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Abstract 

Background Lifestyle plays an important role in shaping the gut microbiome. However, its contributions to the oral 
microbiome remain less clear, due to the confounding effects of geography and methodology in investiga-
tions of populations studied to date. Furthermore, while the oral microbiome seems to differ between foraging 
and industrialized populations, we lack insight into whether transitions to and away from agrarian lifestyles shape 
the oral microbiota. Given the growing interest in so-called “vanishing microbiomes” potentially being a risk factor 
for increased disease prevalence in industrialized populations, it is important that we distinguish lifestyle from geogra-
phy in the study of microbiomes across populations.

Results Here, we investigate salivary microbiomes of 63 Nepali individuals representing a spectrum of lifestyles: 
foraging, subsistence farming (individuals that transitioned from foraging to farming within the last 50 years), 
agriculturalists (individuals that have transitioned to farming for at least 300 years), and industrialists (expatriates 
that immigrated to the USA within the last 20 years). We characterize the role of lifestyle in microbial diversity, identify 
microbes that differ between lifestyles, and pinpoint specific lifestyle factors that may be contributing to differences 
in the microbiomes across populations. Contrary to prevailing views, when geography is controlled for, oral microbi-
ome alpha diversity does not differ significantly across lifestyles. Microbiome composition, however, follows the gradi-
ent of lifestyles from foraging through agrarianism to industrialism, supporting the notion that lifestyle indeed plays 
a role in the oral microbiome. Relative abundances of several individual taxa, including Streptobacillus and an unclas-
sified Porphyromonadaceae genus, also mirror lifestyle. Finally, we identify specific lifestyle factors associated 
with microbiome composition across the gradient of lifestyles, including smoking and grain sources.

