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Abstract

This paper addresses the many instruments problem, i.e. (1) the trade-off be-

tween the bias and the efficiency of the GMM estimator, and (2) inaccuracy of

inference, in dynamic panel data models where unobservable heterogeneity may be

large. We find that if we use all the instruments in levels, although the GMM esti-

mator is robust to large heterogeneity, inference is inaccurate. In contrast, if we use

the minimum number of instruments in levels in the sense that we use only one in-

strument for each period, the performance of the GMM estimator is heavily affected

by the degree of heterogeneity, that is, both the asymptotic bias and the variance

are proportional to the magnitude of heterogeneity. To address this problem, we

propose a new form of instruments that are obtained from the so-called backward or-

thogonal deviation transformation. The asymptotic analysis shows that the GMM

estimator with the minimum number of new instruments has smaller asymptotic

bias than the estimators typically used such as the GMM estimator with all instru-

ments in levels, the LIML estimators and the within-groups estimators, while the

asymptotic variance of the proposed estimator is equal to the lower bound. Thus

both the asymptotic bias and the variance of the proposed estimators become small

simultaneously. Simulation results show that our new GMM estimator outperforms

the conventional GMM estimator with all instruments in levels in term of the RMSE

and in terms of accuracy of inference. An empirical application with Spanish firm

data is also provided.

Keywords: Dynamic panel data, many instruments, generalized method of

moments estimator, unobservable large heterogeneity.

JEL classification: C23.

2



1 Introduction

In cross-sectional data models, since the famous work of Angrist and Krueger (1991),

the many instruments (MI) problem, i.e. (1) the trade-off between the bias and the

efficiency of the two stage least squares (2SLS) estimator, and (2) inaccuracy of

inference, has been intensively discussed, especially in connection with the weak

instruments problem. For example, Bound, Jaeger and Baker (1995), Angrist, Im-

bens and Krueger (1999), Hahn and Inoue (2002), Hahn (2002), Hahn, Hausman

and Kuersteiner (2004), Chao and Swanson (2005), Okui (2005b), Hansen, Haus-

man and Newey (2005), Anderson, Kunitomo and Matsushita (2005), and Andrews

and Stock (2005) and the papers cited therein deal with this problem.1

Yet, while there are many studies on the MI problem in the context of cross sec-

tional data models, little research has been done for the case of dynamic panel data

models even though the MI problem also occurs in this type of model.2 In fact, one

of the important features of dynamic panel data models is that the number of avail-

able instruments increases as T , the dimension of the time series, gets larger.3 One

paper that deals with the MI problem in a dynamic panel model is Okui (2005b)

which, based on Donald and Newey (2001) and Okui (2005a), develops a proce-

dure to select the instruments so as to minimize the mean squared error (MSE)

and improve the accuracy of inference. However, his method is computationally

cumbersome and there still remain size distortions when α, an autoregressive pa-

rameter, is large. Furthermore, although Okui (2005b) does not pay much attention

to the effects of large heterogeneity,4 it is worth considering such effects, because in

empirical analyses we may come across situations where heterogeneity is large. For

example, Arellano (2002) set the ratio of the variance of the individual effects to

the disturbances to be 9 in the simulation, where its simulation design was roughly

calibrated to the real data of Bover and Watson (2004). The first purpose of the

1See also Kunitomo (1980), Morimune (1983) and Bekker (1994).
2An analysis of the MI problem in the context of static panel data models with predetermined variables

is provided by Ziliak (1997).
3Since the MI problem becomes more serious when T is large, we focus on the case where T is greater

than 10. The case when T < 10 is beyond the scope of the present paper.
4Throughout this paper, by ”large heterogeneity” is meant that the variance of the unobservable

individual effects is large relative to the variance of the disturbances.
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present paper is to consider cases where heterogeneity is large and especially to con-

sider the effects of large heterogeneity on generalized method of moments (GMM)

estimators where instruments in levels are used. The second purpose is to suggest

a way to overcome the drawbacks of Okui’s method by proposing new instruments

with which we can solve the MI problem even if heterogeneity is large.

The findings of this paper are as follows. If all the instruments in levels are used,

although the GMM estimator is robust to large heterogeneity, the size distortion is

substantial. In contrast, if we use the minimum number of instruments in levels,

that is, only one instrument in each period, although the size is close to the nominal

level, both the asymptotic bias and the variance are heavily affected by the degree of

heterogeneity. These facts indicate that, as long as instruments in levels are used,

we cannot obtain a GMM estimator with small bias and variance, and with less

size distortion when heterogeneity is large. To overcome this problem, we consider

the elimination of the individual effects from the instruments. Two methods are

employed to remove the individual effects. The first is simply to take the first dif-

ference. The second method we propose is to use the backward orthogonal deviation

(BOD) transformation. Asymptotic analysis shows that a GMM estimator with the

minimum number of first-differenced instruments is no longer efficient, though it is

robust to large heterogeneity. However, if we use the minimum number of instru-

ments transformed by the BOD transformation, the GMM estimator is robust to

the presence of large heterogeneity and has smaller asymptotic bias than the GMM

estimator with all instruments in levels, the LIML estimator, and the within-groups

estimator, while its asymptotic variance is equal to the efficiency bound. Thus both

the asymptotic bias and variance of the proposed GMM estimator become small

simultaneously. Furthermore, the simulation analysis shows that the size of the

newly proposed GMM estimator is close to the nominal level.

The remainder of this paper is organized as follows. Section 2 provides the model

and the basic GMM estimators. Section 3 considers the effect of large heterogeneity

on the GMM estimator when all instruments in levels and the minimum number

of instruments in levels are used. Section 4 considers the removal of the individual

effects from the instruments and derives the asymptotic properties of the proposed

GMM estimators. Section 5 reports the results of Monte Carlo simulations to assess
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the theoretical implications. Section 6 then applies the proposed estimator to the

data of Bover and Watson (2004). Finally Section 7 concludes.

2 The model and the estimators

We consider an AR(1) panel data model given by

yit = αyi,t−1 + ηi + vit i = 1, ...,N and t = 2, ...,T (1)

where α is the parameter of interest with |α| < 1 and vit has mean zero given

ηi, yi1, ...,yi,t−1 . By letting xit = yi,t−1, yi = (yi,2, ...,yi,T )′, xi = (xi,2, ...,xi,T )′,

ιT−1 = (1, ...,1)′ and vi = (vi,2, ..., vi,T ) , (1) can be expressed in vector form as

yi = αxi + ηiιT−1 + vi (2)

We impose the following assumptions which are the same as those in Alvarez

and Arellano (2003).

Assumption 1. {vit} (t = 2, ...,T ; i = 1, ...,N ) are i.i.d across time and individu-

als and independent of ηi and yi1 with E(vit) = 0, var(vit) = σ2
v , and finite moments

up to fourth order.

Assumption 2. The initial observations satisfy

yi1 =
ηi

1 − α
+wi1 for i = 1, ...,N (3)

where wi1 is wi1 =
∑∞

j=0 α
jvi,1−j and independent of ηi.

Assumption 3. ηi are i.i.d across individuals with E(ηi) = 0, var(ηi) = σ2
η , and

finite fourth order moment.

Under these assumptions, yit can be expressed as

yit =
ηi

1 − α
+wit = μi +wit (4)

where wit=

∑∞
j=0 α

jvi,t−j, and μi = ηi/(1 − α).
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2.1 The basic GMM estimator

We shall provide the GMM estimator which is commonly used in the literature.5

Following Arellano and Bover (1995), Alvarez and Arellano (2003), Hahn, Hausman

and Kuersteiner (2002) and Okui (2005b), to remove individual effects from the

model, we employ the following matrix, F , called the forward orthogonal deviation

(FOD) transformation operator,

F = diag

[√
T − 2
T − 1

, ...,

√
1
2

]
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − 1
T−2 − 1

T−2 · · · − 1
T−2 − 1

T−2 − 1
T−2

0 1 − 1
T−3 · · · − 1

T−3 − 1
T−3 − 1

T−3
...

...
...

...
...

...

0 0 0 · · · 1 −1
2 −1

2

0 0 0 · · · 0 1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5)

This matrix has the feature that FF ′ = IT−2, F ′F = QT−1 = IT−1− ιT−1ι
′
T−1/(T −

1) and FιT−1 = 0. By premultiplying this matrix F in (2), we obtain

y∗i = αx∗i + v∗i (6)

where y∗i = Fyi, x∗i = Fxi and v∗i = Fui . v∗i . The t− 2-th element of v∗i would be

v∗it = ct

[
vi,t−1 − 1

T − t+ 1
(vi,t + · · · + vi,T )

]
t = 3, ...,T (7)

where

c2t =
T − t+ 1
T − t+ 2

(8)

In the literature it is common to use zla
it = (xi,2, ...,xi,t−1)′ as instruments.6 Then

the moment condition based on these instruments can be written as

E[Zla′
i v∗i ] = 0 (9)

5We do not employ the first difference (Arellano and Bond, 1991), the level (Arellano and Bover, 1995),

and the system (Blundell and Bond, 1998) GMM estimators, because these GMM estimators suffer from

large biases when T is large and when substantial heterogeneity is present. As shown in Hayakawa (2006),

these GMM estimators are inconsistent when both N and T are large. Moreover, Bun and Kiviet (2006)

and Hayakawa (2005) demonstrated that the finite sample bias of these estimators heavily depends on

the degree of heterogeneity.
6See, for example, Alvarez and Arellano (2003), Hahn, Hausman and Kuersteiner (2002) and Okui

(2005b).
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where Z la
i is a block diagonal matrix whose (t− 2)th element is zla′

it :

Z la
i =

⎡
⎢⎢⎢⎢⎢⎢⎣

zla′
i,3 O

zla′
i,4

. . .

O zla′
i,T

⎤
⎥⎥⎥⎥⎥⎥⎦

(10)

If we assume that vit has a constant variance σ2
v given ηi, yi,1, ...,yi,t−1 , the optimal

weighting matrix is

E[Zla′
i v∗i v

∗′
i Z

la
i ] = σ2

vE[Zla′
i Z la

i ] (11)

This indicates that we do not need the two-step procedure to obtain an efficient

GMM estimator.7 Therefore, the efficient GMM estimator is defined as

α̂la =
x∗′P lay∗

x∗′P lax∗
=
∑T

t=3 x
∗′
t P

la
t y

∗
t∑T

t=3 x
∗′
t P

la
t x

∗
t

(12)

where x∗ = (x∗′1 , ...,x
∗′
N )′, y∗ = (y∗′1 , ...,y

∗′
N )′, P la = Z la(Z la′Z la)−1Z la′ , Z la =

(Z la′
1 , ...,Z la′

N )′, x∗t = (x∗1t, ...,x
∗
Nt )

′, y∗t = (y∗1t, ...,y
∗
Nt )

′, P la
t = Z la

t (Z la′
t Z la

t )−1Z la′
t ,

and Z la
t = (zla

1t, ...,z
la
Nt )

′.

3 The effects of large heterogeneity

In this section we consider the effects of large heterogeneity on the GMM estimator

with instruments in levels, especially in terms of the effect on its asymptotic biases

and variances. Since the many instruments problem occurs when T is large, we

consider the asymptotics where both N and T tend to infinity with T/N → c, (0 ≤
c ≤ 1).

3.1 GMM with all available instruments in levels

Alvarez and Arellano (2003) showed the following asymptotic result.

Theorem 1. Let Assumptions 1, 2, and 3 hold. Then as both N and T tend to

infinity, provided (log T )2/N → ∞,

α̂la →p α (13)
7Here, the term ”efficient” refers to the large N and fixed T asymptotics.
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Moreover, provided that T/N → c, 0 ≤ c ≤ 1,√
N(T − 2)

[
α̂la −

(
α− 1

N
(1 + α)

)]
→d N(0, 1 − α2) (14)

Note that Hahn and Kuersteiner (2002), using a Hajćk-type convolution the-

orem, establish that N(0, 1 − α2) is the minimal asymptotic distribution. Hence

(1 − α2) is the lower bound of the asymptotic variance.

We find that the asymptotic bias and variance of α̂la are not affected by any

potential large heterogeneity, since σ2
η/σ

2
v does not appear in the asymptotic distri-

bution. This is because, as the proof of Lemma C2 in Alvarez and Arellano (2003)

shows, the individual effects vanish as T gets larger. Hence, we can say that α̂la

is robust to large heterogeneity. However, Okui (2005b) has shown that the size

distortion of the test for the hypothesis H0 : α = α0 is very large and inference

based on α̂la is therefore unreliable.

We suspect that the source of the size distortion is the bias which results from

using all instruments. Therefore it would be expected that reducing the number of

instruments would mitigate this problem since using fewer instruments reduces the

bias of the estimator.

3.2 GMM with the minimum number of instruments in

levels

In this subsection, we consider a GMM estimator that uses the minimum number

of instruments, that is, zlm
it = xi,t−1. This means that we use only one instrument

in each period. In this case, since the number of instruments does not grow as T

gets larger, we would expect the bias to become small. The GMM estimator with

instruments zlm
it can be defined as

α̂lm =
∑T

t=3 x
∗′
t P

lm
t y∗t∑T

t=3 x
∗′
t P

lm
t x∗t

(15)

where P lm
t = Z lm

t (Z lm′
t Z lm

t )−1Z lm′
t , and Z lm

t = (zlm
1t , ...,z

lm
Nt )

′. The next theorem

establishes the asymptotic properties of α̂lm.

Theorem 2. Let Assumptions 1, 2, and 3 hold. Then as both N and T tend to

infinity,

α̂lm →p α (16)
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and

√
N(T − 2)

[
α̂lm −

(
α− 1

N(T − 2)
(1 + α)ρ−1

lm

)]
→d N

(
0, (1 − α2)ρ−1

lm

)
(17)

where k = σ2
η/σ

2
v and

ρ−1
lm = 1 + k

(
1 + α

1 − α

)
≥ 1 (18)

Remark 1 We find that there is a notable difference between α̂la and α̂lm with

regards to the individual effects. Although the individual effects in α̂la vanish as T

gets larger, this is not the case with α̂lm. The large heterogeneity crucially affects

the asymptotic bias and variance of α̂lm. Both the asymptotic bias and the variance

increase in proportion to k, the degree of heterogeneity.

Remark 2 In the case of k = 0, i.e., σ2
η = 0, the asymptotic variance of α̂lm

is equal to the lower bound of 1 − α2. In this case, the instruments that are not

used in the estimation, i.e., (xi2, ...,xi,t−2), become redundant in the sense that

using them does not improve efficiency.8 Hence, when k = 0, in terms of the bias,

using the minimum number of instruments is preferable, since the magnitude of the

asymptotic bias of α̂lm is (1 + α)/N(T − 2), while that of α̂la is (1 + α)/N.

Remark 3 If the degree of heterogeneity is large, serious problems occur. Both

the asymptotic bias and the variance increase. This indicates that if we use the

minimum number of instruments to reduce the bias springing from the use of many

instruments, then a bias due to large heterogeneity will appear. Especially if T−2 <

ρ−1
lm , the asymptotic bias of α̂lm will be larger than that of α̂la, even though α̂lm uses

a smaller number of instruments than α̂la. Hence, if a large degree of heterogeneity

is present, reducing the number of instruments to reduce the bias may not work

well. Furthermore, the asymptotic variance becomes quite large. Based on these

findings, we conjecture that Okui’s method does not work well if heterogeneity is

large. If there is large heterogeneity, Okui’s method tends to use more instruments

to weaken the influence of individual effects.9 However, if we use more instruments,

the estimator will be more biased and inference will tend to be inaccurate.

8See Breusch et al (1999) for a discussion of the redundancy of the moment conditions in GMM.
9See Table 1 in Okui (2005b) for the optimal lag length of the instruments.
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The results in this section indicate that if we use all the instruments in levels,

although α̂la is robust to a large degree of heterogeneity, the size distortion is sub-

stantial. On the other hand, if we use the minimum number of instruments in levels,

the effect of a large degree of heterogeneity on the estimator is large. Therefore,

if a large degree of heterogeneity is present in the model, both α̂la and α̂lm are no

longer desirable estimators. Neither of them has a small bias or a variance without

size distortion. This suggests there is a need for new estimators which overcome

the drawbacks mentioned above. We will present such a new estimator in the next

section.

4 Removing the individual effects from the in-

struments

Since the asymptotic distribution of α̂lm is heavily affected by a large degree of

heterogeneity through the instruments, we expect that if we use the instruments

without the individual effects, the GMM estimator will be robust to the presence

of large heterogeneity. In this section, we consider the removal of the individual

effects from the instruments. We employ two methods to remove the individual

effects. The first is simply to take the first difference. The second is to introduce a

transformation called the Backward Orthogonal Deviation (BOD) transformation.

