TOPICS
Search

Steiner Quadruple System


A Steiner quadruple system is a Steiner system S(t=3,k=4,v), where S is a v-set and B is a collection of k-sets of S such that every t-subset of S is contained in exactly one member of B. Barrau (1908) established the uniqueness of S(3,4,8),

 1 2 4 8; 2 3 5 8; 3 4 6 8; 4 5 7 8; 1 5 6 8; 2 6 7 8; 1 3 7 8    3 5 6 7; 1 4 6 7; 1 2 5 7; 1 2 3 6; 2 3 4 7; 1 3 4 5; 2 4 5 6

and S(3,4,10)

 1 2 4 5; 2 3 5 6; 3 4 6 7; 4 5 7 8; 5 6 8 9; 6 7 9 0; 1 7 8 0; 1 2 8 9; 2 3 9 0; 1 3 4 0    1 2 3 7; 2 3 4 8; 3 4 5 9; 4 5 6 0; 1 5 6 7; 2 6 7 8; 3 7 8 9; 4 8 9 0; 1 5 9 0; 1 2 6 0    1 3 5 8; 2 4 6 9; 3 5 7 0; 1 4 6 8; 2 5 7 9; 3 6 8 0; 1 4 7 9; 2 5 8 0; 1 3 6 9; 2 4 7 0.

Fitting (1915) subsequently constructed the cyclic systems S(3,4,26) and S(3,4,34), and Bays and de Weck (1935) showed the existence of at least one S(3,4,14). Hanani (1960) proved that a necessary and sufficient condition for the existence of an S(3,4,v) is that v=2 or 4 (mod 6).

The numbers of nonisomorphic Steiner quadruple systems of orders 8, 10, 14, 16, ... are 1, 1, 4 (Mendelsohn and Hung 1972), 1054163 (Kaski et al. 2006), ... (OEIS A124119).


See also

Steiner System, Steiner Triple System

Explore with Wolfram|Alpha

References

Barrau, J. A. "On the Combinatory Problem of Steiner." K. Akad. Wet. Amsterdam Proc. Sect. Sci. 11, 352-360, 1908.Bays, S. and de Weck, E. "Sur les systèmes de quadruples." Comment. Math. Helv. 7, 222-241, 1935.Fitting, F. "Zyklische Lösungen des Steiner'schen Problems." Nieuw Arch. Wisk. 11, 140-148, 1915.Hanani, M. "On Quadruple Systems." Canad. J. Math. 12, 145-157, 1960.Kaski, P.; Östergård, P. R. J.; and Pottonen, O. "The Steiner Quadruple Systems of Order 16." J. Combin. Th. Ser. A 113, 1764-1770, 2006.Lindner, C. L. and Rosa, A. "There are at Least 31021 Nonisomorphic Steiner Quadruple Systems of Order 16." Utilitas Math. 10, 61-64, 1976.Lindner, C. L. and Rosa, A. "Steiner Quadruple Systems--A Survey." Disc. Math. 22, 147-181, 1978.Mendelsohn, N. S. and Hung, S. H. Y. "On the Steiner Systems S(3,4,14) and S(4,5,15)." Utilitas Math. 1, 5-95, 1972.Sloane, N. J. A. Sequence A124119 in "The On-Line Encyclopedia of Integer Sequences."

Referenced on Wolfram|Alpha

Steiner Quadruple System

Cite this as:

Weisstein, Eric W. "Steiner Quadruple System." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/SteinerQuadrupleSystem.html

Subject classifications

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy