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Abstract

This paper considers a single equation cointegrating model and proposes the locally
best invariant and unbiased (LBIU) test for the null hypothesis of cointegration. We de-
rive the asymptotic local power functions and compare them with the standard residual-
based test, and we show that the LBIU test is more powerful in a wide range of local
alternatives. Then, we conduct a Monte Carlo simulation to investigate the finite sam-
ple properties of the tests and show that the LBIU test outperforms the residual-based
test in terms of both size and power. The advantage of the LBIU test is particularly
patent when the error is highly autocorrelated. Further, we point out that finite sample
performance of existing tests is largely affected by the initial value condition while our
tests are immune to it. We propose a simple transformation of data that resolves the
problem in the existing tests.
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1. Introduction

Following the seminal work of Engle and Granger (1987), tests of cointegration have been
intensively investigated in the econometric literature. For a single equation model, tests
for the null of cointegration are proposed by Hansen (1992a), Quintos and Phillips (1993),
Shin (1994), and Jansson (2005), while the null of no cointegration is considered in Engle
and Granger (1987) and Phillips and Ouliaris (1990), among others. A system equations

approach is also considered in a number of studies.?

For the null hypothesis of cointegration, Shin (1994) proposes the residual-based test,
while Jansson (2005) develops the point optimal invariant (POI) test. Jansson (2005) shows
that the POI test performs better than the residual-based test in a wide range of alternatives
based on the local asymptotic power functions. A Monte Carlo experiment conducted to
examine the finite sample properties of the test developed by Jansson (2005) demonstrates
that the POI test is more powerful than the residual-based test when the error is not
persistent; at the same time, it reveals several important drawbacks of the tests. First of
all, the POI test suffers from size distortions and power losses when the error is persistent.
With respect to the size properties, the test is undersized when the endogeneity of the
regressor is low and oversized when it is high. With regard to the power properties, the
POI test is outperformed by the residual-based test proposed by Shin (1994). Second, the

residual-based test also suffers from the same type of size distortions as the POI test.

In this paper, we consider a single equation cointegrating model and propose the locally
best invariant and unbiased (LBIU) test with correct size. In order to do so, we first
develop the point optimal test that is invariant to some location-scale transformation of the
data under simple assumptions on the error. The transformation deals with directions of
transformations that are wider than those in Jansson (2005). Next, we derive the LBIU test
based on the POI test. Finally, we generalize the tests to accommodate general assumptions
on the error. After we present the test statistics, we study their asymptotic power properties.

Comparing the asymptotic local power function of the LBIU test with that of the residual-

3See Hubrich, Liitkepohl, and Saikkonen (2001) for an excellent review of system equations methods.



based test, we show that the LBIU test is more powerful in a wide range of local alternatives
and that the power properties of the two tests against the hypothesis that is very close to

the null are indistinguishable.

To investigate the finite sample properties of our test, we conduct a Monte Carlo exper-
iment. We find that the empirical size of the LBIU test is very close to the nominal size
regardless of the degree of persistence in the error and the endogeneity of the regressor. In
addition, the LBIU test is generally more powerful than the residual-based test while the
POI tests are more powerful than the LBIU and the residual-based test when the error is
not persistent. The advantage of the LBIU test over the residual-based test and the POI
tests is particularly patent when the error is highly autocorrelated. Based on these facts,
the LBIU test becomes a strong candidate for researchers who are perplexed with regard to

a size versus power trade-off.

The other important finding in this paper is that Jansson’s POI test and the residual-
based test are greatly affected by the initial value condition on the stochastic regressors,
while our POI and LBIU tests are shown to be free of the initial value condition. We
propose a simple transformation of the data that resolves the problem in Jansson’s POI
and the residual-based tests. Finite sample simulations show that Jansson and Shin’s tests

suffer from severe size distortions without the transformation.

The remainder of the paper is organized as follows. In Section 2, we derive the POI and
LBIU tests for a stylized model and obtain the limiting local power functions. Section 3 gen-
eralizes the assumptions by allowing the error term to be weakly dependent; we modify the
test statistics such that their limiting distributions are independent of nuisance parameters.
We investigate the finite sample properties of our tests through a Monte Carlo simulation

in Section 4. Section 5 concludes the paper.

2. LBIU and POI tests

In this section, we first develop a POI test and then derive an LBIU test based on the POI



test. Let us consider the following model:

yr = dp + 0wy + o, (1= L)vy = uf — Ouf_y, (1)
Ty = O/zdt =+ l‘g, (1 - L)CE? = uf) (2)
where d;y = [1,---,t?]’ with p > 0, y; and x; are 1- and k-dimensional observations, L is the

lag operator, and vyg = uf = 0. For the error process, we consider the following assumption

in this section.
Assumption 1 w; = [uf, v}’ ~ i.i.d.N(0,3) with X > 0.

We divide 3 conformably with u; as follows:

Z:layy Jyz]_

Ozxy Yz

We proceed with this restricted assumption in this section; however, we will relax the

assumption of normality and consider the dependent case in the next section.

The model is expressed in the vectorized form as
y=Da+ XpB+v, Liv=LyuY,

X = Do, + 9/*U,
where y = [y1, -+, yr|, D = [d1, -+, dr]’, and the other vectors and matrices are defined
similarly, Uy = U3/ >0}/ with
1 0 1 0
. 1f0 ‘1 | and Iy — -0 1

1;6 1—'0 1 0 ' —é 1
Since L 'Ly = \I/(l)/QLg = \Ilé/Q because L' = \11(1)/2, the above system can also be expressed
as

y=Da+ X3+,

U2 X =0, *Da, + U (3)



Note that the first column of ¥, 12p comprises e; = [1,0,---,0]', while the other columns
are obtained by a nonsingular transformation of the first p columns of D, which corresponds
to [1,---,tP71].

Let us suppose that we are interested in the following testing problem:
Hy: 6=1 vs. Hi: 0<1.

Under the null hypothesis, v; = u} and subsequently y; and z; are cointegrated; however,

they are not cointegrated under the alternative because v is a unit root process when 6 # 1.

Based on the observation that x; is weakly exogenous for 6, it is sufficient for us to
consider the distribution of y conditional on X as far as the hypothesis regarding 6 is
concerned. It is evident that the conditional distribution y|X is given by N(Da + X3 +
\I'éﬂUf‘E;;ny, Oyyz Vo), where oy, = oy — UWE;_,EIUM. Using (3), the conditional distri-

bution is also expressed as

y|X ~ N (DO[’< + Xﬁ* + \Ijal/QX’Y* + 615*, O'yy-x\I"9> ) (4)

where o*, 8%, v*, and §* are defined appropriately, and the relation \Ifé/ 2\115 vz _ Ly =

0w, vz, (1 — 0)Ir is employed. It is then observed that the testing problem is invariant
under the group of transformations
—-1/2
y—sy+Da+Xb+V, " "Xc+ed

(Gy)
0,0, 8,7, 0%, 0yyz) = (0,50 +a,sB" +b,s7" + ¢, 50" +d, SQO'yy.x),

where a is a p + 1-dimensional vector, b and ¢ are k-dimensional vectors, and d and s are
scalar with 0 < a < co. Note that in a classical regression context, a location shift in y is
considered only in the directions of the regressors D and X, while we additionally consider
the directions of \Ilal/QX and e;. It is noteworthy that in our model, the I(1) regressors X
are correlated with the error term, u¥; thus, the conditional mean of y depends on ¥, 2y ~*
and e10* in addition to Da* and X 3%, as is observed in (4). Since it is natural to consider

1/2

a location shift in y in the directions of the conditional mean, [D, X, ¥, /"X, e;] provides



the appropriate directions of the shift in y in our case. We can also see that invariance in
the directions of e implies that the tests do not depend on the initial value condition.

Let us define M = I-Z(2'Z)~'Z', where Z = [D, X, \IIEI/QX, e1], and select a T'x (T'—q)
matrix H such that H'H = Ip_, and HH' = M, where ¢ = 2k +p+2. As H'Z =0, we
have

H'y|X ~ N(0,0y,,HVsH).

Then, the distribution of H'y|X is observed to be free of the nuisance parameters o*, %,
~*, and §*. In addition, it is shown that n = H'y/\/y"H H'y conditional on X is a maximal
invariant under the group of transformations (G, ). In this section, we assume that oy, = 1
without loss of generality because n|X is invariant to scale change in y. The probability

density function of 7| X is given by (see Kariya, 1980 and King, 1980)
1. (T—-q\ _(p_ _ 1\ (T-a)/2
F0IX:0) = 5T (£ ) w02 w2 ((wen ) )

Given the density of the maximal invariant under the group of transformations (G,),
we can now propose the test statistics. First, we develop the POI test. According to the
Neyman-Pearson lemma, the POI test against § = 6 is given by f(n|X;0)/f(n|X;1), which

is normalized as follows in order to have a limiting distribution:

. (fmx)) Y
Rr(®) = T{l <f(n|X;1>>

-1 1/(T—q) -1 -1 —1\—1 -1
_ T{l— <|Z’\1167 Z) Y (U - W Z(2 2) " 2 )y}.

|Z'Z| y' My

The null hypothesis is rejected when Rr(#) takes large values. Note that Rr(6) has an
expression that is different from Jansson’s POI test statistic, which is constructed by con-
sidering only location invariance. One of the reasons for the difference between the two test
statistics is the directions of the location shift: Jansson (2005) considers location invari-
ance in the directions of R = [D, X], while we introduced invariance in the directions of

v, 2x ,e1] in addition to R. The other reason for the difference lies in the introduction



of scale change, which leads to a distributional difference between the two maximal invari-
ants: the maximal invariant 7 in our analysis has a nonnormal distribution, as given by (5),
while the maximal invariant with only location invariance has a normal density, as shown

in Jansson (2005).

To investigate the asymptotic properties of the POI test, we localize the parameters 6

and 6 such that # = 1 — \/T and § = 1 — \/T. Then, the limiting distribution of Ry () is

given in the following theorem.?

Theorem 1 Under Assumption 1, the limiting distribution of Ry () is given by

Rr(B) = 2 /0 Ydar, - R /[)I(V)\)‘)st
" (/01 QAdVﬁ)l (/01 Q’\Q)‘/ds) - (/01 QdeAA>
_ (/01 de)\>, (/01 QQ/ds) 1 </01 QdVA> e /01 Doves

where = signifies weak convergence of the associated probability measures, Q(s) =

/0 L QQuds

+ log

[1,8,--, 8P, W(s)] with W(s) being a k-dimensional standard Brownian motion, Q*(s) =

Jo exp(=A(s —7))dQ(r), Va(s) =V (s) + A [y V(r)dr with V(s) being a univariate standard
Brownian motion that is independent of W (s), and V)\’_\(s) = [y exp(—=A(s — 1))dV)(r).