BOD transformation is a modification of FOD transformation. Although the FOD

transformation induces a deviation from the mean of all future values, the BOD

transformation induces a deviation from the mean of all past values. To rid the

instruments of the individual effects, we only have to multiply the following matrix:

B = diag

[√
1
2
, ...,

√
T − 2
T − 1

]
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 0 · · · 0 0 0

−1
2 −1

2 1 · · · 0 0 0
...

...
...

...
...

...

− 1
T−3 − 1

T−3 − 1
T−3 · · · − 1

T−3 1 0

− 1
T−2 − 1

T−2 − 1
T−2 · · · − 1

T−2 − 1
T−2 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(19)

By multiplying this matrix by xi, we get the following:

xb
it = bt

[
xi,t − 1

t− 2
(xi,2 + · · · + xi,t−1)

]
(20)
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= bt

[
wi,t−1 − 1

t− 2
(wi,1 + · · · +wi,t−2)

]
t = 3, ...,T (21)

where

b2t =
t− 2
t− 1

(22)

The GMM estimators with instruments zdm
it = Δxi,t−1 and zbm

it = xb
i,t−1 are

defined as

α̂dm =
∑T

t=4 x
∗′
t P

dm
t y∗t∑T

t=4 x
∗′
t P

dm
t x∗t

(23)

α̂bm =
∑T

t=4 x
∗′
t P

bm
t y∗t∑T

t=4 x
∗′
t P

bm
t x∗t

(24)

where Pdm
t = Zdm

t (Zdm′
t Zdm

t )−1Zdm′
t , Zdm

t = (zdm
1t , ...,z

dm
Nt )′, Pdm

t = Zbm
t (Zbm′

t Zbm
t )−1Zbm′

t ,

and Zbm
t = (zbm

1t , ...,z
bm
Nt )′.

There are two notable features in xb
it. The first is that xb

it has no individual

effects, and this is the main purpose of using the BOD transformation. The second

is that since xb
it is composed of all past values, we would expect that it contains

more information than using only one instrument in levels or the first-differenced

instrument, i.e. we expect that the GMM estimator with minimum number of xb
it

will be more efficient than α̂lm and α̂dm. The following asymptotic analysis shows

that this conjecture is correct.

Theorem 3. Let Assumptions 1, 2, and 3 hold. Then as both N and T tend to

infinity,

α̂dm →p α (25)

and

√
N(T − 3)

[
α̂dm −

(
α − 1

N(T − 3)
(1 + α)ρ−1

dm

)]
→d N

(
0, (1 − α2)ρ−1

dm

)
(26)

where

ρ−1
dm =

(
2

1 − α

)
> 1 (27)

Theorem 4. Let Assumptions 1, 2, and 3 hold. Then as both N and T tend to

infinity,

α̂bm →p α (28)
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and

√
N(T − 3)

[
α̂bm −

(
α − 1

N(T − 3)
(1 + α)

)]
→d N(0, 1 − α2) (29)

Remark 4 Compared with α̂la and α̂lm, the asymptotic biases and variances of

α̂dm and α̂bm are not affected by k, and this is the main purpose of using instruments

without individual effects. Therefore, we can say that α̂dm and α̂bm are robust to

the presence of a large degree of heterogeneity.

Remark 5 If we compare α̂dm and α̂bm, there is a notable difference both in their

asymptotic biases and their variances. Since ρ−1
dm is strictly larger than one, both

the asymptotic bias and the variance of α̂dm are strictly larger than those of α̂bm.

Therefore, we can say that α̂bm is superior to α̂dm.

Remark 6 The magnitude of the asymptotic bias of α̂bm is (1 + α)/N(T − 3),

while the asymptotic biases of α̂la, α̂lm and α̂dm are (1+α)/N, (1+α)ρ−1
lm/N(T −2),

and (1 + α)ρ−1
dm/N(T − 3), respectively. Also, as shown by Alvarez and Arellano

(2003), the magnitude of the asymptotic biases of the within-groups estimator and

the LIML estimator are (1+α)/(T−2) and (1+α)/(2N−(T−2)), respectively. Thus,

the magnitude of the asymptotic bias of α̂bm is smallest among these commonly-used

estimators.

Remark 7 The asymptotic variance of α̂dm is strictly larger than the lower bound

and can never be efficient. But the asymptotic variance of α̂bm is equal to the lower

bound, and α̂bm is therefore asymptotically efficient. Also, it is notable that al-

though α̂la becomes asymptotically efficient by using all instruments, α̂bm is asymp-

totically efficient by using the minimum number of instruments. This implies that

the instruments which are not used, i.e., (xb
i,3, ..., x

b
i,t−2), are asymptotically redun-

dant.

Thus, the new estimator α̂bm addresses the trade-off between the bias and the

variance: the asymptotic bias of α̂bm is smaller than that of other GMM estimators,

whereas the asymptotic variance is equal to the lower bound.

We can say that the main advantage of α̂bm lies in its variance. To examine

the variance properties in greater detail, we analytically compare the asymptotic
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variances of α̂la, α̂lm, α̂dm, and α̂bm under the fixed T asymptotics. The asymptotic

variances of α̂la, α̂lm, α̂dm, and α̂bm under large N and fixed T asymptotics are

given in the following lemma.

Lemma 1. Under Assumptions 1, 2, and 3, the asymptotic variances of α̂la, α̂lm,

α̂dm, and α̂bm under large N and fixed T asymptotics are given by

Avar(α̂la) = (1 − α2)

[
N

T∑
t=3

ψ2
t

(
1 − k(1+α

1−α)

1 + k{(1+α
1−α) + (t− 3)}

)]−1

(30)

Avar(α̂lm) = (1− α2)ρ−1
lm

[
N

T∑
t=3

ψ2
t

]−1

(31)

Avar(α̂dm) = (1 − α2)ρ−1
dm

[
N

T∑
t=4

ψ2
t

]−1

(32)

Avar(α̂bm) = (1 − α2)

[
N

T∑
t=4

ψ2
t

(
1 − αφt−3

t− 3

)2

Λ−1
t

]−1

(33)

where

φj =
1 − αj

1 − α
= 1 + α+ · · · + αj−1 (34)

ψ2
t = c2t

[
1 − αφT−t+1

T − t+ 1

]2
(35)

Λt =
[
1− 2αφt−3

t− 3
+

1
(t − 3)2

{
(t− 3)(1 + α)

1 − α
− 2α(1 − αt−3)

(1 − α)2

}]
(36)

Provided that σ2
η = 0, then the asymptotic variances of α̂la and α̂lm reduce to

Avar(α̂la) = Avar(α̂lm) = (1 − α2)

[
N

T∑
t=3

ψ2
t

]−1

(37)

and provided that σ2
η → ∞, then

Avar(α̂la) = (1− α2)

[
N

T∑
t=3

ψ2
t

(
1 − (1+α

1−α)

(1+α
1−α ) + (t − 3)

)]−1

<∞ (38)

Avar(α̂lm) → ∞ (39)

We find that the asymptotic variances of α̂la and α̂lm are exactly the same if

σ2
η = 0. This coincides with the case where both N and T are large. However
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if σ2
η → ∞, then the effect of large heterogeneity on α̂lm is unbounded, while α̂la

receives a bounded influence.

We showed that under the double asymptotics where N and T tend to infinity,

the asymptotic variances of α̂la and α̂bm are the same. But by comparing the

asymptotic variance of α̂la and α̂bm when T is fixed, we find that the forms of the

asymptotic variances are quite different. To examine this difference, we compare the

asymptotic variances numerically. Figures 1 to 3 present the asymptotic variances

for the case of α = 0.8 and N = 50 and k = 0.2,1, and 10 (Figures 1, 2, and

3, respectively). The horizontal axis shows T from T = 10 to T = 29, while the

vertical axis depicts the magnitude of the asymptotic standard error calculated from

Lemma 1, that is, the root of the asymptotic variances. An inspection of the figures

shows that the asymptotic variance of α̂lm is heavily affected by the presence of

large heterogeneity. Note the difference of the scale of the vertical axis in Figure 3.

We also find that there is a significant difference between α̂dm and α̂bm. Although

we find that there is a difference between α̂la and α̂bm when T is not so large, this

difference shrinks as T gets larger. This fact coincides with the double asymptotic

analysis.

5 Monte Carlo simulation

In this section we conduct Monte Carlo experiments to examine the performance of

the estimators discussed above. We first consider a simple AR(1) model and then

extend the analysis to consider the case where a predetermined variable is included.

5.1 Cases without covariates

We consider the following AR(1) model:

yi,t = αyi,t−1 + ηi + vit (40)

where ηi ∼ iidN(0, σ2
η ), yi,1 ∼ iidN(ηi/(1 −α), σ2

v /(1− α2)), and vit ∼ iidN(0, σ2
v ).

Here we consider N = 50,100, T = 10,15,25 and σ2
η = 0.2,1,10. σ2

v is set to 1. The

number of replications is 1000 for all cases.

14



For each estimator, we compute the mean (mean), standard deviation (std),

standard error (se), the root mean squared error (rmse), and the size of the Wald

test for H0 : α = α0, where α0 is the true value.10

These experiments fulfill five aims. The first is to discover how large the bias

and the size distortion of α̂la are. The second is to examine how seriously the bias

and variance of α̂lm are affected by the presence of a large degree of heterogeneity.

The third is to see how large the differences in the bias and the variance of α̂dm and

α̂bm are. The fourth aim is to compare the variances of α̂la and α̂bm. And the final

aim is to compare the power of α̂lm, α̂dm and α̂bm.

We begin the examination of these five issues by first considering α̂la. Tables 1

and 2 respectively report the simulation results for α̂la for the case of N = 50 and

for N = 100. In the case of T = 10, the bias of α̂la is quite large and as σ2
η/σ

2
v

gets larger the magnitude of the bias increases. In the case of T = 25, although

the magnitude of the bias is smaller than in the case of T = 10, a large bias still

remains. Although the magnitude of the bias increases as σ2
η/σ

2
v gets larger, it is

still much smaller than in the case where T=10. This result supports the theoretical

prediction that the individual effects vanish as T gets larger. With regards to the

sizes, they are no longer close to the nominal level. Especially when α = 0.8, the

size distortion is substantial and we can say that inference is inaccurate.

The second aim of the Monte Carlo study is to examine the effect of large

heterogeneity on α̂lm. In the case of σ2
η/σ

2
v = 0.2, α̂lm performs very well. The

RMSE of α̂lm is smaller than that of α̂la. However, as σ2
η/σ

2
v gets larger, the

performance of α̂lm dramatically worsens. Even in the case of σ2
η/σ

2
v = 1, the

RMSE of α̂lm is larger than that of α̂la. Especially in the case of σ2
η/σ

2
v = 10, with

a few exceptions, the biases of α̂lm are larger than those of α̂la even though α̂lm

uses a smaller number of instruments than α̂la. These results coincide with the

case where T − 2 < ρ−1
lm holds. In this case, the asymptotic bias of α̂lm is larger

than that of α̂la. For example, in the case of T = 25, k = 10. and α = 0.8,

1 + k(1 + α)/(1 − α) = 91 > T − 2 = 23. With regards to the sizes, they are much

closer to the nominal level than those of α̂la.

10The standard errors are calculated under the large N and fixed T asymptotics, i.e. se(α̂) =√
σ̂2

v(x∗
′Px∗)−1, and the size is based on the usual Wald test using a 5% level of significance.
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Third, we compare α̂dm and α̂bm. Tables 3 and 4 report, respectively, the sim-

ulation results for α̂dm for N = 50 and N = 100, while Tables 5 and 6 report the

simulation results for α̂bm for N = 50 and N = 100. For the purpose of com-

parison, we also consider the case where all available instruments are used. The

corresponding GMM estimators are as follows:

α̂da =
∑T

t=4 x
∗′
t P

da
t y∗t∑T

t=4 x
∗′
t P

da
t x∗t

(41)

α̂ba =
∑T

t=4 x
∗′
t P

ba
t y∗t∑T

t=4 x
∗′
t P

ba
t x∗t

(42)

where Pda
t = Zda

t (Zda′
t Zda

t )−1Zda′
t , Zda

t = (zda
1t , ...,z

da
Nt )

′, zda
it = (Δxi3, ...,Δxi,t−1 )′,

P ba
t = Zba

t (Zba′
t Zba

t )−1Zba′
t , Zba

t = (zba
1t , ...,z

ba
Nt)

′, and zba
it = (xb

i3, ..., x
b
i,t−1)′.

Looking at the tables, we find that α̂da and α̂ba are numerically equivalent and

that none of the four estimators are affected by σ2
η/σ

2
v . With regards to the bias,

there are almost no differences between α̂dm and α̂bm when α = 0.2 and 0.5. How-

ever, in the case of α = 0.8, α̂bm has smaller bias than α̂dm. Next we compare the

variances of α̂dm and α̂bm. The tables indicate that there are significant differences

in the magnitude of the variances of α̂dm and α̂bm. The variance of α̂bm is much

smaller than that of α̂dm. This result is in line with the theoretical prediction. In

particular, if we compare α̂da and α̂dm, the increase of the variance of α̂dm compared

to that of α̂da is quite large, and as a result the RMSE of α̂dm is larger than that

of α̂da in many cases. In contrast with α̂dm, the degree of increase of the variance

of α̂bm compared to that of α̂ba is very small. As a result, the RMSEs of α̂bm are

smaller than those of α̂ba in all cases. Furthermore, the sizes are very close to the

nominal level.

Fourth, we compare the variances of α̂bm and α̂la. In the case of T = 10, the

variance of α̂bm is a little larger than that of α̂la. However, as T gets larger, the

difference gets smaller. Especially in terms of the RMSE, α̂bm has smaller RMSE

than α̂la in almost all the cases. The exception is when T = 10 and σ2
η/σ

2
v = 0.2.

Taking into consideration the size distortion, we can conclude that α̂bm performs

better than α̂la.

Lastly, we compare the power of α̂lm, α̂dm and α̂bm. We do not consider the

estimators with all instruments since their sizes are far from the nominal level.

Figures 4 to 12 show the result. In each case, N = 50 and α = 0.8 are fixed.
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Figures 4 to 6 depict the cases when T = 10 and k = 0.2,1,10, while Figure 7 to 9

depict the cases when T = 15 and k = 0.2,1,10; finally, Figures 10 to 12 depict the

cases when T = 25 and k = 0.2,1,10. Looking at all these figures, we find that the

power of α̂lm is crucially affected by the degree of heterogeneity, whereas the power

of α̂dm and α̂bm is not. Furthermore, we find that α̂bm has higher power than α̂dm.

Reducing the bias

The simulation results above show that the magnitude of the bias of α̂bm in the case

of T = 10 is not negligible, although the size is close to the nominal level. Here we

show that we can reduce the bias by using the matrix, which is different from (10)

where the instruments are on the diagonal:

Zbm
i =

⎡
⎢⎢⎢⎢⎢⎢⎣

xb
i,3 O

xb
i,4

. . .

O xb
i,T−1

⎤
⎥⎥⎥⎥⎥⎥⎦

(43)

Let us define Z̃bm
i as follows:

Z̃bm′
i =

⎡
⎣ xb

i,3 · · · xb
i,t̄−1 O

O xb
i,t̄ · · · xb

i,T−1

⎤
⎦ =

⎡
⎣ Z

(1)′
i O

O Z
(2)′
i

⎤
⎦ (44)

where t̄ = [(T − 3)/2] + 3. [ ] denotes the integer part of the argument. Then

it follows that the GMM estimator with Z̃bm
i , α̃bm, is derived from two moment

conditions. As α̃bm uses a smaller number of moment conditions than α̂bm, we

expect that α̃bm has smaller bias than α̂bm at the cost of efficiency.11 Table 7

summarizes the simulation results. We find that α̃bm is very close to the true value

although its variance increases a little. In terms of the RMSE, α̂bm performs best

in almost all the cases. Therefore, α̃bm may be an option when we are interested in

the value of a coefficient. In the simulation that follows, we focus only on α̂bm since

it has a smaller RMSE than α̃bm.

11See Wooldridge (2005).
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5.2 Cases with an additional regressor

In this subsection, we consider the case where a predetermined variable is included

besides the lagged dependent variable. The aim of this design is to investigate the

effect of an additional regressor. We consider the following dynamic panel data

model with a covariate:

yit = αyi,t−1 + βXit + ηi + vit = W ′
itδ + ηi + vit t = 2, ..., T (45)

Xit = ρXi,t−1 + τηi + θvi,t−1 + εit (46)

where Wit = (yi,t−1, Xit)′ and δ = (α, β)′. Initial observations are generated to be

covariance stationary and we discard the first 10 periods. In this model, Xit is a

predetermined variable. Also note that Xit is correlated with ηi. In the experiment,

we set α = 0.8, β = 0.5, ρ = 0.5, τ = 0.2, and θ = 0.2. N and T are N = 50,100

and T = 10,15,25. In addition, we set var(vit) = var(εit) = 1 and σ2
η = 0.2,1,10.

Define yi = (yi2, ...,yiT )′, xi = (yi1, ...,yi,T−1)′, Xi = (Xi2, ...,Xi,T )′, Wi =

(Wi2, ...,WiT )′ and vi = (vi2, ...,viT )′. By multiplying F by yi, Wi and vi, (45)

becomes

y∗it = αx∗it + βX∗
it + v∗it = W ∗′

it δ + v∗it t = 3, ..., T (47)

Let zit denote the generic instruments for W ∗
it and let Zt = (z1t, ...,zNt )′, Pt =

Zt(Z ′
tZt)−1Zt. Then the GMM estimator has the following form:

δ̂ =

(
T∑

t=t0

W ∗′
t PtW

∗
t

)−1( T∑
t=t0

W ∗′
t Pty

∗
t

)
(48)

where t0 = 3 if the instruments do not contain xb
i,t−1 and t0 = 4 otherwise.

We consider three type of instruments forW ∗
it. The first is zlla

it = (xi2, ..., xi,t−1 ,Xi,1 , ...,Xi,t−1)

where all available instruments are exploited. The second is zllm
it = (xi,t−1,Xi,t−1)

where the minimum number of instruments are used. The third is zbbm
it = (xb

i,t−1,X
b
it)

where xb
i,t−1 and Xb

it are the (t − 3)th and (t − 2)th elements of xb
i = Bxi and

Xb
i = B(Xi,2, · · · ,Xi,T )′, respectively. Let δ̂la = (α̂la, β̂la)′, δ̂lm = (α̂lm, β̂lm)′, and

δ̂bm = (α̂bm, β̂bm)′ denote the GMM estimators corresponding to zla
it , zlm

it , and zbm
it .

Tables 8 and 9 show the simulation results. With regards to the effect of large

heterogeneity, the result is similar to the AR(1) case, that is, α̂la is not greatly

affected by large heterogeneity and becomes more robust to large heterogeneity as
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T gets larger. However, the size distortion is very large and the degree of distor-

tion is more serious than in the AR(1) case. Unlike α̂la, α̂lm is sensitive to large

heterogeneity. As σ2
η/σ

2
v gets larger, the RMSEs increase. Turning to α̂bm, we find

that by construction it is robust to large heterogeneity. The RMSEs of α̂bm are

smaller than those of α̂la and α̂lm except for the case of σ2
η/σ

2
v = 0.2 for any N

and T . Furthermore, the sizes of α̂bm are close to the nominal ones. When we are

interested in the estimation and inference of β, either β̂bm or β̂lm work well since

both estimators exhibit a similar performance.

6 An Empirical application

In this section, we apply our new estimator to a partial adjustment model for

employment dynamics using the data employed by Arellano (2002). The data consist

of a panel for 385 Spanish firms, starting in 1983 and spanning 14 years. For a more

detailed description of the data, see Bover and Watson (2004). The model is given

by

nit = αni,t−1 + βwit + ηi + vit (49)

where nit is the logarithm of employment at firm i at time t and wit is the logarithm

of wages paid by firm i at time t. wit is treated as a predetermined variable.

We computed δ̂la, δ̂bm and δ̃bm and their standard errors. The estimation results

are presented in Table 10.12 The results show that the GMM estimators proposed

in this paper alleviate the bias of α̂la. Based on the simulation studies in Section 5,

which imply that the empirical sizes of α̂bm and α̃bm are close to the nominal level,

we should make inference by α̂bm and α̃bm.

7 Conclusion

In this paper, we addressed the many instruments problem in dynamic panel data

models where unobservable heterogeneity may be large. We proposed a new form

12Time effects are removed by subtracting the cross-sectional averages of each period prior to the

estimation.
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of instruments with which we can overcome the many instruments problem. The

proposed GMM estimator has smaller asymptotic bias than the conventional GMM,

LIML and within-groups estimators, whereas its asymptotic variance is equal to the

lower bound even if there is large heterogeneity in the model. Simulation results

showed that in many cases the RMSEs of the proposed GMM estimators are smaller

than the conventional GMM estimators. Furthermore, the size of the test for the

parameter hypothesis was very close to the nominal size. The analysis of the new

estimators was then extended to the case where additional regressors are included

and it was found that the estimator performed well in such cases. Finally, we applied

our new estimator to the data of Bover and Watson (2004) and were able to confirm

that it alleviates the bias problem.
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A Mathematical Proofs

Throughout the appendix, T 0 denotes:

T − 2 when the instruments are zlm
it ; and

T − 3 when the instruments are zdm
it or zbm

it .

Before we prove the theorems, we provide some lemmas.

Lemma 2. Let κ3 and κ4 denote the third and fourth-order cumulants of vit, and let

Pt denote P lm
t or Pdm

t or P bm
t . In addition, let dt and ds be N×1 vectors containing

the diagonal elements of Pt and Ps, respectively, so that tr(Pt) = d′tιN = tr(Ps) =

d′sιN = 1, and d′tds ≤ 1. Then under Assumption 1 for l ≥ r ≥ t, p ≥ q ≥ s, and

t ≥ s,

cov(v′lPtvr, v
′
pPsvq) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2σ4
vtr(PtPs) + κ4E(d′tds) ≤ 2σ4

v + κ4 if l = r = p = q

κ3E(d′tPsvq) if l = r = p �= q < t

σ4
vtr(PtPs) ≤ σ4

v if l = p �= r = q

0 otherwise

(50)

where

|E(d′tPsvq)| ≤ σv (51)

Proof of Lemma 2

Like Alvarez and Arellano (2003), we begin by showing the following:

covt−1(v′lPtvr, v
′
pPsvq) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2σ4
v + κ4tr(PtPs)d′tds if l = r = p = q

κ3d
′
tPsvq if l = r = p �= q < t

σ4
vtr(PtPs) if l = p �= r = q

0 otherwise

(52)

where Et−1 denotes an expectation conditional on ηi and {vi,t−1−j}∞j=1. To prove

this, note that the conditional covariance can be expressed as

covt−1(v′lPtvr, v
′
pPsvq) = Et−1(v′lPtvrv

′
pPsvq) −Et−1(v′lPtvr)Et−1(v′pPsvq) (53)

Firstly the conditional mean terms in (53) are

Et−1(v′lPtvr) = Et−1(v′pPsvq) =

⎧⎨
⎩ σ2

v if l = r or p = q

0 if l �= r or p �= q
(54)
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Next, with regards to the leading term of (53),we have

Et−1(v′lPtvrv
′
pPsvq) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Et−1(v′lPtvlv
′
lPsvl) if l = r = p = q

Et−1(v′lPtvlv
′
l)Psvq if l = r = p �= q < t

tr[PtEt−1(vrv
′
r)PsEt−1(vlv

′
l)] if l = p �= r = q

0 otherwise

(55)

For the first type in (55)

Et−1(v′lPtvlv
′
lPtvl) = (3σ4

v + κ4)d′tds + σ4
v [tr(Pt)tr(Ps)− d′tds] + 2σ4

v [tr(PtPs) − d′tds]

= κ4d
′
tds + σ4

v + 2σ4
v tr(PtPs)

For the second type in (55),

Et−1(v′lPtvlv
′
l)Psvq = κ3d

′
tPsvq (56)

and for the third typein (55),

tr[PtEt−1(vrv
′
r)PsEt−1(vlv

′
l)] = σ4

vtr(PtPs) (57)

The results follow from the fact that

cov(v′lPtvr, v
′
pPsvq) = E[covt−1(v′lPtvr, v

′
pPsvq)] + cov[Et−1(v′lPtvr), Et−1(v′pPsvq)]

= E[covt−1(v′lPtvr, v
′
pPsvq)] (58)

The inequalities in the case of l = r = p = q and l = p �= r = q in (50) are due to

the Cauchy-Schwarz inequality

tr(PtPs) = tr[zt(z′tzt)
−1ztzs(z′szs)

−1zs] = tr

(
ztz

′
tzsz

′
s

(z′tzt)(z′szs)

)

=
z′tzs

(z′tzt)(z′szs)
tr(ztz

′
s) =

(z′tzs)2

(z′tzt)(z′szs)
≤ 1 (59)

The proof of (51) will be omitted since it is the same as in Alvarez and Arellano

(2003).

