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Abstract

Lagrange’s four-square theorem asserts that any
n ∈ N = {0, 1, 2, . . .} can be written as x2 + y2 + z2 + w2 with
x , y , z ,w ∈ N. In 2016 the speaker formulated many conjectural
refinements of this classical theorem; for example, his 1-3-5
conjecture states that we may require additionally that x + 3y + 5z
is a square.

In this talk, we review various problems and results refining
Lagrange’s four-square theorem. In particular, we will introduce
the recent nice proof of the 1-3-5 conjecture given by A.
Machiavelo and N. Tsopanidis, which involves the Lipschitz
integers related to Hamilton quaternions.
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Part I. Classical Results on Sums of Four Squares
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Lagrange’s Four-square Theorem

Four-Square Theorem. Each n ∈ N = {0, 1, 2, . . .} can be
written as the sum of four squares.

Examples. 3 = 12 + 12 + 12 + 02 and 7 = 22 + 12 + 12 + 12.

A. Diophantus (AD 299-215, or AD 285-201) was aware of this
theorem as indicated by examples given in his book Arithmetica.

In 1621 Bachet translated Diophantus’ book into Latin and stated
the theorem in the notes of his translation.

In 1748 L. Euler found the four-square identity

(x2
1 + x2

2 + x2
3 + x2

4 )(y2
1 + y2

2 + y2
3 + y2

4 )

=(x1y1 + x2y2 + x3y3 + x4y4)2 + (x1y2 − x2y1 − x3y4 + x4y3)2

+ (x1y3 − x3y1 + x2y4 − x4y2)2 + (x1y4 − x4y1 − x2y3 + x3y2)2.

and hence reduced the theorem to the case with n prime.

On the basis of Euler’s work, in 1770 J. L. Lagrange first
completed the proof of the four-square theorem. The celebrated
theorem is now known as Lagrange’s Four-square Theorem. 4 / 59



The representation function r4(n)

Jacobi used his triple-product formula

∞∏
n=1

(1−q2n)(1+q2n−1z)(1+q2n−1z−1) =
+∞∑

n=−∞
znqn2 (|q| < 1, z 6= 0)

to study the fourth power of ϕ(q) =
∑∞

n=−∞ qn2 , and this led him
to deduce that

r4(n) = 8
∑

d |n & 4-d

d for all n ∈ Z+,

where

r4(n) := |{(w , x , y , z) ∈ Z4 : w2 + x2 + y2 + z2 = n}|.

This is related to modular forms of weight two. Let τ be a complex
number with positive real part and set θ(τ) = ϕ(e2πiτ ). Then

θ

(
τ

4τ + 1

)
=
√

4τ + 1 θ(τ) and hence θ4
(

τ

4τ + 1

)
= (4τ+1)2θ4(τ).
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Ramanujan’s observation

S. Ramanujan’s Observation (confirmed by L.E. Dickson in
1927). There are totally 54 quadruples (a, b, c, d) ∈ (Z+)4 with
a 6 b 6 c 6 d such that each n ∈ N can be written as
aw2 + bx2 + cy2 + dz2 with w , x , y , z ∈ Z. The 54 quadruples are

(1, 1, 1, 1), (1, 1, 1, 2), (1, 1, 2, 2), (1, 2, 2, 2), (1, 1, 1, 3), (1, 1, 2, 3),

(1, 2, 2, 3), (1, 1, 3, 3), (1, 2, 3, 3), (1, 1, 1, 4), (1, 1, 2, 4), (1, 2, 2, 4),

(1, 1, 3, 4), (1, 2, 3, 4), (1, 2, 4, 4), (1, 1, 1, 5), (1, 1, 2, 5), (1, 2, 2, 5),

(1, 1, 3, 5), (1, 2, 3, 5), (1, 2, 4, 5), (1, 1, 1, 6), (1, 1, 2, 6), (1, 2, 2, 6),

(1, 1, 3, 6), (1, 2, 3, 6), (1, 2, 4, 6), (1, 2, 5, 6), (1, 1, 1, 7), (1, 1, 2, 7),

(1, 2, 2, 7), (1, 2, 3, 7), (1, 2, 4, 7), (1, 2, 5, 7), (1, 1, 2, 8), (1, 2, 3, 8),

(1, 2, 4, 8), (1, 2, 5, 8), (1, 1, 2, 9), (1, 2, 3, 9), (1, 2, 4, 9), (1, 1, 5, 9),

(1, 1, 2, 10), (1, 2, 3, 10), (1, 2, 4, 10), (1, 2, 5, 10), (1, 1, 2, 11), (1, 2, 4, 11),

1, 1, 2, 12), (1, 2, 4, 12), (1, 1, 2, 13), (1, 2, 4, 13), (1, 1, 2, 14), (1, 2, 4, 14).
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Sums of three squares

Gauss-Legendre Theorem. n ∈ N can be written as the sum of
three squares if and only if n is not of the form 4k(8l + 7) with
k , l ∈ N.

Euler’s Observation (June 9, 1750). Any positive odd integer can
be written as x2 + y2 + z2 + w2 with x , y , z ,w ∈ Z and
x + y + z + w = 1.

This follows from the Gauss-Legendre Theorem.
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Part II. New Problems for Sums of Four Squares
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Universal sums over N
Let f (x1, . . . , xk) ∈ Z[x1, . . . , xk ]. If any n ∈ N can be written as
f (x1, . . . , xk) with x1, . . . , xk in N (or Z), then we say that f is
universal over N (or Z).

Suppose that a1xn1
1 + . . .+ akxnk

k (with a1, . . . , ak ∈ Z+) is
universal over N. For any positive integer N, each
n = 0, . . . ,N − 1 can be written as

∑k
i=1 aix

ni
i with xi ∈ N, thus

|{(x1, . . . , xk) ∈ Nk : a1xn1
1 < N, . . . , akxnk

k < N}| > N

and hence

N 6
k∏

i=1

(
1 +

(
N

ai

)1/ni
)
.