Remark 1: Although our test statistic Ry (0) is different from Jansson’s Pr(#), the limiting
distribution of Rz (f) is the same as that of Pr(#). This is because the additional determin-
istic and I(0) regressors —e; and ¥ V2x , respectively— do not contribute to the asymptotic
local distribution, as is shown in the proof of the theorem provided in the Appendix. Our
result implies that we can impose scale invariance in addition to location invariance in wider

directions without sacrificing local asymptotic power. However, in Section 4, we will see that

these additional regressors, particularly ej, play an important role in finite samples.

In practice, we specify the value of 6 or X in order to implement our feasible point optimal

test. We follow Elliott et al. (1996) and Jansson (2005) for the selection of A. According to

“In Theorem 1, an integral such as fol X(s)dY (s) is simply written as fXdY’ to achieve notational
economy.




their approach, X should be selected such that the asymptotic local power against the local
alternative § = 1 — \/T is approximately 50% when we use the 5% test based on Rr(f).
The recommended values of A and the percentiles of Rz ()) are given by Table 1 in Jansson
(2005).

Next, we consider a locally best test that is also a natural candidate when no uniformly
most powerful tests are available as in the present situation. This can be considered as the
extreme case of the POI test with § — 1. According to Ferguson (1967), the locally best
invariant (LBI) test is given by dlog f(n|X;0)/df|s=1, but in the Appendix, it is shown that
dlog f(n|X;0)/dfp=1 = 0. Then, instead of the LBI test, we consider the LBI and unbiased
(i.e., LBIU) test, that rejects the null when the following holds.

\ (Hestlso)
91 do

d’log f(n| X 0)
dn?

dlog f(n|X;0)
do

i

0=1

2
) >+
=1

where ¢; and ¢y are some constants. See Ferguson (1967) for detailed discussions on the

LBIU test. The Appendix shows that the LBIU test statistic is given by

Y MY My/T? 1

£T = m + ﬁtr {(Z,Z)_I(Z/\IJOZ)} . (6)

The null hypothesis is rejected when L takes large values.
Theorem 2 Under Assumption 1, the limiting distribution of Lt is given by
1 s 1 -1 1 2
Lr = / Vi — / Q'dr ( / QQ’dr) / Qdvy b ds
0 0 0 0
1 -1 1 1 1
—l—tr{ (/ QQ’dr) / (/ er) (/ Q/dr) ds} .
0 0 s s

The percentiles of L7 are given in Table 1. Figure 1 depicts the Gaussian power envelope
of the 5% test based on Rr(6) along with the local asymptotic power functions of four
cointegration tests in the constant mean case with k& = 1.5 The two tests are the feasible

tests proposed in this paper and are denoted by Ry and L7. The other two tests are the

5The curves are obtained from 20,000 replications from the distribution of the discrete approximation
based on 2,000 steps to the limiting distribution given in Theorem 1.



residual-based test proposed by Shin (1994) and the POI test developed by Jansson (2005)
and are denoted by Sy and Pr, respectively. Since the local asymptotic power functions
of Pr and Rr are found to be the same, only one line is indicated in Figure 1. St is the
most commonly used test in applications and is locally optimal under Shin’s assumptions.

Therefore, it becomes a convenient benchmark for assessing our new tests, Ry and L.

The local asymptotic powers of Pr and Rp are close to the envelope for all the values
of A. The local asymptotic powers of Sy and L1 are close to the envelope for small values
of A due to their local optimal properties, and they are below the envelope for large values
of A. The asymptotic power of L1 is closer to the envelope than that of St for large values
of A\. Figure 2 shows the case with a linear trend case. Our observations with respect to
the constant mean case is also true for this case, although the magnitude of the differences

is diminished.
3. Extension to general cases

The POI and LBIU tests derived in the previous section are based on the assumption that the
error process is normal and serially independent. However, this assumption is too restrictive
in practice, and therefore, we consider more general assumptions where the error term is
weakly dependent. The purpose of this section is to construct test statistics having the same

local asymptotic properties as those given in Theorems 1 and 2 under general assumptions.

To construct the feasible test statistics, we define the long-run variance of w; and its
one-sided version as

Q=Y+1+1II' and T =3 +1I,

T T-1T—j
L ~1 / ET -1 /
where X = TlgréoT ; Eluguy] and II = TIEI;OT Jz:; ; Eluyuy ;).

We divide these matrices conformably with u:, as in the previous section. We also define

the last k rows of I' as I'y; in other words, I'; = [0, Ij|T".

Assumption 2 (a) {u;} is mean zero and strong mizing with mizing coefficients of size

—pa/(p — a) and Elw|P < oo for some p > a > 5/2.



(b) The matriz ) exists with finite elements, @ > 0, wyy > 0, and 0z > 0.

Assumption 2 ensures that the functional central limit theorem can be applied to the partial

sums of wuy.
Let uf = [uf™,uf'], where u)* = r'up = u} — wy, A uf with &' = [1, —w,, Q1] and
let af = [a)™, 4], where 4/ and 4} are the regression residuals of ¢ on z; and x; on

d, respectively. We define Q*, ¥*, IT*, and I'* from wu; analogously to €, X, II, and T,
respectively, which are defined from w;, and divide them conformably with u; such that wj;,
wie, and 23, are (1, 1), (1,2), and (2, 2) blocks of Q, respectively, and I'} is the last k rows
of I*. Let &%, ¥*, 7%, and I'* be consistent estimators of wi;, ©*, 7%, and T'* based on i,
which can be obtained by the typical kernel estimators as investigated in Andrews (1991).

The proposed test statistics are

RyO) = @i {y Mty —y (- w2 (2 ) T 2y - o
—log| 2w 2" | +log |2V 21,

. 1 .
LF = oy MMy + {2V 2 (272,

where M+ = Ip — ZT(ZVZT)"1Z" and Z* = [D, X, \Ifal/QX, e1] with the transpose of
the t-th row of X T being defined by z; = x; — I*3*~14¥. The following theorem yields the

limiting distributions of these test statistics.

Theorem 3 Under Assumption 2, RE(0) and L+ have the same limiting distributions as

RT(Q) and ﬁT.

Although our correction of the test statistics is basically the same as that proposed by
Phillips and Hansen (1990), Park (1992), and Jansson (2005), we need not modify y; to
obtain test statistics that are asymptotically independent of nuisance parameters; therefore,
our correction of the test statistics is relatively simple. This is because, as explained in the
proof of Theorem 3, we can replace y; in the test statistics with vj,, where v}, = Ouf™ +

(\/T) 2321 u?m As uf™ are (asymptotically) uncorrelated with u, Brownian motions



induced by their partial sums are independent of each other, and hence, a “simultaneous

bias correction” is not required for our test statistics.

4. Finite sample evidence

In this section, we investigate the finite sample properties of the tests proposed in Section
3. The data-generating process considered here is the same as that in Jansson (2005). The
data are generated according to the system of (1) and (2) with «, 3, and «, normalized to

zero. The error term u, is generated as

ug = Y(L)O(p)et, (7)

where &; = (¢/,e%)" ~i.i.d.N(0, I5), (L) = (1 — a) >3°, a’L?, and
1 0
Olp) = [ p VI=p? ] '
The parameters a and p control the strength of autocorrelation for the error and the
endogeneity of the regressor, respectively. We set a = 0,0.5,0.8, p = 0,0.5,0.8, 0 =
1,0.975,0.95,0.925,0.90, and sample size 7" = 200. The initial value, ug, is drawn from
its stationary distribution, and yq is set to be equal to zero. We experiment with two initial

values for zg, 0 and 10.

The estimation method used for ¥, 2, and T is the same as that in Jansson (2004).5 We
estimate ¥ using ¥ = 777 44} and Q and I using the VAR(1) prewhitened kernel
estimator. The rejection frequencies for the 5% level tests with x¢ = 0 are reported in Tables
2 and 3 for the cases of the constant mean and linear trend, respectively (we suppress the
superscript T and the argument @ from the test statistics). Cases 1 and 2 describe the
results for the cases of zg = 0 and xy = 10, respectively. For the sake of comparison, we
also show the results for the feasible versions of Py and Sp. The test statistic Sy is based
not on the parametric approach by Shin (1994) but on the nonparametric one by Choi and
Ahn (1995).

5The Matlab code provided by Michael Jansson was very useful in conducting our simulation experiments.
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For Case 1, the results are consistent with the analysis of the local asymptotic powers
shown in Figures 1 and 2 when the error is not persistent and the endogeneity is low, i.e.,
when a < 0.5 and p < 0.5. The empirical sizes of all the tests are satisfactorily close to
the nominal one. When the error is serially uncorrelated, i.e., a = 0, the robustness of Rt
and L7 to the endogeneity is pronounced. For p = 0.8, the results show nontrivial power
gain by Ry and L7. This is because Ry and Lr are invariant under (G,), which takes

1/ 2X. The most distinctive results can

into account the location shift in the direction of ¥,
be observed when the error is persistent, i.e., when a = 0.8. Spr and Pr are undersized
when the endogeneity of the regressor is low and oversized when it is high. This is obviously
undesirable in practice. On the other hand, the performance of L7 is highly stable regardless

of the degree of persistence. Based on these facts, the LBIU test becomes a strong candidate

for researchers who are perplexed with regard to a size versus power trade-off.

Case 2 shows the results with the nonzero initial value of the regressor, g = 10. The re-
sults on L7 and R are not presented because they are robust to the initial value, producing
exactly the same results as those for Case 1. Tables 2 and 3 reveal that all the appropriate
properties of Pr and St with respect to Case 1 are lost unless the endogeneity is absent,
i.e., unless p=0. This is an important observation since the initial value is not equal to zero
in almost all economic applications. Fortunately, applying the simple transformation of the
data that involves subtracting the initial value xy from all the observations of x solves the
problem. In other words, if we transform the data such that Z; = x; — x¢ for t =0, 1,.. .,
T and construct Pr and Sy using & for x4, the test statistics become invariant to zg and
perform the same way as Case 1 in finite samples. Researchers who use Pr and St should

always apply this transformation.

5. Conclusions

In this paper, we investigate the LBIU test for the null hypothesis of cointegration. We
develop the POI test and then derive the LBIU test among a class of tests that are invariant

to some location-scale transformation in the dependent variable. We calculate the asymp-

11



totic local power functions and compare them with the standard residual-based test, and we
show that the LBIU test is more powerful in a wide range of local alternatives. Our finite
sample evidence shows that the LBIU test outperforms the residual-based test in terms of
both size and power. The advantage of the LBIU test is particularly patent when the error
is persistent. The performance of the LBIU test is highly stable regardless of the degree of
persistence and the endogeneity whereas that of the other formerly proposed tests depend
considerably on whether the error is persistent or not. Further, we also point out that the
finite sample performance of the existing tests is largely affected by the initial value con-
dition, while our tests are immune to it. We propose a simple transformation of data that

resolves the problem in the existing tests.

12



Appendix
Proof of Theorem 1
The POI test statistic can be written as

Rr(@) = T (1 - Rl/T(H_)RH(@_))
= Ry (0) xT (1= Ror(9) + T (1 - Ry, (9))

where
_ |2z VAL R Py AVAL A AL
Rir(0) = M, Ror(0) = Y (¥y g 2275 Z) 9 )y’
12" Z| y' My
and we replaced T' — ¢ with T for simplicity without loss of generality. We first show that
1 AXHNM

= ds
RlT(Q) = —’ f(] lQ Ql ‘ (Al)

| Jo QR'ds|

To show (A.1), notice that in (3) there exist a k x (p+ 1) matrix G3; and a k x 1 vector
g34 such that uf = Gs1dy + (1 — (1 — 1;) L)z + g3aly, where 1, = 1 for t = 1 and 1, = 0

otherwise. Then, we can transform z; using a ¢ X ¢ nonsingular matrix GG such that

I, 0 0 0
vz ~1/2
zf = Gz, where G = Eff Yz Sow _01/2 1(/)2 )
Y G31 0 I Yoz 934
0 0 0 1
N P AT VA x —1/2 20 x =1/2 2\ / sk
and z; = [27}, 25 with 25, = [d}, (X' 2)) and 23, = [(Xzz’ u¥), 1;)’. This is also

expressed as ZG' = Z* = [Z{, Z3] in the matrix form. Then, we have

_ 1
Rir(0) = ‘T;lcz’qﬁlzG’T;l
‘ 1

1. -
fTTlGZ’ZG’TTl

lzelzg lz*lz*

where Yp = diag{ Y17, Tor} with Y17 = diag{1,T,---,T?, T1/2Ik} and Yor = diag{ I, T_1/2}
and 79 = \1151/22*. Note that the transpose of the ¢-th row of 79 is expressed as

zf = ézf_l +(1—L)z; with zf =z
We partition zté into zft and zgt conformably with 2], and z3,.

13



Lemma A.1 For 0 <s <1, the following convergences hold jointly.

() Tirziry = Qs),
(@) YTipalry = Q).
Proof of Lemma A.1: (i) is obtained by using the functional central limit theorem (FCLT).
With regard to (ii), from the definition of zft, We can express zft as
_ P, by t—j—1
0 _ _x *
21t = Rt — T; (1 — T) le. (AQ)
See also the proof of Lemma 7 in Jansson (2004). Then, according to (i) and the continuous
mapping theorem (CMT), we have

s

T‘%zf[Ts] = Q(s)— A\ e 6 Qdr

= [ g,
0

S—

where the last equality holds by the partial integration formula.O
From Lemma A.1 (ii) and the CMT we have

1

_ 1 - -
TT;%Z{”Z{’T;%: /0 Q QVds. (A.3)

28, is expressed in exactly the same way as (A.2) as

_ . 3 =l by t—j—1 .
th = AT Z (1 - T) %2j
(A.4)

Then, according to the weak law of large numbers (WLLN) and Theorem 4.1 in Hansen
(1992b), we have

L 1 8 fme—

TTQ%ZQHIZgTQ% — Ty, (A.5)

14



where - signifies convergence in probability and

1 — —
TT;%Z?’Z;’T;; 0. (A.6)
Combining (A.3), (A.5), and (A.6) we obtain
1 - L XN
TR Pl [ o QOQ ds IO 1 : (A7)
k+1

Similarly, we have T-'Y7'Z¥Z* 7! = diag{ [, Q(s)Q(s)'ds, Iy+1}. We then obtain
(A.1).

Using (A.1), we can show that
+ log

B 1
RUT L1 and T (1-RYT(0)) = ~log /0 Q QVds

because a*/T — 1 and T(1 — a"/T) — —loga for a given a > 0 as T — oo.

/0 L QQuds

(A.8)

Next, we investigate the asymptotic behavior of T'(1—Ra7(f)). To do this, we decompose

V¢ as
t—1
o= ul+(1-6)> u
j=1
y A ; y
= Out+fz:luj
J:

= vp + Tot,

where vg, = Oui™ + (A/T) X%y uf™ with uf™ = uf — 0.2 uf and re = 00y, X, uf +

(NT)oy X5} ;-:1 uf. Let vy and rp be the vectorized forms of vg, and rg;. Since

ro = {0U"+ (/)00 Sl oy,
= {0(95"*X - 95'2Day ) + (\/T) (X = Day) | Solowy,

the conditional likelihood is independent of the change in the direction of 7y, so that we can
replace y in the test statistic with vy. Then, we can observe that

*/ (qy—1 -1 =1 7\=17rq—1\,,*
T <1 Y (\119— -, zZ(Z v, Z) Z'vy, )v9>

T (]‘ - RQT(G_)) = v Mu*
0 0

Ro17(0) + Roor(6)
vy M /T ’

(A.9)
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where

|

Roir(0) = 2 (v; - \Pgl/Qv;‘)/v;‘ - (v; - \1151/211;)/ (vé‘ - \1151/203>

., ., _
= 2(1}’5—1}3) vy — (v@"—vg) (1}5—1}3)

and

]

RQQT( ) — U;/q]jlz(zlq]flz) 1Z/\II U@ _'UQIZ(Z/Z)_IZ/'U;

1 1 i 5§
— ZGT > <T1201Z9T1> (leelvt9>
(\/> 6 T T T \/T T 0
1 1
Z*T ) <T_1Z*/Z*T_1) (T_lZ*’v*) 7
<\F 0 T T T \/T T 0
with vg = \Ifé_l/zvé‘. As the denominator in (A.9) is shown to converge to oyy., = 1 in

probability by the WLLN under the local alternative, we focus on the derivation of the
limiting distributions of Rng(H_) and Raor(#) in the following.

Lemma A.2 For (0 <s <1, the following convergences hold jointly.

L s
(4) \ﬁzvet = Vi(s),
(5]

(i4) \}»Zvet ~ VMs), and

(Z’LZ) \/T (U;[TS] — Ua[Tﬂ) = S\VAX(S)

Proof of Lemma A.2: (i) is obtained from the definition of vj,, the FCLT, and the CMT.
With regard to (ii), from the definition of U@t we have

t—1
(Y

1

0
6

-
<
=
|
i

Il
—

ok
= Vg¢-

.

J J

Then, in exactly the same way as (A.2), it is seen that
3l

Sa-Laorg0oa) (59)

7=1
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Using (i), the CMT, and the partial integration formula, we obtain (ii).

With regard to (iii), from the definition of vgt, we have

Vg — Uet = Z UG]
Then, (iii) is obtained using (ii).0
Using Lemma A.2, the CMT, and Theorem 4.1 in Hansen (1992b), we have

_ S _ 1 -
Roir(f) = 2\ / VdVy, — A2 / (V)2ds. (A.10)
0 0

For Raor(f), we can see that

1
VT
using Lemmas A.1, A.2, and Theorem 4.1 in Hansen (1992b), while
1 T
—= (2 1/21‘19)“315

T t

_ = 1 - _
T+ 29 = /0 QMY (A.11)

where u#? is the transpose of the t-th row of \Ilefl/QUx. In exactly the same way as (A.2) we

have
_ P by t—j—1
V5, = vhy — = > (1 - T) V3 (A.12)
j=1
Then, from (A.4) and (A.12), we can see that
LN (s1/200 L N1/ /
N (/2,20 _ 125 4O, (T2
\/T;( zx t ) Vot T; t P( )
= N(1), (A.13)

by the FCLT, where N(s) is a k dimensional standard Brownian motion that is independent
of W(s) and V(s).
On the other hand, using (A.4) we have
T ;7T T\ t—2
- )\ )\ _
198, = ) -2 1— = 0
; t Vot Vo1~ z ( T) Yot

RN (A.14)



Then, combining (A.7), (A.11), (A.13), and (A.14) we have

1 4.4 1 51 g i 5 g
(\/Tvglze'r;l> <TT;129/Z9T;1> (\/Tr%lzg/vg>

= ([ QMV?)l ([ QAQ*’ds>_1 ([ @)+ Ny + it

In exactly the same way we have
1 */ rzxAn—1 1 —1 7%t rpkpn—1 -1 1 —1 7%/ %
ﬁve A TT TTT YA TT ﬁTT A Vg

- (/ 1 deA)/ (/ 1 QQ’ds>_1 (/ 1 QaVA ) + N1 +vif.

Then, we can see that
Rert) = ([ @) ([ @) ([ @ag)
([ ([oe) ([am). o

By combining (A.10) and (A.15), we have

T (1—-Ryp(0)) = 2)\/01 V3dVy — X2 /{)1(V)\5‘)2ds
([ @) ([ @arar) " ([ @)
. ( /0 ' QdV,\>/ ( /0 ' QQ’ds)l ( /0 ' QdV,\> . (A.16)

The required distribution is obtained from (A.8) and (A.16).0

Proof of Theorem 2

We first derive the LBIU test statistic (6). Note that

d¥y 1/24 3,1/2 1/2 1/2
= = U= w1 - )
d*V .
S = 20— (I — B = 230 — iriy),
where i = [1,---,1] is a T' x 1 vector and the relation I7 — \113/2 - \11(1)/2, = —ipi’ is used.
Then, as U1/* = Iy, H'H = Ir_,, and H'ip = 0, we have
d(H'UyH)

= H'(Ip —irip)H = Ip—y (A.17)
do =1
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d*(H'UyH)

s = 2H'UoH. (A.18)

0=1

From (A.17) and the standard matrix differential calculus, we can show that

dlog f(n|X;0) 1 { 1y -1 AU Vo H) }
_— = ——try(HU1H) ———=
a9 ot 5t ((H ) b oy
7 — g (B H) T S| (G )y
= =0.(A.1
3 W H) A
For the second derivative, it should be noted that
d*log |H'WgH
OgC'sz' = tr{—Ir_q+2H U H}
=1
= —(T—q)+2tr {M¥y}
= (TP +q) -2 {(22) 2052}, (A.20)
which is obtained using (A.17), (A.18), and HH' = M, and
21 "H' U, H -1
=1
/
- 1- 2%. (A.21)
y' My
Then, from (A.20) and (A.21) we have
d*log f(n| X 0) y' MPoMy P
= t4+ ————— +tr{ (£ 2) 2 Vg2
dg? M =g {(72) o7

so that we obtain (6).