Lemma 3. Let Assumptions 1, 2, 3 hold. Then as N → ∞ regardless of whether

T → ∞ or is fixed,

1
NT 0

T∑
t=3

w′
t−2P

lm
t wt−2 →p ρlm

(
σ2

v

1 − α2

)
(60)

1
NT 0

T∑
t=4

w′
t−2P

dm
t wt−2 →p ρdm

(
σ2

v

1 − α2

)
(61)
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where

ρlm =
[
1 +
(

1 + α

1 − α

)
k

]−1

(62)

ρdm =
(

1 − α

2

)
(63)

and as T → ∞, regardless of whether N → ∞ or is fixed,

1
NT 0

T∑
t=4

w′
t−2P

bm
t wt−2 →p

(
σ2

v

1 − α2

)
(64)

Proof of (60)

After some algebra, we have

E

(
w′

t−2xt−1

N

)
= E(wi,t−2yi,t−2) =

σ2
v

1 − α2
(65)

var

(
w′

t−2xt−1

N

)
=

1
N
var(wi,t−2yi,t−2) (66)

E

(
x′t−1xt−1

N

)
= E(y2

i,t−2) =
σ2

η

(1− α)2
+

σ2
v

1 − α2
(67)

var

(
x′t−1xt−1

N

)
=

1
N
var(y2

i,t−2) (68)

Since we have assumed the finite fourth order moment of vit,

var(wi,t−2yi,t−2) = E(w4
i,t−2) +E(w2

i,t−2)E(μ2
i ) −

(
σ2

v

1 − α2

)2

= O(1) (69)

var(y2
i,t−2) = E(μ4

i ) + 2E(μ2
i )E(w2

i,t−2) +E(w4
i,t−2) − [E(y2

i,t−2)]
2

= O(1) (70)

(66) and (68) tend to zero as N gets large. Thus, as N tends to infinity,

1
NT 0

T∑
t=3

w′
t−2P

lm
t wt−2 →p 1

T 0

T∑
t=3

E (wi,t−2xi,t−1) [E
(
x2

i,t−1

)
]−1E (xi,t−1wi,t−2)

= ρlm

(
σ2

v

1 − α2

)

Proof of (61)

We have

E

(
w′

t−2Δxt−1

N

)
= E(wi,t−2Δyi,t−2) =

σ2
v

1 + α
(71)
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var

(
w′

t−2Δxt−1

N

)
=

1
N
var(wi,t−2Δyi,t−2) (72)

E

(
Δx′t−1Δxt−1

N

)
= E(Δy2

i,t−2) =
2σ2

v

1 + α
(73)

var

(
Δx′t−1Δxt−1

N

)
=

1
N
var(Δy2

i,t−2) (74)

Since we have assumed that vit is finite up to the fourth order,

var(wi,t−2Δyi,t−2) = E(w4
i,t−2 +w2

i,t−2w
2
i,t−3 − 2w2

i,t−2wi,t−3) −
(

σ2
v

1 + α

)2

= O(1) (75)

var(Δy2
i,t−2) = E(wi,t−2 −wi,t−3)4 −

(
2σ2

v

1 + α

)2

= O(1) (76)

Thus, as N gets large, (72) and (74) tend to zero. Therefore, as N → ∞

1
NT 0

T∑
t=4

w′
t−2P

dm
t wt−2 →p 1

T 0

T∑
t=4

E(wi,t−2Δyi,t−2)[E(Δy2
i,t−2)]

−1E(Δyi,t−2wi,t−2)

= ρdm

(
σ2

v

1 − α2

)

Proof of (64)

To begin with, we provide some results which are useful in the proofs. Let φj =

(1−αj)/(1−α) = 1+α+ · · ·+αj−1 and b2t−1 = (t−3)/(t−2). After some algebra,

we have

E(wi,t−2x
b
i,t−1) = bt−1

(
σ2

v

1 − α2

)(
1 − αφt−3

t− 3

)
(77)

E[(xb
i,t−1)

2] = b2t−1E

[
wi,t−2 − 1

t− 3
(wi,1 + · · · + wi,t−3)

]2
(78)

= b2t−1

[
σ2

v

1 − α2

(
1 − 2αφt−3

t− 3

)
+

1
(t− 3)2

E(wi,1 + · · · +wi,t−3)2
]

(79)

Using the result of (A8) in Alvarez and Arellano (2003), we have

E(wi,1 + · · · +wi,t−3)2 =
σ2

v

1 − α2

[
(t− 3)(1 + α)

1 − α
− 2α(1 − αt−3)

(1 − α)2

]
(80)

By substituting this term into (79), we get

E[(xb
i,t−1)

2] = b2t−1

(
σ2

v

1 − α2

)[
1 − 2αφt−3

t− 3
+

1
(t− 3)2

{
(t − 3)(1 + α)

1 − α
− 2α(1 − αt−3)

(1− α)2

}]
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= b2t−1

(
σ2

v

1 − α2

)
Λt (81)

where Λt is given by (36).

Let εt denote the N × 1 vector of errors of the population linear projection of

wt−2 on Zbm
t :

wt−2 = Zbm
t δ + εt (82)

where δ = E(zbm
it wi,t−2)/[E(zbm

it )2] = E(xb
i,t−1wi,t−2)/[E(xb

i,t−1)
2]. Then

εit = wi,t−2 − δxb
i,t−1 (83)

=

[
−αφt−3 + (t−3)(1−α)−2αφt−3

(t−3)(1−α)

]
wi,t−2

(t− 3)Λt

+

[
(1−α)(t−3)−α(1−α)φt−3

(1−α)(t−3)

]
(1 − α)(wi,1 + · · · +wi,t−3)

(t− 3)Λt

=
λ1wi,t−2 + λ2(1− α)(wi,1 + · · · + wi,t−3)

λ3

=
λ1vi,t−2 + (λ̄1 + λ2)vi,t−3 + · · · + (αt−5λ̄1 + λ2)vi,2 + (αt−4λ̄1 + λ2)wi,1

λ3

(84)

where

λ1 = −αφt−3 +
(t− 3)(1− α) − 2αφt−3

(t− 3)(1 − α)
(85)

λ2 =
(1− α)(t− 3)− α(1 − α)φt−3

(1− α)(t− 3)
(86)

λ3 = (t − 3)Λ3 (87)

λ̄1 = α(λ1 − λ2) = α2

(
−φt−3 +

(t− 3) − φt−3

(t − 3)(1 − α)

)
(88)

Since (84) is a linear combination of independent variables,

E(ε2it) =
σ2

v

[
(1− α2)λ2

1 + λ̄2
1 + {(t − 4)(1− α2) + 1}λ2

2 + 2(1 + α− αt−3)λ̄1λ2

]
(1 − α2)λ2

3

= O

(
1
t

)
(89)

Now we consider the decomposition:

w′
t−2P

bm
t wt−2 = w′

t−2wt−2 −w′
t−2(IN − P bm

t )wt−2 (90)

= w′
t−2wt−2 − ε′t(IN − P bm

t )εt (91)
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The second equality is due to the fact that (IN−P bm
t )wt−2 = (IN−P bm

t )(Zbm
t δ+εt).

Hence we have

1
NT 0

T∑
t=3

E(w′
t−2P

bm
t wt−2) = E(w2

i,t−2)−
1

NT 0

T∑
t=3

E(ε′t(IN − P bm
t )εt) (92)

Since the maximum eigenvalue of (IN − P bm
t ) is equal to 1,

1
NT 0

T∑
t=3

E(ε′t(IN − P bm
t )εt) ≤ 1

NT 0

T∑
t=3

E(ε′tεt) =
1
T 0

T∑
t=3

E(ε2i,t) =
1
T 0
O(logT ) → 0(93)

Hence, as T → ∞,

1
NT 0

T∑
t=3

E(w′
t−2P

bm
t wt−2) → E(w2

i,t−2) =
σ2

v

1 − α2
(94)

With regards to the proofs that the variance of (NT 0)−1∑T
t=3w

′
t−2wt−2 and (NT 0)−1∑T

t=3 ε
′
tεt

tend to zero, see Alvarez and Arellano (2003).

Lemma 4. Under Assumptions 1, 2, and 3, the following results hold:

E(x∗
′
P lmv∗) =

(
σ2

v

1 − α

)(
φT−1

T − 1
− 1
)

(95)

E(x∗
′
Pdmv∗) = E(x∗

′
P bmv∗) =

(
σ2

v

1− α

)(
φT−2

T − 2
− 1
)

(96)

Proof of (95)

Let Pt denote P lm
t or Pdm

t or P bm
t Decompose x∗t as

x∗t = ψtwt−2 − ctṽt−1,T−1 (97)

ψt = ct

(
1 − αφT−t+1

T − t+ 1

)
(98)

ṽt−1,T−1 =
1

T − t+ 1
(φT−t+1vt−1 + · · · + φ1vT−1) (99)

Following Alvarez and Arellano (2003), by using φj = φj−1 + αj−1, and φ1 + · · · +
φj−1 = (j − φj)/(1 − α), we get

E(x∗
′

t Ptv
∗
t ) = E(ψtw

′
t−2Ptv

∗
t )− E(ctṽ′t−1,T−1Ptv

∗
t )

= −E(ctṽ′t−1,T−1Ptv
∗
t )

=
−σ2

v

T − t+ 2
tr(Pt)

[
φT−t+1 − φT−t + · · · + φ1

T − t+ 1

]

=
−σ2

v

T − t+ 2
tr(Pt)

[
φT−t+1

T − t+ 1
− φT−t+2

T − t+ 2

]
(100)

Since tr(Pt) = 1, the result follows.
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Lemma 5. Let Assumptions 1, 2, 3 hold. Then, as both N and T tend to infinity,

var

(
x∗′P lmv∗√

NT 0

)
→ ρlm

(
σ2

v

1 − α2

)
(101)

var

(
x∗′Pdmv∗√

NT 0

)
→ ρdm

(
σ2

v

1 − α2

)
(102)

var

(
x∗′P bmv∗√

NT 0

)
→
(

σ2
v

1 − α2

)
(103)

Proof of (101)-(103)

Let Pt denote the generic projection matrices which can be P lm
t , Pdm

t , P bm
t . By

using the fact that v∗t = (vt−1 − v̄t−1,T )/ct, we get the following decomposition:

1√
NT 0

x∗
′
Pv∗ =

(
1√
NT 0

T∑
t=t0

w′
t−2Ptvt−1 − Υ11NT − Υ12NT

)
− (Υ21NT − Υ22NT )

(104)

where

v̄t−1,T =
vt−1 + · · · + vT

T − t+ 2
(105)

Υ11NT =
1√
NT 0

T∑
t=t0

w′
t−2Pt v̄t−1,T (106)

Υ12NT =
1√
NT 0

T∑
t=t0

ctαφT−t+1

T − t+ 1
w′

t−2Ptv
∗
t (107)

Υ21NT =
1√
NT 0

T∑
t=t0

ṽ′t−1,T−1Ptvt−1 (108)

Υ22NT =
1√
NT 0

T∑
t=t0

ṽ′t−1,T−1Ptv̄t−1,T (109)

The variance of the leading term in (104) is

var

(
1√
NT 0

T∑
t=t0

w′
t−2Ptvt−1

)
=

1
NT 0

T∑
t=t0

var(w′
t−2Ptvt−1) =

1
NT 0

T∑
t=t0

E(w′
t−2Ptwt−2)

(110)

This is because for t > s, cov(w′
t−2Ptvt−1, w

′
s−2Psvs−1) = 0. Thus, the leading

term converges to the form obtained by Lemma 3. Next, since E(w′
t−2Ptv̄t−1,T ) =

E(v̄′s−1,TPsws−2) = 0,

var(Υ11NT) =
1

NT 0

T∑
t=t0

T∑
s=t0

E(w′
t−2Ptv̄t−1,T v̄

′
s−1,TPsws−2)
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=
1

NT 0

T∑
t=t0

T∑
s=t0

cov(w′
t−2Pt v̄t−1,T , v̄

′
s−1,TPsws−2)

≤ 1
NT 0

T∑
t=t0

T∑
s=t0

√
E(w′

t−2Pt v̄t−1,T )2
√
E(v̄′s−1,TPsws−2)2 (111)

Since the maximum eigenvalue of Pt is equal to 1, we have

E(w′
t−2Pt v̄t−1,T )2 =

σ2
v

T − t+ 2
E(w′

t−2Ptwt−2)

≤ σ2
v

T − t+ 2
E(w′

t−2wt−2)

=
Nσ2

v

(T − t+ 2)
E(w2

i,t−2) =
(

σ4
v

1 − α2

)(
N

T − t+ 2

)
(112)

Thus,

var(Υ11NT) ≤
(

σ4
v

1− α2

)
1
T 0

T∑
t=t0

T∑
s=t0

√
1

T − t+ 2

√
1

T − s+ 2

=
(

σ4
v

1− α2

)
1
T 0

T∑
t=t0

√
1

T − t+ 2

T∑
s=t0

√
1

T − s+ 2

=
(

σ4
v

1− α2

)
O(log T )

T 0
→ 0 (113)

Next, by using the result that for t > s, Et−1(v∗t−1v
∗′
s−1) = 0, and cov(w′

t−2Ptv
∗
t , w

′
s−2Psv

∗
s) =

0, we have

var(Υ12NT) =
1

NT 0

T∑
t=t0

α2φ2
T−t+1

(T − t+ 1)(T − t+ 2)
var(w′

t−2Ptv
∗
t )

=
σ2

v

NT 0

T∑
t=t0

α2φ2
T−t+1

(T − t+ 1)(T − t+ 2)
E(w′

t−2Ptwt−2)

≤
(

σ4
v

1− α2

)
1
T 0

T∑
t=t0

α2φ2
T−t+1

(T − t+ 1)(T − t+ 2)
→ 0 (114)

We then turn to consider var(Υ21NT )

var(Υ21NT) =
1

NT 0
var

[
T∑

t=t0

1
T − t+ 1

v′t−1Pt(φT−t+1vt−1 + · · · + φ1vT−1)

]

= a0NT + a1NT (115)

where

a0NT =
1

NT 0

T∑
t=t0

φ2
T−t+1var(v

′
t−1Ptvt−1) + · · · + φ2

1var(v
′
t−1PtvT−1)

(T − t+ 1)2
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=
1

NT 0

T∑
t=t0

φ2
T−t+1[2σ

4
v tr(PtPs) + κ4E(d′tds)] + (φ2

T−t + · · · + φ2
1)tr(PtPs)σ4

v

(T − t+ 1)2

and

a1NT =
2

NT 0

T−1∑
t=t0

[
φ2

T−tcov(v
′
t−1Ptvt, v

′
tPt+1vt)

(T − t+ 1)(T − t)

+ · · · + φ2
1cov(v

′
t−1PtvT−1, v

′
T−1PT vT−1)

(T − t+ 1)

]

=
2

NT 0

T−1∑
t=t0

[
φ2

T−tκ3E(d′t+1Ptvt−1)
(T − t+ 1)(T − t)

+ · · · + φ2
1κ3E(d′TPtvt−1)

(T − t+ 1)

]

Using the fact that φ2
j < 1/(1 − α)2,

a0NT ≤ 1
NT 0

T∑
t=t0

φ2
T−t+1[2σ

4
v + κ4] + (φ2

T−t + · · · + φ2
1)σ

4
v

(T − t+ 1)2

≤ 1
(1− α)2

1
NT 0

T∑
t=t0

[2σ4
v + κ4] + (T − t)σ4

v

(T − t+ 1)2

=
2σ4

v + κ4

(1− α)2
1

NT 0

T∑
t=3

1
(T − t+ 1)2

+
σ4

v

(1 − α)2
1

NT 0

T∑
t=3

T − t

(T − t+ 1)2

→ 0 (116)

In view of the triangle inequality and the fact that |E(d′t+jPtvt)| ≤ σv ,

|a1NT | ≤ 2|κ3|σv

(1 − α)2
1

NT 0

T−1∑
t=t0

[
1

(T − t+ 1)(T − t)
+ · · · + 1

(T − t+ 1)

]

=
2|κ3|σv

(1 − α)2
1

NT 0
O(logT ) → 0 (117)

Finally we consider the term Υ22NT . We decompose the variance of Υ22NT as

follows:

var(Υ22NT) =
1

NT 0
var

(
T∑

t=t0

v̄′t−1,TPtṽt−1,T−1

)
= b0NT + b1NT (118)

where

b0NT =
1

NT 0

T∑
t=t0

var(v̄′t−1,TPtṽt−1,T−1) (119)

and

b1NT =
2

NT 0

∑
s

∑
s>t

cov(v̄′t−1,TPtṽt−1,T−1, v̄
′
s−1,TPsṽs−1,T−1) (120)
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From (A73) in Alvarez and Arellano (2003), we have

var(v̄′t−1,TPtṽt−1,T−1) = O

(
1

(T − t+ 1)2

)
(121)

Next, with regard to the term b1NT , we have

|b1NT | ≤ 2
NT 0

∑
s

∑
s>t

|cov(v̄′t−1,TPtṽt−1,T−1, v̄
′
s−1,TPsṽs−1,T−1)|

≤ 2
NT 0

∑
s

∑
s>t

√
var(v̄′t−1,TPtṽt−1,T−1)

√
var(v̄′s−1,TPsṽs−1,T−1)

