7. We decompose the variance of Toonr as

follows:
1 T
var(Toant) = Sy var (Z U£_1,T317t—1,T—1> = bonT + binT (118)
t=to
where
L7
bont =~ 2 var (Vg r P 17-1) (119)
NT = '
=t
and
2 - _ -
binT = 7o > cov(@_y pPie1,0-1, Vs 7 Pols1,7-1) (120)
s s>t
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From (A73) in Alvarez and Arellano (2003), we have

_ - 1
var (v, pPiot-1,7-1) = O (W) (121)

Next, with regard to the term by 7, we have

2 - _ -
lbin| < NTO Z Z |cov(T)_1 7 Pytt—1.10-1, Vs—1, 7 PsVs—1,7-1)]
s s>t
2 —/ ~ ~/ ~
< Nl \/Uar(vtfl’TPt'Utfl,Tfl)\/UUJT('US,LTPsUsfl,Tfl)
s s>t

o () S0 () o (B) <0 e

Lemma 6. Let Assumptions 1, 2, 8 hold. Then as both N and T tend to infinity,

x*/lex* 02
e = o (12 (123)
.CC*IPdmCC* 0.2
g e (125 (124)
*’Pbm * 2
- NTOx - <1 - 2> 129
—

Proof of (123)

Using the decomposition of zf, we have

¥ Pz 1 i V2wl P 2 i b P
—_ = w Wt—9 — —~ C w Vy— —
NTO NTOt - t We_odltWt—2 NTOt - tPtWe ol tVt—1,T—-1
=ty =ty

T
—I——l Aol Poy_171_1
5 E t V1,714 tVt—1,T—

NT =

Since ¢ = 1 — O(1/(T — t + 1)), the first term of the right-hand side converges
to the form obtained by Lemma 3. The second term has zero mean and, by using
similar arguments as those used for Tq1n7, it can be shown that its variance tends
to zero. The third term is analogous to Toon7. Its mean is given by

T T
1 - . 1 -
E <NT0 Z Cg%l,TlPth,Tl) = N70 Z GE(T17-1)

t=to t=to
2 T

. Oy ¢%—t+1+”'+¢%
B z;(T—t+2)(T—t+1)

logT
= O(NT>—>O (126)

and its variance is shown to tend to zero in the same way as Yoon7.
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Proof of Theorems 2 and 3

Consistency directly follows from Lemmas 4, 5, and 6. Next, we show the asymptotic
normality of &, and dyy,. Here, let P denote P or P%" and z; let denote zl-m
or 2% ™. In addition, p denotes p;, or pgm,. Since we have shown that the variances

of T1int, Tiant, ToinT, and Yooyt tend to zero,

T T
1 ’ 1 0'4
\/W E Qﬁ'r PtU: — UNT = \/W § wt 2Ptvt 1+ Op(l) d <Oﬂp (1 _’Ua2>>
0

(127)
where
_ L i pyr 128
UNT = \/W (.’E v ) ( )
This is because
i - () ()
Wy_ozt(212 23U = — —_
\/Wt:tot2ttt tVt—1 \/—tto N \/N
Z wzt 2Zzt)§t
\% t t E(Z’Lt)
E(w;—2%it)
= 0 &t
B(23) \/_tzto
E(w;—2%it)
—d =T N(0, var (&) (129)
where & ~ N(0,02E(22)). Then (127) holds. Therefore:
, -1 , -1
x* Px* 1 o x* Px*
Pv* — = NTO (& — ) — | ———
-1
V (&—a)+( —I—a)\/W T 1
. 1+a)pt 1
~ VAT |a— (o=t 0
« « NTO + T

Proof of Theorem 4

It is straightforward to show consistency from Lemmas 4, 5, 6. Next, we show the

asymptotic normality of &g,,. To begin with, note that

1 / 1
TnTo Z xf PP™of — vy = N Z wi_o PP i1 + 0p(1)
t=4 t=4
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T T
1 / 1 /
= o Z Wy 2Vt—1 — == Z wi_o(IN = P)ve—1 + 0p(1)
(130)

The second term in (130) is o,(1). This is because it has zero mean, and from

Lemma 3 we know that its variance is

T
1 , 1
var (W ;:4 wy_o(In — Pt)vt—1> NTO

Il
=
3

M= 1= I
&
£
&
=
|
!
F
b

I
|
2
R
=
!
(e}

(131)
Therefore,

T T

1 o . 1 ol

T L = gy St o) < (0.7 )
t=4 t=4

Using Cramer’s theorem, we get the following result:

1
{L‘*/Pbm{l?* x*’Pbmv* \/_ 1 br_1
P P — = NTO(& — 1 1 - —

~ T (a- BE)] o ()

Proof of Lemma 1

The asymptotic variance with a large N and a fixed T is given by

T —1
Avar(a) = 012; [N Z E(wftZQt)[E(ZthQt)]1E(Zitxft)] (133)

t=to
Since it is straightforward to obtain (31), (32) and (33) by using the proofs of Lemma

3, the proofs of (31), (32) and (33) will be omitted. We only consider the case of
(30). After some algebra, we get

1—a2

Bl ) = ("—) (@ 1) (134)
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Next,

[E(

dodat = l
1

(135)

2 1 2
Tp + (1—(12) Ty

(136)

where p; = 1;/(1 — o) with variance O'Z, A= 02/03, ti—o is a (t — 2) dimensional

column vector of ones, and V;_s is

1 “e. Oét*g
Vg — : : (137)
t—2 — 1 — a2 . .
Lo 1]
By using the decomposition of V;_5 and the fact that'3
1
A+t =471 - | ———— | A7 A 138
[A -+ bY] 11 VA 1D (138)
we get
Bzl = 62 | L' — A L'Liy_9t) oL'L (139)
it “1t v 1 +)\L;72L/th72 t—2
where
Vo L=1IL (140)
and
[ VI—aZ 0 0 0 0]
-« 1 0 0 O
L= 0 | 0 0 (141)
0 0 0 —a 1 |

By using (134) and (139), the result follows.

13See Amemiya (1985, p.164), Hamilton (1994, p.120) and Greene (2001, p.822).
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Table 10: Estimation Results of the Employment Equation

g, Qpm &bm

Estimates | 0.541 0.800  0.827
Std. 0.020 0.051  0.070

Bla Bbm Bbm
Estimates | -0.477 -0.829 -0.924
Std. 0.032 0.077 0.100
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Figures 1 to 3: Asymptotic Variances with Figures 4 to 6: Power Plot, Hy : o = 0.8

T fixed (N = 50, a = 0.8)

2751 +—+ alpha la

Figure 1: o7 /o2 = 0.2
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Figure 2: o7 /o7 = 1
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Figure 3: 07 /o7 = 10

(T =10, N = 50)
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Figure 4: 0n/0y = 0.2
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Figure 5: o7 /o7 = 1
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Figure 6: o7 /o7 = 10
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Figures 7 to 9: Power Plot, Hy: a = 0.8
N = 50)

(T = 15,
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Figure 8:
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Figure 9: o7 /o7 = 10

Figures 10 -to 12: Power Plot, Hy: oo = 0.8

(T =25, N = 50)
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Figure 11: 07 /o2 = 1
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Figure 12: o,
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