As this holds for any N ∈ Z+, we must have

k∑
i=1

1

ni
> 1.
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Universal sums of four mixed powers

Theorem (Sun [J. Number Theory 175(2017)]). For any a ∈ {1, 4}
and k ∈ {4, 5, 6}, awk + x2 + y2 + z2 is universal over N.

Theorem (Z.-W. Sun [Nanjing Univ. J. Math. Biquarterly
34(2017)]). Let a, b, c , d ∈ Z+ with a 6 b 6 c 6 d , and let
h, i , j , k ∈ {2, 3, . . .} with at most one of h, i , j , k equal to two.
Suppose that h 6 i if a = b, i 6 j if b = c , and j 6 k if c = d . If
f (w , x , y , z) = awh + bx i + cy j + dzk is universal over N, then
f (w , x , y , z) must be among the following 9 polynomials

w2 + x3 + y4 + 2z3, w2 + x3 + y4 + 2z4, w2 + x3 + 2y3 + 3z3,

w2 + x3 + 2y3 + 3z4, w2 + x3 + 2y3 + 4z3, w2 + x3 + 2y3 + 5z3,

w2 + x3 + 2y3 + 6z3, w2 + x3 + 2y3 + 6z4, w3 + x4 + 2y2 + 4z3.

Conjecture (Sun [Nanjing Univ. J. Math. Biquarterly 34(2017)]).
All the 9 polynomials are universal over N.

10 / 59



Discoveries on April 8, 2016
Motivated by my conjecture that any n ∈ N can be written as

x3
1 + x3

2 + 2x3
3 + 2x3

4 + 3x3
5 (x1, x2, x3, x4, x5 ∈ N)

(which is stronger than the result g(3) = 9 for Waring’s problem),
on April 8, 2016 I considered to write n ∈ N as

∑5
i=1 aix

2
i (xi ∈ N)

with certain restrictions on x1, . . . , x5.

Conjecture (Z.-W. Sun) Let n > 1 be an integer.

(i) n can be written as

x2
1+x2

2+x2
3+2x2

4+2x2
5 = x2

1+x2
2+x2

3+(x4 + x5)2+(x4−x5)2 (xi ∈ N)

with x1 + x2 + x3 + x4 + x5 prime.

(ii) We can write n as

x2
1 + 2x2

2 + 3x2
3 + 4x2

4 + 5x2
5 (x1, x2, x3, x4, x5 ∈ N)

with x1 + x2 + x3 + x4 a square.

Remark. Squares are sparser than prime numbers.
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1-3-5-Conjecture (1350 US dollars for the first solution)

1-3-5-Conjecture (Z.-W. Sun, April 9, 2016): Any n ∈ N can be
written as x2 + y2 + z2 + w2 with x , y , z ,w ∈ N such that
x + 3y + 5z is a square.

Examples.

7 =12 + 12 + 12 + 22 with 1 + 3× 1 + 5× 1 = 32,

8 =02 + 22 + 22 + 02 with 0 + 3× 2 + 5× 2 = 42,

31 =52 + 22 + 12 + 12 with 5 + 3× 2 + 5× 1 = 42,

43 =12 + 52 + 42 + 12 with 1 + 3× 5 + 5× 4 = 62.

The conjecture has been verified by Qing-Hu Hou for all n 6 1010.

We guess that, if a, b, c are positive integers with gcd(a, b, c)
squarefree such that any n ∈ N can be written as
x2 + y2 + z2 + w2 (x , y , z ,w ∈ N) with ax + by + cz a square,
then we must have {a, b, c} = {1, 3, 5}.
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无   解 

 

数字几时有， 

把酒问青天。 

一二三四五， 

自然藏玄机。 

 

四个平方和， 

遍历自然数。 

奇妙一三五， 

更上一层楼。 

 

苍天捉弄人， 

数论妙无穷。 

吾辈虽努力， 

难解一三五! 

 

时势唤英雄， 

攻关需豪杰。 

人间若无解， 

天神会证否？ 
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Diagonal ternary quadratic forms

For a, b, c ∈ Z+ = {1, 2, 3, . . .}, we define

E (a, b, c) := {n ∈ N : n 6= ax2 + by2 + cz2 for any x , y , z ∈ N}.

It is known that E (a, b, c) is an infinite set.

There are totally 102 diagonal ternary quadratic forms
ax2 + by2 + cz2 with a, b, c ∈ Z+ and gcd(a, b, c) = 1 for which
the structure of E (a, b, c) is known explicitly. For example,

E (1, 1, 1) ={4k(8l + 7) : k , l ∈ N},
E (1, 1, 2) ={4k(16l + 14) : k , l ∈ N},
E (1, 1, 5) ={4k(8l + 3) : k , l ∈ N},
E (1, 2, 3) ={4k(16l + 10) : k , l ∈ N},
E (1, 2, 6) ={4k(8l + 5) : k , l ∈ N}.
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Sums of a fourth power and three squares

Theorem (Z.-W. Sun, March 27, 2016). Each n ∈ N can be
written as w4 + x2 + y2 + z2 with w , x , y , z ∈ N.

Proof. For n = 0, 1, 2, . . . , 15, the result can be verified directly.
Now let n > 16 be an integer and assume that the result holds for
smaller values of n.

Case 1. 16 | n.
By the induction hypothesis, we can write

n

16
= x4 + y2 + z2 + w2 with x , y , z ,w ∈ N.

It follows that n = (2x)4 + (4y)2 + (4z)2 + (4w)2.

Case 2. n = 4kq with k ∈ {0, 1} and q ≡ 7 (mod 8).
In this case, n − 1 6∈ E (1, 1, 1), and hence n = 14 + y2 + z2 + w2

for some y , z ,w ∈ N.

Case 3. 16 - n and n 6= 4k(8l + 7) for any k ∈ {0, 1} and l ∈ N.
In this case, n 6∈ E (1, 1, 1) and hence there are y , z ,w ∈ N such
that n = 04 + y2 + z2 + w2.
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Suitable polynomials

Definition (Z.-W. Sun, 2016). A polynomial P(x , y , z ,w) with
integer coefficients is called suitable if any n ∈ N can be written as
x2 + y2 + z2 + w2 with x , y , z ,w ∈ N such that P(x , y , z ,w) is a
square.

We have seen that both x and 2x are suitable polynomials. The
1-3-5-Conjecture says that x + 3y + 5z is suitable.

We conjecture that there only finitely many a, b, c, d ∈ Z with
gcd(a, b, c , d) squarefree such that ax + by + cz + dw is suitable,
and we have found all such quadruples (a, b, c , d).
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x − y and 2x − 2y are suitable

Let a ∈ {1, 2}. We claim that any n ∈ N can be written as
x2 + y2 + z2 + w2 with x , y , z ,w ∈ N such that a(x − y) is a
square, and want to prove this by induction.

For every n = 0, 1, . . . , 15, we can verify the claim directly.

Now we fix an integer n > 16 and assume that the claim holds for
smaller values of n.

Case 1. 16 | n.
In this case, by the induction hypothesis, there are x , y , z ,w ∈ N
with a(x − y) a square such that n/16 = x2 + y2 + z2 + w2, and
hence n = (4x)2 + (4y)2 + (4z)2 + (4w)2 with a(4x − 4y) a
square.

Case 2. 16 - n and n 6∈ E (1, 1, 2).
In this case, there are x , y , z ,w ∈ N with x = y and
n = x2 + y2 + z2 + w2, thus a(x − y) = 02 is a square.
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x − y and 2x − 2y are suitable

Case 3. 16 - n and n ∈ E (1, 1, 2) = {4k(16l + 14) : k , l ∈ N}.

In this case, n = 4k(16l + 14) for some k ∈ {0, 1} and l ∈ N. Note
that n/2− (2/a)2 6∈ E (1, 1, 1). So, n/2− (2/a)2 = t2 + u2 + v2

for some t, u, v ∈ N with t > u > v . As n/2− (2/a)2 > 8− 4 > 3,
we have t > 2 > 2/a. Thus

n =2

((
2

a

)2

+ t2

)
+ 2(u2 + v2)

=

(
t +

2

a

)2

+

(
t − 2

a

)2

+ (u + v)2 + (u − v)2

with

a

((
t +

2

a

)
−
(

t − 2

a

))
= 22.

This proves that x − y and 2x − 2y are both suitable.
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Suitable polynomials of the form ax ± by

Conjecture (Z.-W. Sun, April 14, 2016) Let a, b ∈ Z+ with
gcd(a, b) squarefree.

(i) The polynomial ax + by is suitable if and only if
{a, b} = {1, 2}, {1, 3}, {1, 24}.

(ii) The polynomial ax − by is suitable if and only if (a, b) is
among the ordered pairs

(1, 1), (2, 1), (2, 2), (4, 3), (6, 2).

Remark. In 2016, I proved that any n ∈ N can be written as
x2 + y2 + z2 + w2 with x , y , z ,w ∈ Z such that x + 2y is a square
(or a cube). In a joint paper with my student Yu-Chen Sun [Acta
Arith. 183(2018)], we managed to show that x + 2y is indeed
suitable.
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Write n = x2 + y 2 + z2 + w 2 with x + 3y a square

In 1916 Ramanujan conjectured that

(1) the only positive even numbers not of the form x2 + y2 + 10z2

are those 4k(16l + 6) (k , l ∈ N)

and

(2) sufficiently large odd numbers are of the form x2 + y2 + 10z2.

In 1927 L. E. Dickson [Bull. AMS] proved (1). In 1990 W. Duke
and R. Schulze-Pillot [Invent. Math.] confirmed (2). In 1997 K.
Ono and K. Soundararajan [Invent. Math.] proved that under the
GRH (Generalized Riemann Hypothesis) any odd number greater
than 2719 has the form x2 + y2 + 10z2.

Z.-W. Sun [J. Number Theory 175(2017)]: Under the GRH, any
n ∈ N can be written as n = x2 + y2 + z2 + w2 (x , y , z ,w ∈ Z)
with x + 3y a square.

Yue-Feng She and Hai-Liang Wu [arXiv:2010.02067]: x + 3y is
suitable (via the arithmetic theory of ternary quadratic forms).
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Suitable ax − by − cz or ax + by − cz
Conjecture (Z.-W. Sun, April 14, 2016): (i) Let a, b, c ∈ Z+ with
b 6 c and gcd(a, b, c) squarefree. Then ax − by − cz is suitable if
and only if (a, b, c) is among the five triples

(1, 1, 1), (2, 1, 1), (2, 1, 2), (3, 1, 2), (4, 1, 2).

(ii) Let a, b, c ∈ Z+ with a 6 b and gcd(a, b, c) squarefree. Then
ax + by − cz is suitable if and only if (a, b, c) is among the
following 52 triples

(1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2), (1, 2, 3), (1, 3, 1),

(1, 3, 3), (1, 4, 4), (1, 5, 1), (1, 6, 6), (1, 8, 6), (1, 12, 4), (1, 16, 1),

(1, 17, 1), (1, 18, 1), (2, 2, 2), (2, 2, 4), (2, 3, 2), (2, 3, 3), (2, 4, 1),

(2, 4, 2), (2, 6, 1), (2, 6, 2), (2, 6, 6), (2, 7, 4), (2, 7, 7), (2, 8, 2),

(2, 9, 2), (2, 32, 2), (3, 3, 3), (3, 4, 2), (3, 4, 3), (3, 8, 3), (4, 5, 4),

(4, 8, 3), (4, 9, 4), (4, 14, 14), (5, 8, 5), (6, 8, 6), (6, 10, 8), (7, 9, 7),

(7, 18, 7), (7, 18, 12), (8, 9, 8), (8, 14, 14), (8, 18, 8), (14, 32, 14),

(16, 18, 16), (30, 32, 30), (31, 32, 31), (48, 49, 48), (48, 121, 48).
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n = x2 + y 2 + z2 + w 2 with x + y + z a square (or a cube)

Theorem (Z.-W. Sun [J. Number Theory 175(2017)]). Any n ∈ N
can be written as x2 + y2 + z2 + w2 with x , y , z ,w ∈ Z such that
x + y + z is a square (or a cube).

Theorem (Z.-W. Sun [Int. J. Number Theory 15(2019)]).

(i) Any n ∈ Z+ can be written as x2 + y2 + z2 + w2 with
x , y , z ,w ∈ N and |x + y − z | ∈ {4k : k ∈ N}.

(ii) Any n ∈ Z+ can be written as x2 + y2 + z2 + w2 with
x , y , z ,w ∈ N such that

x + y − z ∈ {±8k : k ∈ N} ∪ {0} ⊆ {t3 : t ∈ Z}.

Remark. The speaker is unable to show that x + y − z (or
x − y − z) is suitable.
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Suitable ax + by + cz − dw or ax + by − cz − dw

Conjecture (Z.-W. Sun, April 14, 2016): Let a, b, c , d ∈ Z+ with
a 6 b 6 c and gcd(a, b, c , d) squarefree. Then ax + by + cz − dw
is suitable if and only if (a, b, c , d) is among the 12 quadruples

(1, 1, 2, 1), (1, 2, 3, 1), (1, 2, 3, 3), (1, 2, 4, 2),

(1, 2, 4, 4), (1, 2, 5, 5), (1, 2, 6, 2), (1, 2, 8, 1),

(2, 2, 4, 4), (2, 4, 6, 4), (2, 4, 6, 6), (2, 4, 8, 2).

Conjecture (Z.-W. Sun, April 14, 2016): Let a, b, c , d ∈ Z+ with
a 6 b and c 6 d , and gcd(a, b, c , d) squarefree. Then
ax + by − cz − dw is suitable if and only if (a, b, c , d) is among
the 9 quadruples

(1, 2, 1, 1), (1, 2, 1, 2), (1, 3, 1, 2), (1, 4, 1, 3),

(2, 4, 1, 2), (2, 4, 2, 4), (8, 16, 7, 8), (9, 11, 2, 9), (9, 16, 2, 7).
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A general theorem joint with Yu-Chen Sun

Theorem (Yu-Chen Sun and Z.-W. Sun [Acta Arith. 183(2018)]).
Let a, b, c , d ∈ Z with a, b, c , d not all zero. Let λ ∈ {1, 2} and
m ∈ {2, 3} Then any n ∈ N can be written as x2 + y2 + z2 + w2

with x , y , z ,w ∈ Z/(a2 + b2 + c2 + d2) such that
ax + by + cz + dw = λrm for some r ∈ N.

Proof. Let n ∈ N. By a result of Z.-W. Sun, we can write
(a2 + b2 + c2 + d2)n as (λrm)2 + t2 + u2 + v2 with r , t, u, v ∈ N.
Set s = λrm, and define x , y , z ,w by

x = as−bt−cu−dv
a2+b2+c2+d2 ,

y = bs+at+du−cv
a2+b2+c2+d2 ,

z = cs−dt+au+bv
a2+b2+c2+d2 ,

w = ds+ct−bu+av
a2+b2+c2+d2 .
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Proof of the general theorem

Then 
ax + by + cz + dw = s,

ay − bx + cw − dz = t,

az − bw − cx + dy = u,

aw + bz − cy − dx = v .

With the help of Euler’s four-square identity,

x2 + y2 + z2 + w2 =
s2 + t2 + u2 + v2

a2 + b2 + c2 + d2
= n

and
ax + by + cz + dw = s = λrm.

This concludes the proof.
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Joint work with Yu-Chen Sun

Theorem (Y.-C. Sun and Z.-W. Sun [Acta Arith. 183(2018)])

(i) Let m ∈ Z+. Then any n ∈ N can be written as
x2 + y2 + z2 + w2 (x , y , z ,w ∈ Z) with x + y + z + w an m-th
power if and only if m 6 3.

(ii) Any n ∈ N can be written as x2 + y2 + z2 + w2 with
x , y , z ,w ∈ Z such that x + 2y + 3z is a square (or a cube).

(iii) (Progress on the 1-3-5-Conjecture) Any n ∈ N can be written
as x2 + y2 + z2 + w2 with x , y , 5z , 5w ∈ Z such that x + 3y + 5z
is a square (or a cube).

26 / 59



A Lemma

The proof of the Theorem needs several lemmas and some previous
results of Z.-W. Sun. Here is one of them.

Lemma. Define 
x = s−t−u−2v

7 ,

y = s+t+2u−v
7 ,

z = s−2t+u+v
7 ,

w = 2s+t−u+v
7 .

Then

x2 + y2 + z2 + w2 =
s2 + t2 + u2 + v2

7
.

Also,

x + y + z + 2w =s,

w + 2x + 3z =s − t,

x + 3y + 5w =2s + t.
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Joint work with Hai-Liang Wu

Besides the 1-3-5 conjecture, I also conjectured that any n ∈ N can
be written as x2 + y2 + z2 + w2 with x , y , z ,w ∈ N such that

|x + 3y − 5z | ∈ {4k : k ∈ N}.

In 2017, Hai-Liang Wu and the speaker used the theory of ternary
quadratic forms and modular forms to obtain the following
progress on the 1-3-5 conjecture.

Theorem (H.-L. Wu and Z.-W. Sun [Acta Arith. 193(2020)]).
Any sufficiently large integer n not divisible by 16 can be written as
x2 + y2 + z2 + w2 with x , y , z ,w ∈ Z such that
x + 3y + 5z ∈ {1, 4}.

