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Abstract

This paper considers a single equation cointegrating model and proposes the locally
best invariant and unbiased (LBIU) test for the null hypothesis of cointegration. We de-
rive the asymptotic local power functions and compare them with the standard residual-
based test, and we show that the LBIU test is more powerful in a wide range of local
alternatives. Then, we conduct a Monte Carlo simulation to investigate the finite sam-
ple properties of the tests and show that the LBIU test outperforms the residual-based
test in terms of both size and power. The advantage of the LBIU test is particularly
patent when the error is highly autocorrelated. Further, we point out that finite sample
performance of existing tests is largely affected by the initial value condition while our
tests are immune to it. We propose a simple transformation of data that resolves the
problem in the existing tests.
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1. Introduction

Following the seminal work of Engle and Granger (1987), tests of cointegration have been

intensively investigated in the econometric literature. For a single equation model, tests

for the null of cointegration are proposed by Hansen (1992a), Quintos and Phillips (1993),

Shin (1994), and Jansson (2005), while the null of no cointegration is considered in Engle

and Granger (1987) and Phillips and Ouliaris (1990), among others. A system equations

approach is also considered in a number of studies.3

For the null hypothesis of cointegration, Shin (1994) proposes the residual-based test,

while Jansson (2005) develops the point optimal invariant (POI) test. Jansson (2005) shows

that the POI test performs better than the residual-based test in a wide range of alternatives

based on the local asymptotic power functions. A Monte Carlo experiment conducted to

examine the finite sample properties of the test developed by Jansson (2005) demonstrates

that the POI test is more powerful than the residual-based test when the error is not

persistent; at the same time, it reveals several important drawbacks of the tests. First of

all, the POI test suffers from size distortions and power losses when the error is persistent.

With respect to the size properties, the test is undersized when the endogeneity of the

regressor is low and oversized when it is high. With regard to the power properties, the

POI test is outperformed by the residual-based test proposed by Shin (1994). Second, the

residual-based test also suffers from the same type of size distortions as the POI test.

In this paper, we consider a single equation cointegrating model and propose the locally

best invariant and unbiased (LBIU) test with correct size. In order to do so, we first

develop the point optimal test that is invariant to some location-scale transformation of the

data under simple assumptions on the error. The transformation deals with directions of

transformations that are wider than those in Jansson (2005). Next, we derive the LBIU test

based on the POI test. Finally, we generalize the tests to accommodate general assumptions

on the error. After we present the test statistics, we study their asymptotic power properties.

Comparing the asymptotic local power function of the LBIU test with that of the residual-
3See Hubrich, Lütkepohl, and Saikkonen (2001) for an excellent review of system equations methods.
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based test, we show that the LBIU test is more powerful in a wide range of local alternatives

and that the power properties of the two tests against the hypothesis that is very close to

the null are indistinguishable.

To investigate the finite sample properties of our test, we conduct a Monte Carlo exper-

iment. We find that the empirical size of the LBIU test is very close to the nominal size

regardless of the degree of persistence in the error and the endogeneity of the regressor. In

addition, the LBIU test is generally more powerful than the residual-based test while the

POI tests are more powerful than the LBIU and the residual-based test when the error is

not persistent. The advantage of the LBIU test over the residual-based test and the POI

tests is particularly patent when the error is highly autocorrelated. Based on these facts,

the LBIU test becomes a strong candidate for researchers who are perplexed with regard to

a size versus power trade-off.

The other important finding in this paper is that Jansson’s POI test and the residual-

based test are greatly affected by the initial value condition on the stochastic regressors,

while our POI and LBIU tests are shown to be free of the initial value condition. We

propose a simple transformation of the data that resolves the problem in Jansson’s POI

and the residual-based tests. Finite sample simulations show that Jansson and Shin’s tests

suffer from severe size distortions without the transformation.

The remainder of the paper is organized as follows. In Section 2, we derive the POI and

LBIU tests for a stylized model and obtain the limiting local power functions. Section 3 gen-

eralizes the assumptions by allowing the error term to be weakly dependent; we modify the

test statistics such that their limiting distributions are independent of nuisance parameters.

We investigate the finite sample properties of our tests through a Monte Carlo simulation

in Section 4. Section 5 concludes the paper.

2. LBIU and POI tests

In this section, we first develop a POI test and then derive an LBIU test based on the POI
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test. Let us consider the following model:

yt = α′dt + β′xt + vt, (1− L)vt = uy
t − θuy

t−1, (1)

xt = α′xdt + x0
t , (1− L)x0

t = ux
t , (2)

where dt = [1, · · · , tp]′ with p ≥ 0, yt and xt are 1- and k-dimensional observations, L is the

lag operator, and v0 = uy
0 = 0. For the error process, we consider the following assumption

in this section.

Assumption 1 ut = [uy
t , u

x′
t ]′ ∼ i.i.d.N(0,Σ) with Σ > 0.

We divide Σ conformably with ut as follows:

Σ =

[
σyy σyx

σxy Σxx

]
.

We proceed with this restricted assumption in this section; however, we will relax the

assumption of normality and consider the dependent case in the next section.

The model is expressed in the vectorized form as

y = Dα+Xβ + v, L1v = Lθu
y,

X = Dαx + Ψ1/2
0 Ux,

where y = [y1, · · · , yT ]′, D = [d1, · · · , dT ]′, and the other vectors and matrices are defined

similarly, Ψθ = Ψ1/2
θ Ψ1/2′

θ with

Ψ1/2
θ =


1 0

1− θ 1
...

. . . . . .
1− θ · · · 1− θ 1

 and Lθ =


1 0
−θ 1

. . . . . .
0 −θ 1

 .