≤ 2
NT 0

∑
s

O

(
1

T − t

)∑
t

O

(
1

T − s

)
= O

(
(log T )2

NT

)
→ 0 (122)

Lemma 6. Let Assumptions 1, 2, 3 hold. Then as both N and T tend to infinity,

x∗′P lmx∗

NT 0
→p ρlm

(
σ2

v

1 − α2

)
(123)

x∗′Pdmx∗

NT 0
→p ρdm

(
σ2

v

1 − α2

)
(124)

x∗′P bmx∗

NT 0
→p

(
σ2

v

1 − α2

)
(125)

Proof of (123)

Using the decomposition of x∗t , we have

x∗′Px∗

NT 0
=

1
NT 0

T∑
t=t0

ψ2
tw

′
t−2Ptwt−2 − 2

NT 0

T∑
t=t0

ctψtw
′
t−2Ptṽt−1,T−1

+
1

NT 0

T∑
t=t0

c2t ṽ
′
t−1,T−1Ptṽt−1,T−1

Since ψ2
t = 1 − O(1/(T − t + 1)), the first term of the right-hand side converges

to the form obtained by Lemma 3. The second term has zero mean and, by using

similar arguments as those used for Υ11NT , it can be shown that its variance tends

to zero. The third term is analogous to Υ22NT . Its mean is given by

E

(
1

NT 0

T∑
t=t0

c2t ṽ
′
t−1,T−1Ptṽt−1,T−1

)
=

1
NT 0

T∑
t=t0

c2tE(ṽ2
i,t−1,T−1)

=
σ2

v

NT 0

T∑
t=t0

φ2
T−t+1 + · · · + φ2

1

(T − t+ 2)(T − t+ 1)

= O

(
logT
NT

)
→ 0 (126)

and its variance is shown to tend to zero in the same way as Υ22NT .
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Proof of Theorems 2 and 3

Consistency directly follows from Lemmas 4, 5, and 6. Next, we show the asymptotic

normality of α̂lm and α̂dm. Here, let P denote P lm or Pdm, and zit let denote zlm
it

or zdm
it . In addition, ρ denotes ρlm or ρdm. Since we have shown that the variances

of Υ11NT , Υ12NT , Υ21NT , and Υ22NT tend to zero,

1√
NT 0

T∑
t=t0

x∗
′

t Ptv
∗
t − μNT =

1√
NT 0

T∑
t=t0

w′
t−2Ptvt−1 + op(1) →d

(
0, ρ
(

σ4
v

1 − α2

))

(127)

where

μNT =
1√
NT 0

E(x∗
′
Pv∗) (128)

This is because

1√
NT 0

T∑
t=t0

w′
t−2zt(z

′
tzt)

−1z′tvt−1 =
1√
T 0

T∑
t=t0

(
w′

t−2zt

N

)(
z′tzt
N

)−1 z′tvt−1√
N

→d 1√
T 0

T∑
t=t0

E(wi,t−2zit)
E(z2

it)
ξt

=
E(wi,t−2zit)
E(z2

it)
1√
T

T∑
t=t0

ξt

→d E(wi,t−2zit)
E(z2

it)
N(0, var(ξt)) (129)

where ξt ∼ N(0, σ2
vE(z2

it)). Then (127) holds. Therefore:(
x∗′Px∗

NT 0

)−1 (
1√
NT 0

x∗
′
Pv∗ − μNT

)
=

√
NT 0(α̂− α) −

(
x∗′Px∗

NT 0

)−1

μNT

=
√
NT 0(α̂− α) + (1 + α)

ρ−1

√
NT 0

(
1 − φT−1

T − 1

)

=
√
NT 0

[
α̂ −
(
α− (1 + α)ρ−1

NT 0

)]
+O

(
1√
NT 3

)
→d N

(
0, (1 − α2)ρ−1

)

Proof of Theorem 4

It is straightforward to show consistency from Lemmas 4, 5, 6. Next, we show the

asymptotic normality of α̂bm. To begin with, note that

1√
NT 0

T∑
t=4

x∗
′

t P
bm
t v∗t − μNT =

1√
NT 0

T∑
t=4

w′
t−2P

bm
t vt−1 + op(1)

34



=
1√
NT 0

T∑
t=4

w′
t−2vt−1 − 1√

NT 0

T∑
t=4

w′
t−2(IN − Pt)vt−1 + op(1)

(130)

The second term in (130) is op(1). This is because it has zero mean, and from

Lemma 3 we know that its variance is

var

(
1√
NT 0

T∑
t=4

w′
t−2(IN − Pt)vt−1

)
=

1
NT 0

T∑
t=4

var[w′
t−2(IN − Pt)vt−1]

=
σ2

v

NT 0

T∑
t=4

E[w′
t−2(IN − Pt)wt−2]

=
σ2

v

NT 0

T∑
t=4

E[ε′t(IN − Pt)εt]

=
1
T 0
O(log T ) → 0 (131)

Therefore,

1√
NT 0

T∑
t=4

x∗
′

t P
bm
t v∗t − μNT =

1√
N(T − 3)

T∑
t=4

w′
t−2vt−1 + op(1) →d N

(
0,

σ4
v

(1− α2)

)
(132)

Using Cramer’s theorem, we get the following result:(
x∗′P bmx∗

NT 0

)−1(
x∗′P bmv∗√

NT 0
− μNT

)
=

√
NT 0(α̂− α) + (1 + α)

1√
NT 0

(
1 − φT−1

T − 1

)

=
√
NT 0

[
α̂ −
(
α− (1 + α)

NT 0

)]
+O

(
1√
NT 3

)
→d N

(
0,1 − α2

)

Proof of Lemma 1

The asymptotic variance with a large N and a fixed T is given by

Avar(α̂) = σ2
v

[
N

T∑
t=t0

E(x∗i,tz
′
it)[E(zitz

′
it)]

−1E(z′itx
∗
it)

]−1

(133)

Since it is straightforward to obtain (31), (32) and (33) by using the proofs of Lemma

3, the proofs of (31), (32) and (33) will be omitted. We only consider the case of

(30). After some algebra, we get

E(x∗itz
la′
it ) = ψt

(
σ2

v

1 − α2

)
(αt−3, · · · , 1) (134)
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Next,

[E(zla
it z

la′
it )]−1 =

⎡
⎢⎢⎢⎣
σ2

μ +
(

1
1−α2

)
σ2

v · · · σ2
μ +
(

αt−3

1−α2

)
σ2

v

...
...

σ2
μ +
(

αt−3

1−α2

)
σ2

v · · · σ2
μ +
(

1
1−α2

)
σ2

v

⎤
⎥⎥⎥⎦
−1

(135)

=
1
σ2

v

[
(
√
λιt−2)(

√
λιt−2)′ + Vt−2

]−1
(136)

where μi = ηi/(1 − α) with variance σ2
μ, λ = σ2

μ/σ
2
v , ιt−2 is a (t − 2) dimensional

column vector of ones, and Vt−2 is

Vt−2 =
1

1 − α2

⎡
⎢⎢⎢⎣

1 · · · αt−3

...
...

αt−3 · · · 1

⎤
⎥⎥⎥⎦ (137)

By using the decomposition of Vt−2 and the fact that13

[A+ bb′]−1 = A−1 −
[

1
1 + b′A−1b

]
A−1bb′A−1 (138)

we get

[E(zla
it z

la′
it )]−1 = σ−2

v

[
L′L− λ

1 + λι′t−2L
′Lιt−2

L′Lιt−2ι
′
t−2L

′L
]

(139)

where

V −1
t−2 = L′L (140)

and

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
1 − α2 0 0 · · · 0 0

−α 1 0 · · · 0 0

0 −α 1 · · · 0 0
...

...
...

...
...

...

0 0 0 · · · −α 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(141)

By using (134) and (139), the result follows.

13See Amemiya (1985, p.164), Hamilton (1994, p.120) and Greene (2001, p.822).
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Table 10: Estimation Results of the Employment Equation

α̂la α̂bm α̃bm

Estimates 0.541 0.800 0.827

Std. 0.020 0.051 0.070

β̂la β̂bm β̃bm

Estimates -0.477 -0.829 -0.924

Std. 0.032 0.077 0.100
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Figures 1 to 3: Asymptotic Variances with

T fixed (N = 50, α = 0.8)
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Figures 4 to 6: Power Plot, H0 : α = 0.8

(T = 10, N = 50)
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Figures 7 to 9: Power Plot, H0 : α = 0.8

(T = 15, N = 50)
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Figures 10 -to 12: Power Plot, H0 : α = 0.8

(T = 25, N = 50)
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