In the proof we split {n ∈ N : 16 - n} into two sets

A =
⋃
k∈N
{4k + 1, 4k + 2, 8k + 4} and B =

⋃
k∈N
{4k + 3, 16k + 8}.
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Suitable polynomials of the form ax2 + by 2 + cz2

Conjecture (Z.-W. Sun, April 9, 2016).

(i) Any natural number can be written as x2 + y2 + z2 + w2 with
x , y , z ,w ∈ N and x > y such that x2 + 8y2 + 16z2 is a square.
Both x2 + 3y2 + 12z2 and 3x2 + 4y2 + 9z2 are suitable.

(ii) If a, b, c are positive integers with ax2 + by2 + cz2 suitable,
then a, b, c cannot be pairwise coprime.

Conjecture (Z.-W. Sun, March 13-14, 2018):

(3x)2+(4y)2+(12z)2, (12x)2+(15y)2+(20z)2, (12x)2+(21y)2+(28z)2

are suitable.
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Suitable polynomials related to Pythagorean triples

Conjecture (Z.-W. Sun, April 12, 2016). Any n ∈ Z+ can be
written as w2 + x2 + y2 + z2 with w ∈ Z+ and x , y , z ∈ N such
that (10w + 5x)2 + (12y + 36z)2 is a square.

Remark. Yu-Chen Sun and Z.-W. Sun [Acta Arith. 183(2018)]
proved that any n ∈ N can be written as w2 + x2 + y2 + z2 with
w , x , y , z integers such that (10w + 5x)2 + (12y + 36z)2 is a
square.

Theorem (Z.-W. Sun, May 16, 2016). Any n ∈ Z+ can be written
as x2 + y2 + z2 + w2 with x , y , z ,w ∈ N and y > 0 such that
x + 4y + 4z and 9x + 3y + 3z are the two legs of a right triangle
with positive integer sides.
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Conjectures involving cubic diophantine equations

Conjecture (Z.-W. Sun, March 2017).

(i) Each n ∈ N can be written as x2 + y2 + z2 + w2 with
x , y , z ,w ∈ N such that x3 + (y − z)3 is a square.

(ii) Every n ∈ N can be written as x2 + y2 + z2 + w2

(x , y , z ,w ∈ Z) such that x3 + 2y3 is a square.

Remark. We have some other similar conjectures.
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Suitable polynomials of the form ax4 + by 3z

The following conjecture sounds very mysterious!

Conjecture (Z.-W. Sun, 2016) Let a and b be nonzero integers
with gcd(a, b) squarefree. Then the polynomial ax4 + by3z is
suitable if and only if (a, b) is among the ordered pairs

(1, 1), (1, 15), (1, 20), (1, 36), (1, 60), (1, 1680) and (9, 260).

Examples:
9983 = 632 + 542 + 172 + 532

with 634 + 543 × 17 = 42932, and

20055 = 472 + 62 + 772 + 1092

with 474 + 1680× 63 × 77 = 57292.
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Some other conjectures

Conjecture (Z.-W. Sun, 2016). Any n ∈ N can be written as
x2 + y2 + z2 + w2 with x , y , z ,w ∈ N such that xy + 2zw or
xy − 2zw is a square.

Conjecture (Z.-W. Sun, 2016). All the following polynomials

4x2 + 5y2 + 20zw , x2 + 3y2 + 5z2 − 8w2,

36x2y + 12y2z + z2x , w2x2 + 3x2y2 + 2y2z2,

w2x2 + 5x2y2 + 80y2z2 + 20z2w2

are suitable.

Theorem (Z.-W. Sun [J. Number Theory 175(2017)]). All the
polynomials

x2y2 + y2z2 + z2x2, x2y2 + 4y2z2 + 4z2x2, x4 + 8y3z + 8yz3

are suitable.
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Restrictions involving powers of four

Theorem (Z.-W. Sun [Int. J. Number Theory 15(2019)]) (i) Any
n ∈ Z+ can be written as x2 + y2 + z2 + w2 with x , y , z ,w ∈ N
and |x − 2y | ∈ {4k : k ∈ N}.

(ii) Any n ∈ Z+ can be written as x2 + y2 + z2 + w2 with
x , y , z ,w ∈ Z and x + y + 2z ∈ {4k : k ∈ N}.

(iii) Any n ∈ Z+ can be written as x2 + y2 + z2 + w2 with
x , y , z ,w ∈ Z and x + 2y + 2z ∈ {4k : k ∈ N}.

Conjecture (Z.-W. Sun, 2016). Any n ∈ Z+ can be written as
x2 + y2 + z2 + w2 with x , y , z ,w ∈ N such that

x + 2y − 2z ∈ {4k : k ∈ N}.

Remark. Qing-Hu Hou has verified this for n up to 109.
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The 24-conjecture with $2400 prize

24-Conjecture (Z.-W. Sun, Feb. 4, 2017). Each n ∈ N can be
written as x2 + y2 + z2 + w2 with x , y , z ,w ∈ N such that both x
and x + 24y are squares.

Remark. Qing-Hu Hou has verified this for n 6 1010. I would like
to offer 2400 US dollars as the prize for the first proof.

12 =12 + 12 + 12 + 32 with 1 = 12 and 1 + 24× 1 = 52,

23 =12 + 22 + 32 + 32 with 1 = 12 and 1 + 24× 2 = 72,

24 =42 + 02 + 22 + 22 with 4 = 22 and 4 + 24× 0 = 22,

47 =12 + 12 + 32 + 62 with 1 = 12 and 1 + 24× 1 = 52,

71 =12 + 52 + 32 + 62 with 1 = 12 and 1 + 24× 5 = 112,

168 =42 + 42 + 62 + 102 with 4 = 22 and 4 + 24× 4 = 102,

344 =42 + 02 + 22 + 182 with 4 = 22 and 4 + 24× 0 = 22,

632 =02 + 62 + 142 + 202 with 0 = 02 and 0 + 24× 6 = 122,

1724 =252 + 12 + 32 + 332 with 25 = 52 and 25 + 24× 1 = 72.
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Write n ∈ Z+ as 4k(1 + x2 + y 2) + z2

Conjecture (Z.-W. Sun, August 2016). Any n ∈ Z+ can be
written as w2(1 + x2 + y2) + z2 with w ∈ Z+, x , y , z ∈ Z and
x ≡ y (mod 2). Moreover, when n 6= 449 we may require further
that w is a power of two.

Remark. I can show this under the GRH.

Theorem (Z.-W. Sun [J. Number Theory 175(2017)]). Any
positive integer can be written as 4k(1 + 4x2 + y2) + z2 with
k , x , y , z ∈ N.
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Unify the four-square theorem and the twin prime
conjecture

The following conjecture implies the twin prime conjecture.

Conjecture (Z.-W. Sun, August 23, 2017). Any positive odd
integer can be written as x2 + y2 + z2 + w2 with x , y , z ,w ∈ Z
such that p = x2 + 3y2 + 5z2 + 7w2 and p − 2 are twin prime.

Example.
39 = 12 + 32 + 52 + 22

with 12 + 3 · 32 + 5 · 52 + 7 · 22 = 181 and 181− 2 = 179 twin
prime. Also,

123 = 72 + 32 + 72 + 42

with 72 + 3 ·32 + 5 ·72 + 7 ·42 = 433 and 433−2 = 431 twin prime.
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Restricted sums of four squares involving primes

Conjecture (Z.-W. Sun, August 19, 2017). Any positive odd
integer can be written as x2 + y2 + z2 + 4w2 with x , y , z ,w ∈ N
such that 2x + 2y + 2z + 1 is prime.

Example. 143 = 12 + 52 + 92 + 4 · 32 with 21 + 25 + 29 + 1 = 547
prime.

Conjecture (Z.-W. Sun, August 20, 2017). Any odd integer n > 1
can be written as x2 + y2 + z2 + w2 (x , y , z ,w ∈ N) such that
2x+y + 2z+w + 1 is prime.

Example. 197 = 62 + 62 + 22 + 112 with
26+6 + 22+11 + 1 = 12289 prime. And

2× 6998538 + 1 = 1222 + 2202 + 2082 + 37272

with 2122+220 + 2208+3727 + 1 = 2342 + 23935 + 1 a prime of 1185
decimal digits.

I have verified both conjectures for positive odd integers not more
than 2× 107.
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Part III. Solution of the 1-3-5 Conjecture
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1-3-5 Conjecture was proved in 2020
In 2019 Detlev Hoffmann released arXiv:1902.07109 in which the
author claimed to prove the integer version of the 1-3-5 conjecture
by using Mordell’s result. I pointed out that the proof is wrong.

In 2020, Prof. António Machiavelo and his PhD student Nikolaos
Tsopanidis (Greek) at Porto Univ. posted their paper

Zhi-Wei Sun’s 1-3-5 Conjecture and Variations, arXiv:2003.02592

to arXiv in which they reduced the 1-3-5 Conjecture to verifying it
up to

c = 105103560126 ≈ 1.051× 1011.

In their computational report joint with Rogério Reis

Report on Zhi-Wei Sun’s 1-3-5 Conjecture and some of its
Refinements, arXiv:2005.13526

the 1-3-5 Conjecture was reported to be verified up to c .

Thus 1-3-5 Conjecture has been completed proved!
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Hamliton quaternions

The Hamilton quaternions have the form

ζ = a + bi + cj + dk with a, b, c , d ∈ R

with the multiplication rule

ij = −ji = k, jk = −kj = i , ki = −ik = j .

All the Hamiltion quaternions form a skew field (division ring).

For a Hamiltion quaternion ζ = a + bi + cj + dk, its conjugate is
ζ̄ = a− bi − cj − dk, and its norm is

N(ζ) = ζζ̄ = a2 + b2 + c2 + d2.

By Euler’s four-square identity, for any two Hamliton quaternions
α, β we have N(αβ) = N(α)N(β).
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Real parts of Hamliton quaternions

For a Hamliton quaternion

ζ = a + bi + cj + dk with a, b, c , d ∈ R,

we call <(ζ) = a the real part of ζ.

For two Hamiltion quaternions ζ and ρ 6= 0, clearly

ρ−1ζρ = N(ρ−1ζρ)(ρ−1ζρ)−1 = N(ζ)ρ−1ζ−1ρ = ρ−1ζ̄ρ,

thus

2<(ρ−1ζρ) = ρ−1ζρ+ρ−1ζρ = ρ−1(ζ+ ζ̄)ρ = ρ−12<(ζ)ρ = 2<(ζ)

and hence
<(ρ−1ζρ) = <(ζ).
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Hurwitz integers

The ring of Hurwitz integers is

H =

{
a + bi + cj + dk : a, b, c , d ∈ Z or a, b, c , d ∈ 1

2
+ Z

}
.

This ring is left (or right) Euclidean, i.e., for any α, β ∈ H with
β 6= 0, there are η, γ ∈ H such that

α = βη + γ and N(γ) < N(α).

Lagrange’s four-square theorem can be proved via Hurwitz
integers, but its proof is essentially equivalent to the usual proof of
Lagrange.
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Lipschitz integers

The ring of Lipschitz integers is

L = {a + bi + cj + dk : a, b, c , d ∈ Z}.

This ring is neither left nor right Euclidean. This is why it is less
known than the ring of Hurwitz integers.

For α, β ∈ L, if α = γβ for some γ ∈ L then we call β a right
divisor of α.