Conclusion Our findings demonstrate that by studying populations within Nepal, we can isolate an important 
role of lifestyle in determining oral microbiome composition. In doing so, we highlight the potential contributions 
of several lifestyle factors, underlining the importance of carefully examining the oral microbiome across lifestyles 
to improve our understanding of global microbiomes.
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अध्य्यन संक्षेप (Abstract in Nepali) 
सारांश पृष्ठभूमि िानवको आन्द्ािा ब्याक ष्े मर्या, भाइरस, फंगस (ढुसी), लगा्यत अरू मवमभन्न प्रकारका सूक्िजीवहरूका सिुदा्य 
पाईन््छन,् जसलाई िाइक्ोबा्योि भमनन््छ। आन्द्ािा हुनषे िाइक्ोबा्योिलषे िानवको पाचन, प्रमतरक्ा प्रणाली, र अन््य शारीमरक 
प्रमक््याहरूिा ्योगदान पु्यायाउनषे हुनालषे म्यनलषे िानव सवास्थ्य र रोगको मनरायारण गनयािा िहत्वपूणया भूमिका खषेल्छन्। त्यसैगरी िानव 
िुखिा पमन सूक्िजीवहरूका सिुदा्यहरू हुन््छन ्जसलषे दाँत र मगजालाई सवस्थ राखनिा ्योगदान पुर् ्याउँ्छन्। जीवनशैलीलषे 
आन्द्ाको िाइक्ोबा्योिलाई आकार मदन िहत्वपूणया भूमिका खषेल्छ। सा्थै, जङलिा मनभयार भएर प्रकृमतक जीवनशैली मजउनषे र 
औध्योमगमक्त भएका िानव सिुदा्यहरुको बीच िुखको िाइक्ोबा्योििा रषेरै मभन्नता दषे मखन््छ। जङलिा मनभयार भएर प्रकृमतक 
जीवनशैली मजउनषे िानव सिुदा्यहरुिा पाईनषे रषेरै सूक्िजीवहरू औद्ोमगक जनसिुदा्यहरुिा िा पाईन ्छामिसकषे का ्छन ्र ्यसता 
‘मवलुपत िाइक्ोबा्योि’ मबमभन्न रोगहरुका जोमखिका कारक हुन सकनषे हँुदा चासोका मबष्य बन्न पुगषेका ्छन्। त्थामप, अमहलषेसमिका 
अनुसन्रानिा जीवनशैमलको पमरवतयान सँगै िुखको िाइक्ोबा्योििा कषे  कसता पमरवतयानहरु आउँ्छन ्भन्नषे कुरा सपष्ट हुन सकषे को ्ैछन। 
मवमभन्न जीवनशैली ब्य्थीत गनषेया िामनसहरु बीच जीवनशैलीको सा्थसा्थै भौगोमलक मभन्नता पमन हुनषे गदया्छ। तस्थया, िमनसहरुका 
िुखका िाईक्ोबा्योििा जीवनशैली र भूगोलको असरलाई ्ुछट्ाउन ुिहत्वपूणया दषे मखएको ्छ।
पमरणािहरू ्यहाँ, हािीलषे ६३ जना नषेपाली व्यमतिको ्थुक संकलन गरषेर िुखका िाइक्ोबा्योिको अनुसन्रान ग्यौयां। हाम्ो अध्य्यनिा 
संलगन भएका ब्यमतिहरुलषे मवमभन्न जीवनशैलीको प्रमतमनमरतव ग्छयान:् जङलिा मनभयार भएर प्रकृमतक जीवनशैली मजउनषे, जङलबा् 
कृमषतफया हालसालै पमरवतयान भएका (अमन्ति ५० वषया मभत्र), कृषक (मबगतका ३०० वषया भन्दा बढी सि्यदषे मख कृमषिा संलगन भएका), र 
औद्ोमगक (अमन्ति २० वषया मभत्र सं्युति राज्य अिषेमरका िा आप्रवासन गरषेका नषेपालीहरु)। हािीलषे ्यस् अध्य्यनिा जीवनशैलीलषे िुखका 
िाईक्ोबा्योिको मवमवरतािा कसरी ्योगदान पु्यायाउँ्छन ्भन्नषे कुरको मवशलषेषण गरषेका ्छौ,ं जीवनशैलीहरू बीच फरक पनषेया 
सूक्िजीवहरूको पमहचान गरषेका ्छौ,ं र िाइक्ोबा्योििा फरक पानषेया कारकहरूको पमहचान गरषेका ्छौ।ं
प्रचमलत दृमष्टकोणहरू मवपरीत, भूगोललाई मन्यन्त्रण गदाया, मबमभन्न जीवनशैलीहरू बीच िुखको िाइक्ोबा्योििा हुनषे सूक्िजीवहरूको 
सन्ख्या (अलफा मवमवरता) िा रषेरै फरक दषे मखएन, तर िुखको िाइक्ोबा्योिको संरचना भनषे जीवनशैलीको क्मिक चरणसँग 
मिलदोजुलदो दषे मख्यो, जसलषे दषेखाउँ्छ मक जीवनशैलीलषे िुखको िाइक्ोबा्योििा को संरचना मनरायारण गनया एउ्ा प्रिुख भूमिका 
खषेलद्छ। स््षेप्ोबामसलस र असमप्रषेमषत पोरमफरोिोनािामसए जीनस समहतका कषे ही सूक्िजीवहरूको सापषेक् सापषेमक्क प्रचुरता पमन 
जीवनशैलीसँग िषेल खानषे हािीलषे ्यस् अध्य्यनबा् ्थाहा पाएका ्छौ।ं अन्ततः, हािीलषे जीवनशैलीको क्मिक चरणिा िाइक्ोबा्योि 
संरचनासँग समबमन्रत मवमशष्ट जीवनशैलीसँग आबद्ध हुनषे रूम्पान र अनाज जसता कारकहरूको पमहचान गरषेका ्छौ।ं
मनषकषया हाम्ा मनषकषयाहरूलषे प्रष्ट परषेका ्छन मक भूगोललाई मन्यन्त्रण गदाया, हाम्ो जीवनशैलीलषे हाम्ा िुखको िाइक्ोबा्योिको संरचना 
मनरायारण गनषेया िहत्वपूणया भूमिका खषेलदो रहषे्छ। ्यस् अध्य्यनलषे िानव सिुदा्यहरुिा िुखको िाइक्ोबा्योिको अध्य्यन गरषेिा 
िाइक्ोबा्योिबारषेको हाम्ो बुझाइिा सुरार ल्याउन समकनषे पमन दषेखाउँ्छ। बढ्दो शहरीकरण सँगसँगै नषेपालीहरुको िाइक्ोबा्योििा 
पमरवतयान हँुदै गरषेको र ्यसता पमरवतयानहरुलषे नषेपालीहरुिा मबमभन्न दीरयाकालीन रोगहरुको व्यापकता बढाउन सकनषे हुनालषे ्यस् 
समबन्रिा उप्योयाति मनका्यहरुको ध्यानाकषयाण हुनुपनषेया आवश्यकता पमन ्यस् अध्य्यनलषे प्रष्ट पारषेको ्छ।