Next, we derive the limiting distribution of the LBIU test statistic. For the same reason
given in the proof of Theorem 1, we can replace y in the test statistic with v, and then we
have \Iltl)/QlMy = \Il(l]/2le;. Noting that \I/(IJ/Z/ = ipilp — \I/(l)/g, where @5/2 isa T x T lower

triangular matrix with diagonal elements 0 and the other lower elements 1, we have

1 1 .. = X
ﬁ‘l’é/2,My = ﬁ(ZTZ{T — \Ijé/Q)M'UQ
I ogz1/2 o0 =172 1o =1 1k
= ——= {0 -2 (2/2)7" 2w}
\/T{ 0 0
1 - 1. 1 -1
- _ { T\Il[l)/QU; _ T\I/é/QZ*T%l (TT;IZ*/Z*T;1> \/TT;IZ*/U;} 7
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where the second equality holds because .M = 0. As the ¢-th rows of \If(l)/ 211; and \Ifé/ 2 7

;;11 vp; and ;;11 z{!, we have, using Lemmas A.1, A.2, the FCLT, and the CMT,

Z%‘fjj‘g@_@ - [ 1{%(8) - [faur ([ eqar)

Similarly, we can also see that

are

-1

1 2
/0 QdVA} ds.  (A.22)

1 1 .
ﬁtr {(Z/Z)_I(Z/\I’OZ)} =1tr { <TTT12*/Z*TT1> <Z-BTT1Z*/\I’Oz*YT1> } .

Noting that the transpose of the t-th row of \Iftl)/ AR given by ZJT:t z;, we have, from

Lemma A.1 and the CMT,
/01 (/81 er) </Sl Q'dr) ds} . (A.23)

%tr {(Z’Z)—I(Z’\IJOZ)} = tr { (/01 QQ%)

From (A.22) and (A.23), we obtain the result.O

-1

Proof of Theorem 3

The proof proceeds in the same way as the proofs of Theorem 1 in the last section and
Theorem 2 in Jansson (2005). We provide only an outline. First, note that we can obtain
the same results in Lemma A.1 by replacing E;Il/z in G with QL}/Q. We can also see that, as

in the proof of Theorem 1, y; in the test statistics can be replaced by vp,, where under general

g y-x Yy

is defined as u}* = uf — wy, QA uf, so that the limiting distributions in

Lemma A.2 should be multiplied by wﬁ/ 2

assumptions u
. Then, applying Lemma 1 in Sims, Stock, and

Watson (1990) and Lemma 7 in Jansson (2004), we can see that
_ _ 1. _
2(vp — v)) vy = 22wh / V3dVy + 277,
0
and then
_ ol S B
Ror(0) = w', <2>\ / Vv, — 32 / (V;)st) 2.
0 0
Similarly, we can see that
1
VT
1
VT

By combining these results, we obtain the theorem.O

o 1.
—1 7401, 0 *1/2 X T/
YTirZ7 vg = wpy /0 Q7 dVy

—1 skt % *1/2 1
TirZi vy = wyy /OQdVA~
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Table 1. Percentiles of the Limiting Distribution of L1

(a) constant mean k=1 2 3 4 5 6
90% 0.6095 0.5739 0.5512 0.5376 0.5303 0.5246
95% 0.6803 0.6235 0.5823 0.5609 0.5483 0.5387
97.5% 0.7632 0.6795 0.6182 0.5874 0.5706 0.5538
99% 0.8940 0.7667 0.6825 0.6320 0.6037 0.5750
(b) linear trend k=1 2 3 4 5 6
90% 0.5419 0.5348 0.5277 0.5228 0.5196 0.5165
95% 0.5651 0.5527 0.5425 0.5352 0.5297 0.5255
97.5% 0.5894 0.5716 0.5594 0.5490 0.5410 0.5352
99% 0.6223 0.5997 0.5831 0.5674 0.5570 0.5475




Table 2. Size and Power (conatant mean, 7' = 200)
(Case 1) (Case 2)
Lt St Rt Pr St Pr
p p p p p p
a 0 0 0.5 0.8 0 0.5 0.8 0 0.5 0.8 0 0.5 0.8 0 0.5 0.8 0 0.5 0.8
1 5.8 5.5 5.5 4.9 4.5 4.0 5.3 5.4 5.2 5.2 5.5 6.3 5.0 9.6 33.1 6.1 33.5 90.8
0.975 23.6 222 227 20.8 19.5 19.2 22.4 21.3 22.1 22.3 199 17.7 | 21.0 24.1 40.7 23.1 478 914
0 0.95 47.6 46.7 47.1 43.5 42.3 41.0 52.9 53.1 525 52.8 51.0 43.4 | 43.4 45.3 55.7 53.5 68.9 94.0
0.925 64.8 64.1 63.8 59.6 59.1 57.9 73.9 73.7 739 73.6 T71.6 64.0 | 59.9 61.0 67.3 74.6 822 95.8
0.9 75.2 753 7T74.6 71.2 70.3 69.3 85.4 85.7 85.3 85.8 84.9 787|712 719 754 86.3 90.4 97.0
1 5.3 5.5 5.3 4.3 4.9 6.5 4.6 4.8 4.5 3.9 4.0 5.7 5.0 12.8 494 6.2 46.4 98.3
0.975 21.8 20.5 21.3 18.2 184 22.5 19.7 18.7 19.0 17.8 16.1 18.3 | 18.8 24.5 52.8 20.9 54.9 98.0
0.5 0.95 424 419 41.6 371 38.0 42.0 45.7 45.6 45.4 43.6 42.3 43.2 | 37.6 41.8 61.2 475 69.4 97.7
0.925 56.6 56.7 55.9 49.5 51.7 55.3 64.3 64.5 64.7 62.8 61.4 61.8|50.2 53.7 67.5 65.5 T78.7 97.2
0.9 64.8 64.9 64.2 56.6 58.7 63.7 75.1 75.1 T73.8 73.5 729 729|569 608 71.3 76.0 84.0 97.0
1 4.6 5.2 5.5 3.8 6.1 11.5 2.7 2.8 3.1 1.9 3.8 104 | 6.0 224 63.3 13.0 64.6 97.9
0.975 176 16.3 17.6 12.8 158 244 9.8 9.5 10.5 6.3 94 199|154 28.7 61.7 21.0 64.1 97.0
0.8 0.95 28.7 285 284 201 246 364 18.1 17.7 18.0 10.6 16.4 32.2 | 22.7 34.7 60.2 30.9 61.8 94.1
0.925 30.8 29.9 29.6 18.8 25.1 394 18.1 183 18.5 10.3 159 34.9|23.8 335 56.3 35.0 56.8 884
0.9 273 253 25.1 14.5 20.2 36.6 15.4 15.7 16.3 9.0 13.2 30.7|22.0 294 51.0 37.3 529 81.1




Table 3. Size and Power (linear trend, 7" = 200)

(Case 1) (Case 2)

Lt St Rr Pr St Pr

p p p p p p
a 0 0 05 0.8 0 0.5 0.8 0 0.5 0.8 0 05 0.8 0 05 0.8 0 0.5 0.8
1 6.1 6.5 6.2 5.1 5.1 3.2 5.4 5.4 5.1 5.2 5.8 5.5 56 12.0 474 6.9 39.2 90.9
0.975 134 13.2 13.6 11.9 104 84 11.1 11.1 10.7 11.3 10.8 8.0 | 124 18.6 49.2 13.0 42.8 90.9
0 0.95 31.4 31.3 31.5 28.6 27.2 235 30.7 304 30.6 30.5 269 179|289 335 56.2 32.5 557 914
0.925 50.7  50.7 50.5 46.7 46.0 41.8 53.0 52.6 53.2 52.6 47.3 34.4 | 47.3 49.8 64.9 53.9 70.0 92.7
0.9 66.3 65.5 65.0 62.1 61.1 57.5 70.6 709 71.5 70.9 66.5 51.8|62.6 64.4 72.7 72.0 81.3 94.2
1 5.8 59 56 4.7 52 6.5 4.8 5.0 5.0 40 39 43 | 5.8 16.8 70.2 8.2 55.1 989
0.975 12.1 11.5 123 9.9 10.2 124 96 9.7 98 86 7.6 7.3 |11.4 21.9 68.5 13.1 57.0 98.7
0.5 0.95 27.1 26.6 27.2 23.4 23.6 27.7 25.2 247 24.9 23.4 209 19.5|24.8 33.5 70.0 285 62.8 985
0.925 42.5 42,9 427 36.9 38.7 42.5 42.4 42,6 42.0 40.2 37.6 34.2 | 38.2 459 T71.5 45.7 69.7 97.8
0.9 55.2 54.5 54.3 48.3 49.8 54.0 56.4 56.2 56.0 54.2 51.8 47.7 | 49.4 54.6 T74.0 58.8 75.0 96.7
1 4.8 4.9 5.1 3.2 5.8 122 2.2 2.6 2.6 1.4 2.8 6.7 7.4 33.8 818 16.4 71.7 98.5
0.975 8.8 89 9.7 6.3 9.5 177 3.6 3.7 43 22 3.7 87 | 11.3 342 797 20.2 69.7 98.1
0.8 0.95 16.6 16.0 16.5 11.1 16.2 27.6 7.3 7.4 7.6 4.1 6.4 144|172 373 76.6 26.1 66.3 96.5
0.925 20.8 20.5 20.1 12,5 18.9 34.0 86 88 9.2 45 7.1 178 | 20.7 36.9 72.6 29.8 60.7 93.3
0.9 20.4 195 184 11.0 17.7 35.6 7.5 7.8 9.0 4.1 6.0 17.2] 206 34.3 67.0 33.0 54.6 87.6
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Figure 1. 5% Level tests, m=1 constant mean
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Figure 2. 5% Level tests, m=1 linear trend
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