G. Pall published two papers to study factorizations in L:

1. G. Pall, et al., On the factorization of generalized quaternions,
Duke Math. J. 4 (1938), 696–704.

2. G. Pall, On the arithmetic of quaternions, Trans. Amer. Math.
Soc. 47 (1940), 487–500.
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Pall’s theorem

Pall’s Theorem (G. Pall [Trans. Amer. Math. Soc. 47(1940)]).
Let v = v0 + v1i + v2j + v3k ∈ L and let m be a positive integer
dividing N(v). Then there is a unique, up to left multiplication by
units, right divisor of v of norm m, provided one of the following
conditions:

(i) 2 - m and gcd(v0, v1, v2, v3,m) = 1.

(ii) 2 | m, 2 - N(v)
m , and gcd(v0, v1, v2, v3) = 1.

Pall’s Theorem implies the following result.

Theorem. Let Q = a + bi + cj + dk ∈ L and suppose that
N(Q) = p1 . . . pr , where p1, . . . , pr are primes. There there are
P1, . . . ,Pr ∈ L with N(Pi ) = pi for all i = 1, . . . , r such that
P1 . . .Pr = Q.
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A general theorem
Theorem (Machiavelo and Tsopanidis, 2020). Let m, n.` ∈ N with
m`− n4 ∈ N \ E , where E = {4s(8t + 7) : s, t ∈ N}. Then, for
some a, b, c, d ∈ N with a2 + b2 + c2 + d2 = `, the system{

x2 + y2 + z2 + w2 = m,

ax + by + cz + dw = n2

has integer solutions.

Proof. By the Gauss-Legendre theorem, m`− n4 = A2 + B2 + C 2

for some A,B,C ∈ Z. Let δ = n2 + Ai + Bj + Ck ∈ L. Then
N(δ) = m`. Suppose that ` = p1 . . . pr and m = q1 . . . qs , where
p1, . . . , pr , q1, . . . , qs are primes. As N(δ) = p1 . . . prq1 . . . qs ,
there are P1, . . . ,Pr ,Q1, . . . ,Qs ∈ L with

N(P1) = p1, . . . ,N(Pr ) = pr , N(Q1) = q1, . . . ,N(Qs) = qs

such that δ = P1 . . .PrQ1 . . .Qs .
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Continue the proof

Write P1 . . .Pr = a− bi − cj − dk with a, b, c, d ∈ Z, and
Q1 . . .Qs = x0 + y0i + z0j + w0k with x0, y0, z0,w0 ∈ Z. Set

ζ = a + bi + cj + dk and ξ = x0 + y0i + z0j + w0k .

Then

a2 + b2 + c2 + d2 = N(ζ) = N(ζ̄) = N(P1 . . .Pr ) = p1 . . . pr = `,

x2
0 + y2

0 + z2
0 + w2

0 = N(ξ) = N(Q1 . . .Qs) = q1 . . . qs = m.

Note that ζ̄ξ = P1 . . .PrQ1 . . .Qs = δ and

ζ · ξ = ax0 + by0 + cz0 + dw0 = <(ζ̄ξ) = <(δ) = n2.

Choose x ∈ {±x0}, y ∈ {±y0}, z ∈ {±z0} and w ∈ {±w0} so
that ax0 = |a|x , by0 = |b|y , cz0 = |c |z , dw0 = |d |w . Then
x2 + y2 + z2 + w2 = m and |a|x + |b|y + |c |z + |d |w = n2.
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Application to the 1-3-5 Conjecture
There are exactly two ways to write ` = 35 as a sum of four
squares:

35 = 12 + 32 + 52 + 02 = 12 + 32 + 32 + 42.

So, by the general theorem we obtain the following consequence.

Corollary (Machiavelo and Tsopanidis). Let m, n ∈ N with
35m − n4 ∈ N \ E . Then, either the system{

x2 + y2 + z2 + w2 = m,

x + 3y + 5z = n2
(1-3-5)

has integer solutions, or the system{
x2 + y2 + z2 + w2 = m,

x + 3y + 3z + 4w = n2
(1-3-3-4)

has integer solutions.
48 / 59



Application to the 1-3-5 Conjecture
There are exactly two ways to write ` = 35 as a sum of four
squares:

35 = 12 + 32 + 52 + 02 = 12 + 32 + 32 + 42.

So, by the general theorem we obtain the following consequence.

Corollary (Machiavelo and Tsopanidis). Let m, n ∈ N with
35m − n4 ∈ N \ E . Then, either the system{

x2 + y2 + z2 + w2 = m,

x + 3y + 5z = n2
(1-3-5)

has integer solutions, or the system{
x2 + y2 + z2 + w2 = m,

x + 3y + 3z + 4w = n2
(1-3-3-4)

has integer solutions.
49 / 59



From (1-3-3-4) to (1-3-5)
For α, α′ ∈ L, we write α ∼ α′ if we can obtain α′ from α by
permutating and changing the signs of the coordinates of α.

Let
α = 1 + 3i + 5j and β = 1 + 3i + 3j + 4k .

Suppose that (1-3-3-4) has a solution with x , y , z ,w ∈ Z. Let
γ = x − yi − zj − wk . Then <(γβ) = x + 3y + 3z + 4w = n2 and
N(γ) = m. If we find ρ, σ ∈ L \ {0} with

α′ = σ−1βρ ∼ α and γ′ = ρ−1γσ ∈ L,

then
<(γβ) = <(ρ−1γβρ) = <(γ′α′),

N(σ) = N(ρ), N(ρ−1γσ) = N(γ) = m

(since N(α) = N(β) = 35) and hence we obtain a solution to
(1-3-5).
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An auxiliary theorem

Using the above idea, A, Machiavelo and N. Tsopanidis obtained
the following result.

Theorem. Let m, n ∈ N with 35m − n4 ∈ N \ E .

(i) If 3 | m and gcd(n, 15) = 1, then the system (1-3-5) has integer
solutions.

(ii) If m ≡ 1 (mod 3), 3 | n but 5 - n, then the system (1-3-5) has
integer solutions.