Since L−1
1 Lθ = Ψ1/2

0 Lθ = Ψ1/2
θ because L−1

1 = Ψ1/2
0 , the above system can also be expressed

as

y = Dα+Xβ + Ψ1/2
θ uy,

Ψ−1/2
0 X = Ψ−1/2

0 Dαx + Ux. (3)
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Note that the first column of Ψ−1/2
0 D comprises e1 = [1, 0, · · · , 0]′, while the other columns

are obtained by a nonsingular transformation of the first p columns of D, which corresponds

to [1, · · · , tp−1].

Let us suppose that we are interested in the following testing problem:

H0 : θ = 1 v.s. H1 : θ < 1.

Under the null hypothesis, vt = uy
t and subsequently yt and xt are cointegrated; however,

they are not cointegrated under the alternative because vt is a unit root process when θ 6= 1.

Based on the observation that xt is weakly exogenous for θ, it is sufficient for us to

consider the distribution of y conditional on X as far as the hypothesis regarding θ is

concerned. It is evident that the conditional distribution y|X is given by N(Dα + Xβ +

Ψ1/2
θ UxΣ−1

xxσxy, σyy·xΨθ), where σyy·x = σyy − σyxΣ−1
xxσxy. Using (3), the conditional distri-

bution is also expressed as

y|X ∼ N
(
Dα∗ +Xβ∗ + Ψ−1/2

0 Xγ∗ + e1δ
∗, σyy·xΨθ

)
, (4)

where α∗, β∗, γ∗, and δ∗ are defined appropriately, and the relation Ψ1/2
θ Ψ−1/2

0 = Lθ =

θΨ−1/2
0 + (1 − θ)IT is employed. It is then observed that the testing problem is invariant

under the group of transformations

y → sy +Da+Xb+ Ψ−1/2
0 Xc+ e1d

(θ, α∗, β∗, γ∗, δ∗, σyy·x) → (θ, sα∗ + a, sβ∗ + b, sγ∗ + c, sδ∗ + d, s2σyy·x),
(Gy)

where a is a p + 1-dimensional vector, b and c are k-dimensional vectors, and d and s are

scalar with 0 < a < ∞. Note that in a classical regression context, a location shift in y is

considered only in the directions of the regressors D and X, while we additionally consider

the directions of Ψ−1/2
0 X and e1. It is noteworthy that in our model, the I(1) regressors X

are correlated with the error term, uy; thus, the conditional mean of y depends on Ψ−1/2
0 Xγ∗

and e1δ∗ in addition to Dα∗ and Xβ∗, as is observed in (4). Since it is natural to consider

a location shift in y in the directions of the conditional mean, [D,X,Ψ−1/2
0 X, e1] provides
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the appropriate directions of the shift in y in our case. We can also see that invariance in

the directions of e1 implies that the tests do not depend on the initial value condition.

Let us defineM = I−Z(Z ′Z)−1Z ′, where Z = [D,X,Ψ−1/2
0 X, e1], and select a T×(T−q)

matrix H such that H ′H = IT−q and HH ′ = M , where q = 2k + p + 2. As H ′Z = 0, we

have

H ′y|X ∼ N(0, σyy·xH
′ΨθH).

Then, the distribution of H ′y|X is observed to be free of the nuisance parameters α∗, β∗,

γ∗, and δ∗. In addition, it is shown that η = H ′y/
√
y′HH ′y conditional on X is a maximal

invariant under the group of transformations (Gy). In this section, we assume that σyy·x = 1

without loss of generality because η|X is invariant to scale change in y. The probability

density function of η|X is given by (see Kariya, 1980 and King, 1980)

f(η|X; θ) =
1
2
Γ
(
T − q

2

)
π−(T−q)/2|H ′ΨθH|−1/2

(
η′(H ′ΨθH)−1η

)−(T−q)/2
. (5)

Given the density of the maximal invariant under the group of transformations (Gy),

we can now propose the test statistics. First, we develop the POI test. According to the

Neyman–Pearson lemma, the POI test against θ = θ̄ is given by f(η|X; θ̄)/f(η|X; 1), which

is normalized as follows in order to have a limiting distribution:

RT (θ̄) = T

1−
(
f(η|X; θ̄)
f(η|X; 1)

)−2/(T−q)


= T

1−
(
|Z ′Ψ−1

θ̄
Z|

|Z ′Z|

)1/(T−q)
y′(Ψ−1

θ̄
−Ψ−1

θ̄
Z(Z ′Ψ−1

θ̄
Z)−1Z ′Ψ−1

θ̄
)y

y′My

 .
The null hypothesis is rejected when RT (θ̄) takes large values. Note that RT (θ̄) has an

expression that is different from Jansson’s POI test statistic, which is constructed by con-

sidering only location invariance. One of the reasons for the difference between the two test

statistics is the directions of the location shift: Jansson (2005) considers location invari-

ance in the directions of R = [D,X], while we introduced invariance in the directions of

[Ψ−1/2
0 X, e1] in addition to R. The other reason for the difference lies in the introduction

5



of scale change, which leads to a distributional difference between the two maximal invari-

ants: the maximal invariant η in our analysis has a nonnormal distribution, as given by (5),

while the maximal invariant with only location invariance has a normal density, as shown

in Jansson (2005).

To investigate the asymptotic properties of the POI test, we localize the parameters θ

and θ̄ such that θ = 1− λ/T and θ̄ = 1− λ̄/T . Then, the limiting distribution of RT (θ̄) is

given in the following theorem.4

Theorem 1 Under Assumption 1, the limiting distribution of RT (θ̄) is given by

RT (θ̄) ⇒ 2λ̄
∫ 1

0
V λ̄

λ dVλ − λ̄2
∫ 1

0
(V λ̄

λ )2ds

+
(∫ 1

0
Qλ̄dV λ̄

λ

)′ (∫ 1

0
Qλ̄Qλ̄′ds

)−1 (∫ 1

0
Qλ̄dV λ̄

λ

)
−
(∫ 1

0
QdVλ

)′ (∫ 1

0
QQ′ds

)−1 (∫ 1

0
QdVλ

)
− log

∣∣∣∣∫ 1

0
Qλ̄Qλ̄′ds

∣∣∣∣+ log
∣∣∣∣∫ 1

0
QQ′ds

∣∣∣∣ ,
where ⇒ signifies weak convergence of the associated probability measures, Q(s) =

[1, s, · · · , sp,W (s)′]′ with W (s) being a k-dimensional standard Brownian motion, Qλ̄(s) =∫ s
0 exp(−λ̄(s− r))dQ(r), Vλ(s) = V (s) + λ

∫ s
0 V (r)dr with V (s) being a univariate standard

Brownian motion that is independent of W (s), and V λ̄
λ (s) =

∫ s
0 exp(−λ̄(s− r))dVλ(r).

Remark 1: Although our test statistic RT (θ̄) is different from Jansson’s PT (θ̄), the limiting

distribution of RT (θ̄) is the same as that of PT (θ̄). This is because the additional determin-

istic and I(0) regressors –e1 and Ψ−1/2
0 X, respectively– do not contribute to the asymptotic

local distribution, as is shown in the proof of the theorem provided in the Appendix. Our

result implies that we can impose scale invariance in addition to location invariance in wider

directions without sacrificing local asymptotic power. However, in Section 4, we will see that

these additional regressors, particularly e1, play an important role in finite samples.

In practice, we specify the value of θ̄ or λ̄ in order to implement our feasible point optimal

test. We follow Elliott et al. (1996) and Jansson (2005) for the selection of λ̄. According to
4In Theorem 1, an integral such as

∫ 1

0
X(s)dY (s)′ is simply written as

∫
XdY ′ to achieve notational

economy.
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their approach, λ̄ should be selected such that the asymptotic local power against the local

alternative θ̄ = 1 − λ̄/T is approximately 50% when we use the 5% test based on RT (θ̄).

The recommended values of λ̄ and the percentiles of RT (λ̄) are given by Table 1 in Jansson

(2005).

Next, we consider a locally best test that is also a natural candidate when no uniformly

most powerful tests are available as in the present situation. This can be considered as the

extreme case of the POI test with θ̄ → 1. According to Ferguson (1967), the locally best

invariant (LBI) test is given by d log f(η|X; θ)/dθ|θ=1, but in the Appendix, it is shown that

d log f(η|X; θ)/dθ|θ=1 = 0. Then, instead of the LBI test, we consider the LBI and unbiased

(i.e., LBIU) test, that rejects the null when the following holds.

d2 log f(η|X; θ)
dθ2

∣∣∣∣∣
θ=1

+
(
d log f(η|X; θ)

dθ

∣∣∣∣
θ=1

)2

> c1 + c2
d log f(η|X; θ)

dθ

∣∣∣∣
θ=1

,

where c1 and c2 are some constants. See Ferguson (1967) for detailed discussions on the

LBIU test. The Appendix shows that the LBIU test statistic is given by

LT =
y′MΨ0My/T 2

y′My/(T − q)
+

1
T 2

tr
{
(Z ′Z)−1(Z ′Ψ0Z)

}
. (6)

The null hypothesis is rejected when LT takes large values.

Theorem 2 Under Assumption 1, the limiting distribution of LT is given by

LT ⇒
∫ 1

0

{
Vλ −

∫ s

0
Q′dr

(∫ 1

0
QQ′dr

)−1 ∫ 1

0
QdVλ

}2

ds

+tr

{(∫ 1

0
QQ′dr

)−1 ∫ 1

0

(∫ 1

s
Qdr

)(∫ 1

s
Q′dr

)
ds

}
.

The percentiles of LT are given in Table 1. Figure 1 depicts the Gaussian power envelope

of the 5% test based on RT (θ) along with the local asymptotic power functions of four

cointegration tests in the constant mean case with k = 1.5 The two tests are the feasible

tests proposed in this paper and are denoted by RT and LT . The other two tests are the
5The curves are obtained from 20,000 replications from the distribution of the discrete approximation

based on 2,000 steps to the limiting distribution given in Theorem 1.
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residual-based test proposed by Shin (1994) and the POI test developed by Jansson (2005)

and are denoted by ST and PT , respectively. Since the local asymptotic power functions

of PT and RT are found to be the same, only one line is indicated in Figure 1. ST is the

most commonly used test in applications and is locally optimal under Shin’s assumptions.

Therefore, it becomes a convenient benchmark for assessing our new tests, RT and LT .

The local asymptotic powers of PT and RT are close to the envelope for all the values

of λ. The local asymptotic powers of ST and LT are close to the envelope for small values

of λ due to their local optimal properties, and they are below the envelope for large values

of λ. The asymptotic power of LT is closer to the envelope than that of ST for large values

of λ. Figure 2 shows the case with a linear trend case. Our observations with respect to

the constant mean case is also true for this case, although the magnitude of the differences

is diminished.

3. Extension to general cases

The POI and LBIU tests derived in the previous section are based on the assumption that the

error process is normal and serially independent. However, this assumption is too restrictive

in practice, and therefore, we consider more general assumptions where the error term is

weakly dependent. The purpose of this section is to construct test statistics having the same

local asymptotic properties as those given in Theorems 1 and 2 under general assumptions.

To construct the feasible test statistics, we define the long-run variance of ut and its

one-sided version as

Ω = Σ + Π + Π′ and Γ = Σ + Π,

where Σ = lim
T→∞

T−1
T∑

t=1

E[utu
′
t] and Π = lim

T→∞
T−1

T−1∑
j=1

T−j∑
t=1

E[utu
′
t+j ].

We divide these matrices conformably with ut, as in the previous section. We also define

the last k rows of Γ as Γx; in other words, Γx = [0, Ik]Γ.

Assumption 2 (a) {ut} is mean zero and strong mixing with mixing coefficients of size

−pα/(p− α) and E|ut|p <∞ for some p > α > 5/2.
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(b) The matrix Ω exists with finite elements, Ω > 0, ωyy > 0, and Ωxx > 0.

Assumption 2 ensures that the functional central limit theorem can be applied to the partial

sums of ut.

Let u∗t = [uy·x
t , ux′

t ], where uy·x
t = κ′ut = uy

t − ωyxΩ−1
xxu

x
t with κ′ = [1,−ωyxΩ−1

xx ], and

let û∗t = [ûy·x
t , ûx′

t ]′, where ûy·x
t and ûx

t are the regression residuals of yt on zt and xt on

dt, respectively. We define Ω∗, Σ∗, Π∗, and Γ∗ from u∗t analogously to Ω, Σ, Π, and Γ,

respectively, which are defined from ut, and divide them conformably with u∗t such that ω∗11,

ω∗12, and Ω∗
22 are (1, 1), (1, 2), and (2, 2) blocks of Ω∗, respectively, and Γ∗x is the last k rows

of Γ∗. Let ω̂∗11, Σ̂∗, π̂∗11, and Γ̂∗x be consistent estimators of ω∗11, Σ∗, π∗11, and Γ∗x based on û∗t ,

which can be obtained by the typical kernel estimators as investigated in Andrews (1991).

The proposed test statistics are

R+
T (θ̄) = ω̂∗−1

11

{
y′M+y − y′(Ψ−1

θ̄
−Ψ−1

θ̄
Z+(Z+′Ψ−1

θ̄
Z+)−1Z+′Ψ−1

θ̄
)y − 2λ̄π̂∗11

}
− log

∣∣∣Z+′Ψ−1
θ̄
Z+
∣∣∣+ log

∣∣Z+′Z+
∣∣ ,

L+
T =

1
T 2
ω̂∗−1

11 y′M+Ψ0M
+y +

1
T 2

tr
{
(Z+′Z+)−1(Z+′Ψ0Z

+)
}
,

where M+ = IT − Z+(Z+′Z+)−1Z+′ and Z+ = [D,X+,Ψ−1/2
0 X, e1] with the transpose of

the t-th row of X+ being defined by x+
t = xt− Γ̂∗xΣ̂∗−1û∗t . The following theorem yields the

limiting distributions of these test statistics.

Theorem 3 Under Assumption 2, R+
T (θ̄) and L+

T have the same limiting distributions as

RT (θ̄) and LT .

Although our correction of the test statistics is basically the same as that proposed by

Phillips and Hansen (1990), Park (1992), and Jansson (2005), we need not modify yt to

obtain test statistics that are asymptotically independent of nuisance parameters; therefore,

our correction of the test statistics is relatively simple. This is because, as explained in the

proof of Theorem 3, we can replace yt in the test statistics with v∗θt, where v∗θt = θuy·x
t +

(λ/T )
∑t

j=1 u
y·x
j . As uy·x

t are (asymptotically) uncorrelated with ux
t , Brownian motions
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induced by their partial sums are independent of each other, and hence, a “simultaneous

bias correction” is not required for our test statistics.

4. Finite sample evidence

In this section, we investigate the finite sample properties of the tests proposed in Section

3. The data-generating process considered here is the same as that in Jansson (2005). The

data are generated according to the system of (1) and (2) with α, β, and αx normalized to

zero. The error term ut is generated as

ut = ψ(L)Θ(ρ)εt, (7)

where εt = (εyt , ε
x
t )′ ∼ i.i.d.N(0, I2), ψ(L) = (1− a)

∑∞
i=0 a

iLi, and

Θ(ρ) =

[
1 0
ρ
√

1− ρ2

]
.

The parameters a and ρ control the strength of autocorrelation for the error and the

endogeneity of the regressor, respectively. We set a = 0, 0.5, 0.8, ρ = 0, 0.5, 0.8, θ =

1, 0.975, 0.95, 0.925, 0.90, and sample size T = 200. The initial value, u0, is drawn from

its stationary distribution, and y0 is set to be equal to zero. We experiment with two initial

values for x0, 0 and 10.

The estimation method used for Σ, Ω, and Γ is the same as that in Jansson (2004).6 We

estimate Σ using Σ̂ = T−1∑T
t=1 û

∗
t û

∗′
t and Ω and Γ using the VAR(1) prewhitened kernel

estimator. The rejection frequencies for the 5% level tests with x0 = 0 are reported in Tables

2 and 3 for the cases of the constant mean and linear trend, respectively (we suppress the

superscript + and the argument θ̄ from the test statistics). Cases 1 and 2 describe the

results for the cases of x0 = 0 and x0 = 10, respectively. For the sake of comparison, we

also show the results for the feasible versions of PT and ST . The test statistic ST is based

not on the parametric approach by Shin (1994) but on the nonparametric one by Choi and

Ahn (1995).
6The Matlab code provided by Michael Jansson was very useful in conducting our simulation experiments.
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For Case 1, the results are consistent with the analysis of the local asymptotic powers

shown in Figures 1 and 2 when the error is not persistent and the endogeneity is low, i.e.,

when a ≤ 0.5 and ρ ≤ 0.5. The empirical sizes of all the tests are satisfactorily close to

the nominal one. When the error is serially uncorrelated, i.e., a = 0, the robustness of RT

and LT to the endogeneity is pronounced. For ρ = 0.8, the results show nontrivial power

gain by RT and LT . This is because RT and LT are invariant under (Gy), which takes

into account the location shift in the direction of Ψ−1/2
0 X. The most distinctive results can

be observed when the error is persistent, i.e., when a = 0.8. ST and PT are undersized

when the endogeneity of the regressor is low and oversized when it is high. This is obviously

undesirable in practice. On the other hand, the performance of LT is highly stable regardless

of the degree of persistence. Based on these facts, the LBIU test becomes a strong candidate

for researchers who are perplexed with regard to a size versus power trade-off.

Case 2 shows the results with the nonzero initial value of the regressor, x0 = 10. The re-

sults on LT and RT are not presented because they are robust to the initial value, producing

exactly the same results as those for Case 1. Tables 2 and 3 reveal that all the appropriate

properties of PT and ST with respect to Case 1 are lost unless the endogeneity is absent,

i.e., unless ρ=0. This is an important observation since the initial value is not equal to zero

in almost all economic applications. Fortunately, applying the simple transformation of the

data that involves subtracting the initial value x0 from all the observations of x solves the

problem. In other words, if we transform the data such that x̃t = xt − x0 for t = 0, 1,. . .,

T and construct PT and ST using x̃t for xt, the test statistics become invariant to x0 and

perform the same way as Case 1 in finite samples. Researchers who use PT and ST should

always apply this transformation.

5. Conclusions

In this paper, we investigate the LBIU test for the null hypothesis of cointegration. We

develop the POI test and then derive the LBIU test among a class of tests that are invariant

to some location-scale transformation in the dependent variable. We calculate the asymp-

11



totic local power functions and compare them with the standard residual-based test, and we

show that the LBIU test is more powerful in a wide range of local alternatives. Our finite

sample evidence shows that the LBIU test outperforms the residual-based test in terms of

both size and power. The advantage of the LBIU test is particularly patent when the error

is persistent. The performance of the LBIU test is highly stable regardless of the degree of

persistence and the endogeneity whereas that of the other formerly proposed tests depend

considerably on whether the error is persistent or not. Further, we also point out that the

finite sample performance of the existing tests is largely affected by the initial value con-

dition, while our tests are immune to it. We propose a simple transformation of data that

resolves the problem in the existing tests.

12



Appendix

Proof of Theorem 1

The POI test statistic can be written as

RT (θ̄) = T
(
1−R1/T

1T (θ̄)R2T (θ̄)
)

= R1/T
1T (θ̄)× T

(
1−R2T (θ̄)

)
+ T

(
1−R1/T

1T (θ̄)
)

where

R1T (θ̄) =
|Z ′Ψ−1

θ̄
Z|

|Z ′Z|
, R2T (θ̄) =

y′(Ψ−1
θ̄
−Ψ−1

θ̄
Z(Z ′Ψ−1

θ̄
Z)−1Z ′Ψ−1

θ̄
)y

y′My
,

and we replaced T − q with T for simplicity without loss of generality. We first show that

R1T (θ̄) ⇒ |
∫ 1
0 Q

λ̄Qλ̄′ds|
|
∫ 1
0 QQ

′ds|
. (A.1)

To show (A.1), notice that in (3) there exist a k× (p+ 1) matrix G31 and a k× 1 vector

g34 such that ux
t = G31dt + (1 − (1 − 1t)L)xt + g341t, where 1t = 1 for t = 1 and 1t = 0

otherwise. Then, we can transform zt using a q × q nonsingular matrix G such that

z∗t = Gzt, where G =


Ip 0 0 0

−Σ−1/2
xx α′x Σ−1/2

xx 0 0
Σ−1/2

xx G31 0 Σ−1/2
xx Σ−1/2

xx g34

0 0 0 1

 ,

and z∗t = [z∗′1t, z
∗′
2t]

′ with z∗1t = [d′t, (Σ
−1/2
xx x0

t )
′]′ and z∗2t = [(Σ−1/2

xx ux
t )′, 1t]′. This is also

expressed as ZG′ = Z∗ = [Z∗1 , Z
∗
2 ] in the matrix form. Then, we have

R1T (θ̄) =
∣∣∣∣ 1T Υ−1

T GZ ′Ψ−1
θ̄
ZG′Υ−1

T

∣∣∣∣/∣∣∣∣ 1T Υ−1
T GZ ′ZG′Υ−1

T

∣∣∣∣
=

∣∣∣∣ 1T Υ−1
T Z θ̄′Z θ̄Υ−1

T

∣∣∣∣/∣∣∣∣ 1T Υ−1
T Z∗′Z∗Υ−1

T

∣∣∣∣
where ΥT = diag{Υ1T ,Υ2T } with Υ1T = diag{1, T, · · · , T p, T 1/2Ik} and Υ2T = diag{Ik, T−1/2}

and Z θ̄ = Ψ−1/2

θ̄
Z∗. Note that the transpose of the t-th row of Z θ̄ is expressed as

zθ̄
t = θ̄zθ̄

t−1 + (1− L)z∗t with zθ̄
1 = z∗1 .

We partition zθ̄
t into zθ̄

1t and zθ̄
2t conformably with z∗1t and z∗2t.
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Lemma A.1 For 0 ≤ s ≤ 1, the following convergences hold jointly.

(i) Υ−1
1T z

∗
1[Ts] ⇒ Q(s),

(ii) Υ−1
1T z

θ̄
1[Ts] ⇒ Qλ̄(s).

Proof of Lemma A.1: (i) is obtained by using the functional central limit theorem (FCLT).

With regard to (ii), from the definition of zθ̄
1t, we can express zθ̄

1t as

zθ̄
1t = z∗1t −

λ̄

T

t−1∑
j=1

(
1− λ̄

T

)t−j−1

z∗1j . (A.2)

See also the proof of Lemma 7 in Jansson (2004). Then, according to (i) and the continuous

mapping theorem (CMT), we have

Υ−1
1T z

θ̄
1[Ts] ⇒ Q(s)− λ̄

∫ s

0
e−λ̄(s−r)Qdr

=
∫ s

0
e−λ̄(s−r)dQ(r),

where the last equality holds by the partial integration formula.2

From Lemma A.1 (ii) and the CMT we have

1
T

Υ−1
1TZ

θ̄′
1 Z

θ̄
1Υ−1

1T ⇒
∫ 1

0
Qλ̄Qλ̄′ds. (A.3)

zθ̄
2t is expressed in exactly the same way as (A.2) as

zθ̄
2t = z∗2t −

λ̄

T

t−1∑
j=1

(
1− λ̄

T

)t−j−1

z∗2j

=


Σ−1/2

xx

ux
t −

λ̄

T

t−1∑
j=1

(
1− λ̄

T

)t−j−1

ux
j


1t − (1− 1t)

λ̄

T

(
1− λ̄

T

)t−2

 . (A.4)

Then, according to the weak law of large numbers (WLLN) and Theorem 4.1 in Hansen

(1992b), we have
1
T

Υ−1
2TZ

θ̄′
2 Z

θ̄
2Υ−1

2T
p−→ Ik+1, (A.5)
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where
p−→ signifies convergence in probability and

1
T

Υ−1
1TZ

θ̄′
1 Z

θ̄
2Υ−1

2T
p−→ 0. (A.6)

Combining (A.3), (A.5), and (A.6) we obtain

1
T

Υ−1
T Z θ̄′Z θ̄Υ−1

T ⇒
[ ∫ 1

0 Q
λ̄Qλ̄′ds 0
0 Ik+1

]
. (A.7)

Similarly, we have T−1Υ−1
T Z∗′Z∗Υ−1

T ⇒ diag{
∫ 1
0 Q(s)Q(s)′ds, Ik+1}. We then obtain

(A.1).

Using (A.1), we can show that

R1/T
1T

p−→ 1 and T
(
1−R1/T

1T (θ̄)
)
⇒ − log

∣∣∣∣∫ 1

0
Qλ̄Qλ̄′ds

∣∣∣∣+ log
∣∣∣∣∫ 1

0
QQ′ds

∣∣∣∣ (A.8)

because a1/T → 1 and T (1− a1/T ) → − log a for a given a > 0 as T →∞.

Next, we investigate the asymptotic behavior of T (1−R2T (θ̄)). To do this, we decompose

vt as

vt = uy
t + (1− θ)

t−1∑
j=1

uy
j

= θuy
t +

λ

T

t∑
j=1

uy
j

= v∗θt + rθt,

where v∗θt = θuy·x
t + (λ/T )

∑t
j=1 u

y·x
j with uy·x

t = uy
t − σyxΣ−1

xxu
x
t and rθt = θσyxΣ−1

xxu
x
t +

(λ/T )σyxΣ−1
xx

∑t
j=1 u

x
j . Let v∗θ and rθ be the vectorized forms of v∗θt and rθt. Since

rθ =
{
θUx + (λ/T )Ψ1/2

0 Ux
}

Σ−1
xxσxy

=
{
θ
(
Ψ−1/2

0 X −Ψ−1/2
0 Dαx

)
+ (λ/T ) (X −Dαx)

}
Σ−1

xxσxy,

the conditional likelihood is independent of the change in the direction of rθ, so that we can

replace y in the test statistic with v∗θ . Then, we can observe that

T
(
1−R2T (θ̄)

)
= T

(
1−

v∗′θ (Ψ−1
θ̄
−Ψ−1

θ̄
Z(Z ′Ψ−1

θ̄
Z)−1Z ′Ψ−1

θ̄
)v∗θ

v∗′θ Mv∗θ

)

=
R21T (θ̄) +R22T (θ̄)

v∗′θ Mv∗θ/T
, (A.9)
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where

R21T (θ̄) = 2
(
v∗θ −Ψ−1/2

θ̄
v∗θ

)′
v∗θ −

(
v∗θ −Ψ−1/2

θ̄
v∗θ

)′ (
v∗θ −Ψ−1/2

θ̄
v∗θ

)
= 2

(
v∗θ − vθ̄

θ

)′
v∗θ −

(
v∗θ − vθ̄

θ

)′ (
v∗θ − vθ̄

θ

)
and

R22T (θ̄) = v∗′θ Ψ−1
θ̄
Z(Z ′Ψ−1

θ̄
Z)−1Z ′Ψ−1

θ̄
v∗θ − v∗′θ Z(Z ′Z)−1Z ′v∗θ

=
(

1√
T
vθ̄′
θ Z

θ̄Υ−1
T

)(
1
T

Υ−1
T Z θ̄′Z θ̄Υ−1

T

)−1 ( 1√
T

Υ−1
T Z θ̄′vθ̄

θ

)
−
(

1√
T
v∗′θ Z

∗Υ−1
T

)(
1
T

Υ−1
T Z∗′Z∗Υ−1

T

)−1 ( 1√
T

Υ−1
T Z∗′v∗θ

)
,

with vθ̄
θ = Ψ−1/2

θ̄
v∗θ . As the denominator in (A.9) is shown to converge to σyy·x = 1 in

probability by the WLLN under the local alternative, we focus on the derivation of the

limiting distributions of R21T (θ̄) and R22T (θ̄) in the following.

Lemma A.2 For 0 ≤ s ≤ 1, the following convergences hold jointly.

(i)
1√
T

[Ts]∑
t=1

v∗θt ⇒ Vλ(s),

(ii)
1√
T

[Ts]∑
t=1

vθ̄
θt ⇒ V λ̄

λ (s), and

(iii)
√
T
(
v∗θ[Ts] − vθ̄

θ[Ts]

)
⇒ λ̄V λ̄

λ (s).