(iii) If m ≡ −1 (mod 3) and gcd(n, 105) = 1, then the system
(1-3-5) has integer solutions.
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Integer solutions to (1-3-5)

Theorem (A. Machiavelo and N. Tsopanidis). Any positive integer
m can be written as x2 + y2 + z2 + w2 with x , y , z ,w ∈ Z and
x + 3y + 5z ∈ {4ab2 : a ∈ N, b ∈ {1, 2, 3, 6}}.

This provides an advance on the following conjecture.

Conjecture (Sun [Int. J. Number Theory 15(2019)]). Any positive
integer can be written as x2 + y2 + z2 + w2 with x , y , z ,w ∈ N
and |x + 3y − 5z | ∈ {4a : a ∈ N}.
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Obtain natural solutions from integer solutions

A. Machiavelo and N. Tsopanidis found a way to obtain natural
solutions from integer solutions of (1-3-5). This was further
improved and generalized by the speaker.

Theorem (Z.-W. Sun, arXiv:2010.05775). Let a, b, c , d ,m be
nonnegative real numbers with a2 + b2 + c2 + d2 6= 0. Suppose
that x , y , z ,w are real numbers satisfying{

x2 + y2 + z2 + w2 = m,

ax + by + cz + dw = s,

where

s >
√

m(a2 + b2 + c2 + d2 −min({a2, b2, c2, d2} \ {0})).

Then all the numbers ax , by , cz , dw are nonnegative.
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Proof
Let

t = ay−bx +cw−dz , u = az−bw−cx +dy , v = aw +bz−cy−dx .

By Euler’s four-square identity, we have

(a2 + b2 + c2 + d2)(x2 + y2 + z2 + w2) = s2 + t2 + u2 + v2.

Solving the system of equations
ax + by + cz + dw = s,

ay − bx + cw − dz = t,

az − bw − cx + dy = u,

aw + bz − cy − dx = v ,

we find that 
x = as−bt−cu−dv

a2+b2+c2+d2 ,

y = bs+at+du−cv
a2+b2+c2+d2 ,

z = cs−dt+au+bv
a2+b2+c2+d2 ,

w = ds+ct−bu+av
a2+b2+c2+d2 .

(∗)
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Continue the proof

Suppose that a > 0. Then

s2 > m(a2 + b2 + c2 + d2 − a2) = (b2 + c2 + d2)m

and hence

(a2 + b2 + c2 + d2)s2 >(b2 + c2 + d2)(a2 + b2 + c2 + d2)m

=(b2 + c2 + d2)(s2 + t2 + u2 + v2).

Thus a2s2 > (b2 + c2 + d2)(t2 + u2 + v2). By the
Cauchy-Schwarz inequality,

(bt + cu + dv)2 6 (b2 + c2 + d2)(t2 + u2 + v2).

Therefore as > |bt + cu + dv | and hence x > 0 in view of (∗).

Similarly, y > 0 if b > 0, and z > 0 if d > 0. This ends the proof.

55 / 59



Part IV. Sums of Two Squares and Two Other Terms
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Four-square Conjecture and 1-2-3 Conjecture

Four-square Conjecture (Z.-W. Sun, June 21, 2019). Any
integer n > 1 can be written as x2 + y2 + (2a3b)2 + (2c5d)2 with
x , y , a, b, c , d ∈ N.

Remark. See http://oeis.org/A308734 for related data. In
2019 G. Resta verified the conjecture for n up to 1010.

Conjecture (1-2-3 Conjecture, Z.-W. Sun, Oct. 10, 2020).

(i) (Weak version) Any positive odd integer can be written as
x2 + y2 + z2 + w2 with x , y , z ,w ∈ N and
x + 2y + 3z ∈ {2a : a ∈ Z+}.

(ii) (Strong version) Any integer m > 4627 with m 6≡ 0, 2 (mod 8)
can be written as x2 + y2 + z2 + w2 with x , y , z ,w ∈ N and
x + 2y + 3z ∈ {4a : a ∈ Z+}.
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Write n = a2 + b2 + 3c + 5d

Conjecture (Z.-W. Sun, April 28, 2018). Any integer n > 1 can
be written as a2 + b2 + 3c + 5d with a, b, c , d ∈ N = {0, 1, 2, . . .}.

Remark. I have verified this for n up to 2× 1010, and I’d like to
offer 3500 US dollars as the prize for the first proof of this
conjecture. I also conjecture that 5d in the conjecture can be
replaced by 2d .

Example.

2 = 02 +02 +30 +50, 5 = 02 +12 +31 +50, 25 = 12 +42 +31 +51.

Conjecture (Z.-W. Sun, April 2018). Any integer n > 1 can be
written as the sum of two squares and two central binomial
coefficients. Also, any integer n > 1 can be written as the sum of
two triangular numbers and two powers of five.

Remark. I have verified this for n up to 1010.

58 / 59



References
For the main sources of my above conjectures and related results,
you may look at the following papers:

1. Zhi-Wei Sun, Refining Lagrange’s four-square theorem, J.
Number Theory 175(2017), 167–190. arXiv:1604.06723

2. Yu-Chen Sun and Zhi-Wei Sun, Some variants of Lagrange’s
four squares theorem, Acta Arith. 183(2018), no.4, 339-356.
3. Zhi-Wei Sun, Restricted sums of four squares, Int. J. Number
Theory 15 (2019), 1863–1893.
4. Hai-Liang Wu and Zhi-Wei Sun, On the 1-3-5 conjecture and
related topics, Acta Arith. 193 (2020), 253–268.
5. A. Machiavelo and N. Tsopanidis, Zhi-Wei Sun’s 1-3-5
conjecture and variations, arXiv:2003.02592 [math.NT], 2020.
6. A. Machiavelo, R. Reis and N. Tsopanidis, Report on Zhi-Wei
Sun’s “1-3-5 conjecture” and some of its refinements,
arXiv:2005.13526 [math.NT], 2020.

Thank you!
59 / 59