Proof of Lemma A.2: (i) is obtained from the definition of v∗θt, the FCLT, and the CMT.

With regard to (ii), from the definition of vθ̄
θt we have

t∑
j=1

vθ̄
θj − θ̄

t−1∑
j=1

vθ̄
θj = v∗θt.

Then, in exactly the same way as (A.2), it is seen that

t∑
j=1

vθ̄
θj =

t∑
j=1

v∗θj −
λ̄

T

t−1∑
j=1

(
1− λ̄

T

)t−j−1
 j∑

i=1

v∗θi

 .
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Using (i), the CMT, and the partial integration formula, we obtain (ii).

With regard to (iii), from the definition of vθ̄
θt, we have

v∗θt − vθ̄
θt = (1− θ̄)

t−1∑
j=1

vθ̄
θj .

Then, (iii) is obtained using (ii).2

Using Lemma A.2, the CMT, and Theorem 4.1 in Hansen (1992b), we have

R21T (θ̄) ⇒ 2λ̄
∫ 1

0
V λ̄

λ dVλ − λ̄2
∫ 1

0
(V λ̄

λ )2ds. (A.10)

For R22T (θ̄), we can see that

1√
T

Υ−1
1TZ

θ̄′
1 v

θ̄
θ ⇒

∫ 1

0
Qλ̄dV λ̄

λ , (A.11)

using Lemmas A.1, A.2, and Theorem 4.1 in Hansen (1992b), while

1√
T

Υ−1
2TZ

θ̄′
2 v

θ̄
θ =


1√
T

T∑
t=1

(Σ−1/2
xx uxθ̄

t )vθ̄
θt

T∑
t=1

1θ̄
t v

θ̄
θt

 ,

where uxθ̄
t is the transpose of the t-th row of Ψ−1/2

θ̄
Ux. In exactly the same way as (A.2) we

have

vθ̄
θt = v∗θt −

λ̄

T

t−1∑
j=1

(
1− λ̄

T

)t−j−1

v∗θj . (A.12)

Then, from (A.4) and (A.12), we can see that

1√
T

T∑
t=1

(Σ−1/2
xx uxθ̄

t )vθ̄
θt =

1√
T

T∑
t=1

(Σ−1/2
xx )ux

t u
y·x
t +Op(T−1/2)

⇒ N(1), (A.13)

by the FCLT, where N(s) is a k dimensional standard Brownian motion that is independent

of W (s) and V (s).

On the other hand, using (A.4) we have

T∑
t=1

1θ̄
t v

θ̄
θt = vθ̄

θ1 −
λ̄

T

T∑
t=2

(
1− λ̄

T

)t−2

vθ̄
θt

p−→ vθ̄
θ1 = v∗θ1. (A.14)
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Then, combining (A.7), (A.11), (A.13), and (A.14) we have(
1√
T
vθ̄′
θ Z

θ̄Υ−1
T

)(
1
T

Υ−1
T Z θ̄′Z θ̄Υ−1

T

)−1 ( 1√
T

Υ−1
T Z θ̄′vθ̄

θ

)
⇒

(∫ 1

0
Qλ̄dV λ̄

λ

)′ (∫ 1

0
Qλ̄Qλ̄′ds

)−1 (∫ 1

0
Qλ̄dV λ̄

λ

)
+N(1)2 + v∗2θ1 .

In exactly the same way we have(
1√
T
v∗′θ Z

∗Υ−1
T

)(
1
T

Υ−1
T Z∗′Z∗Υ−1

T

)−1 ( 1√
T

Υ−1
T Z∗′v∗θ

)
⇒

(∫ 1

0
QdVλ

)′ (∫ 1

0
QQ′ds

)−1 (∫ 1

0
QdVλ

)
+N(1)2 + v∗2θ1 .

Then, we can see that

R22T (θ̄) ⇒
(∫ 1

0
Qλ̄dV λ̄

λ

)′ (∫ 1

0
Qλ̄Qλ̄′ds

)−1 (∫ 1

0
Qλ̄dV λ̄

λ

)
−
(∫ 1

0
QdVλ

)′ (∫ 1

0
QQ′ds

)−1 (∫ 1

0
QdVλ

)
. (A.15)

By combining (A.10) and (A.15), we have

T
(
1−R2T (θ̄)

)
⇒ 2λ̄

∫ 1

0
V λ̄

λ dVλ − λ̄2
∫ 1

0
(V λ̄

λ )2ds

+
(∫ 1

0
Qλ̄dV λ̄

λ

)′ (∫ 1

0
Qλ̄Qλ̄′ds

)−1 (∫ 1

0
Qλ̄dV λ̄

λ

)
−
(∫ 1

0
QdVλ

)′ (∫ 1

0
QQ′ds

)−1 (∫ 1

0
QdVλ

)
. (A.16)

The required distribution is obtained from (A.8) and (A.16).2

Proof of Theorem 2

We first derive the LBIU test statistic (6). Note that

dΨθ

dθ
= (IT −Ψ1/2

0 )Ψ1/2′
θ + Ψ1/2

θ (IT −Ψ1/2′
0 )

d2Ψθ

dθ2
= 2(IT −Ψ1/2

0 )(IT −Ψ1/2′
0 ) = 2(Ψ0 − iT i

′
T ),

where iT = [1, · · · , 1] is a T × 1 vector and the relation IT −Ψ1/2
0 −Ψ1/2′

0 = −iT i′T is used.

Then, as Ψ1/2
1 = IT , H ′H = IT−q, and H ′iT = 0, we have

d(H ′ΨθH)
dθ

∣∣∣∣
θ=1

= H ′(IT − iT i
′
T )H = IT−q (A.17)
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d2(H ′ΨθH)
dθ2

∣∣∣∣∣
θ=1

= 2H ′Ψ0H. (A.18)

From (A.17) and the standard matrix differential calculus, we can show that

d log f(η|X; θ)
dθ

∣∣∣∣
θ=1

= −1
2
tr
{

(H ′Ψ1H)−1 d(H
′ΨθH)
dθ

∣∣∣∣
θ=1

}

+
T − q

2

η′(H ′Ψ1H)−1 d(H′ΨθH)
dθ

∣∣∣
θ=1

(H ′Ψ1H)−1η

η′(H ′Ψ1H)−1η
= 0.(A.19)

For the second derivative, it should be noted that

d2 log |H ′ΨθH|
dθ2

∣∣∣∣∣
θ=1

= tr
{
−IT−q + 2H ′Ψ0H

}
= −(T − q) + 2tr {MΨ0}

= (T 2 + q)− 2tr
{
(Z ′Z)−1Z ′Ψ0Z

}
, (A.20)

which is obtained using (A.17), (A.18), and HH ′ = M , and

d2 log{η′(H ′ΨθH)−1η}
dθ2

∣∣∣∣∣
θ=1

= 1− 2η′HΨ0Hη

= 1− 2
y′MΨ0My

y′My
. (A.21)

Then, from (A.20) and (A.21) we have

d2 log f(η|X; θ)
dθ2

∣∣∣∣∣
θ=1

= const+
y′MΨ0My

y′My/(T − q)
+ tr

{
(Z ′Z)−1Z ′Ψ0Z

}
,

so that we obtain (6).

Next, we derive the limiting distribution of the LBIU test statistic. For the same reason

given in the proof of Theorem 1, we can replace y in the test statistic with v∗θ and then we

have Ψ1/2′
0 My = Ψ1/2′

0 Mv∗θ . Noting that Ψ1/2′
0 = iT i

′
T − Ψ̄1/2

0 , where Ψ̄1/2
0 is a T × T lower

triangular matrix with diagonal elements 0 and the other lower elements 1, we have

1√
T

Ψ1/2′
0 My =

1√
T

(iT i′T − Ψ̄1/2
0 )Mv∗θ

= − 1√
T

{
Ψ̄1/2

0 v∗θ − Ψ̄1/2
0 Z

(
Z ′Z

)−1
Z ′v∗θ

}
= −

{
1√
T

Ψ̄1/2
0 v∗θ −

1
T

Ψ̄1/2
0 Z∗Υ−1

T

(
1
T

Υ−1
T Z∗′Z∗Υ−1

T

)−1 1√
T

Υ−1
T Z∗′v∗θ

}
,
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where the second equality holds because i′TM = 0. As the t-th rows of Ψ̄1/2
0 v∗θ and Ψ̄1/2

0 Z∗

are
∑t−1

j=1 v
∗
θj and

∑t−1
j=1 z

∗′
t , we have, using Lemmas A.1, A.2, the FCLT, and the CMT,

v∗′θ MΨ0Mv∗θ/T
2

v∗′θ Mv∗θ/(T − q)
⇒
∫ 1

0

{
Vλ(s)−

∫ s

0
Q′dr

(∫ 1

0
QQ′dr

)−1 ∫ 1

0
QdVλ

}2

ds. (A.22)

Similarly, we can also see that

1
T 2

tr
{
(Z ′Z)−1(Z ′Ψ0Z)

}
= tr

{(
1
T

Υ−1
T Z∗′Z∗Υ−1

T

)(
1
T 3

Υ−1
T Z∗′Ψ0Z

∗Υ−1
T

)}
.

Noting that the transpose of the t-th row of Ψ1/2′
0 Z∗ is given by

∑T
j=t z

∗
j , we have, from

Lemma A.1 and the CMT,

1
T 2

tr
{
(Z ′Z)−1(Z ′Ψ0Z)

}
⇒ tr

{(∫ 1

0
QQ′dr

)−1 ∫ 1

0

(∫ 1

s
Qdr

)(∫ 1

s
Q′dr

)
ds

}
. (A.23)

From (A.22) and (A.23), we obtain the result.2

Proof of Theorem 3

The proof proceeds in the same way as the proofs of Theorem 1 in the last section and

Theorem 2 in Jansson (2005). We provide only an outline. First, note that we can obtain

the same results in Lemma A.1 by replacing Σ−1/2
xx in G with Ω−1/2

xx . We can also see that, as

in the proof of Theorem 1, yt in the test statistics can be replaced by v∗θt, where under general

assumptions uy·x
t is defined as uy·x

t = uy
t − ωyxΩ−1

xxu
x
t , so that the limiting distributions in

Lemma A.2 should be multiplied by ω
∗1/2
11 . Then, applying Lemma 1 in Sims, Stock, and

Watson (1990) and Lemma 7 in Jansson (2004), we can see that

2(v∗θ − vθ̄
θ)
′v∗θ ⇒ 2λ̄ω∗11

∫ 1

0
V λ̄

λ dVλ + 2λ̄π∗11,

and then

R2T (θ̄) ⇒ ω∗11

(
2λ̄
∫ 1

0
V λ̄

λ dVλ − λ̄2
∫ 1

0
(V λ̄

λ )2ds
)

+ 2λ̄π∗11.

Similarly, we can see that

1√
T

Υ−1
1TZ

+θ̄′
1 vθ̄

θ ⇒ ω
∗1/2
11

∫ 1

0
Qλ̄dV λ̄

λ

1√
T

Υ−1
1TZ

+∗′
1 v∗θ ⇒ ω

∗1/2
11

∫ 1

0
QdVλ.

By combining these results, we obtain the theorem.2
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