Introduction
Throughout the last 300,000  years, our species expe-
rienced continual cultural transformation marked by 
milestones such as the development and use of tools, 
specialized division of labor, and urbanization [1]. 
These cultural shifts profoundly influenced both human 
societies and biology. One major transition in recent 
human history was the shift in subsistence strategy 
from hunting and gathering to agriculture and subse-
quently to industrialization. Such transitions encom-
pass multifaceted lifestyle changes, including shifts 
in diet, population density, infectious disease burden, 
habitat, and other environmental factors [2]. These 
factors individually play pivotal roles in shaping the 
human microbiome—the diverse collection of bacteria, 
archaea, fungi, and other eukaryotes, and viruses that 
inhabit our bodies [3–6].

Understanding the role of subsistence strategy and 
accompanying lifestyle transitions has become a major 
focus of microbiome research [7–10]. Numerous 

studies show that the gut microbiome shifts with indus-
trialization. Specifically, industrialized populations 
generally exhibit lower gut microbiome alpha diversity 
compared with traditional populations, often lacking 
microbes commonly found in traditional populations, 
such as Prevotella and Treponema [5, 11–13]. These dif-
ferences are associated with diet, drinking water source, 
and social structure [13–16]. While considerable pro-
gress has been made in understanding how the gut 
microbiome differs across lifestyles, differences in the 
oral microbiome across these transitions remain largely 
uncharacterized. Addressing this gap is crucial consid-
ering both the role of the oral microbiome in oral and 
systemic health [17–19] and also its prominence in the 
context of ancient DNA research [10, 20]. Therefore, it 
is important to expand studies of the oral microbiome 
to encompass diverse global populations practicing dif-
ferent subsistence strategies.

Much of our understanding of the oral microbi-
ome across subsistence strategies comes from a limited 
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number of studies exploring the oral microbiomes of 
non-industrialized populations derived from ancient 
dental calculus [20, 21], although there have been 
increasing efforts to investigate that of modern-day pop-
ulations as well [22–27]. Studies of modern-day global 
populations report that oral microbial diversity decreases 
with industrialization, with microbiome composition 
exhibiting differences based on lifestyle as well. More 
specifically, relative abundances of Neisseria, Haemophi-
lus, Prevotella, and Streptococcus are lower in industrial-
ized populations compared with traditional populations 
from the remote regions of the Philippines, Venezuela, 
Uganda, Malaysia, and South Africa [23, 24, 26, 28, 29]. 
However, several potential confounding factors may 
underlie the reported differences.

First, geography is associated with the microbiome [13, 
30–32]. Distinguishing between the potential effects of 
geography versus lifestyle remains challenging, given the 
often large geographic variability between populations 
practicing different lifestyles. More specifically, samples 
from industrialized populations are generally collected 
from populations in the USA or Europe, whereas tradi-
tional populations might be collected at entirely different 
latitudes or continents [33]. As a result, it has been diffi-
cult to separate the effect of lifestyle and geography.

Second, some studies incorporate publicly avail-
able microbiome data from industrialized individuals 
with newly generated sequencing data from traditional 
populations [22, 24]. Technical discrepancies in sam-
ple collection, processing, and sequencing can influence 
microbiome study outcomes, raising questions about 
whether observed variations are due to lifestyle or tech-
nical factors [34, 35].

Third, studies that effectively control for technical 
effects are primarily focused on traditional populations 
[26, 36]. As a result, we lack an understanding of how 
the oral microbiome differs across the entire spectrum 
of lifestyles, from traditional to industrialized, while ade-
quately controlling for temporal, geographical, and tech-
nical variation.

Finally, many existing studies make comparisons 
between distinct lifestyles, comparing traditional forag-
ers/hunters and gatherers with agriculturalists and com-
pletely industrialized populations, without evaluating 
the subtle nature of microbiome shifts to and away from 
agriculturalist lifestyles [24, 27]. To our knowledge, there 
is no investigation that has comprehensively examined 
the entire lifestyle gradient—from hunting and gather-
ing, to subsistence farming, to commercial farming, to 
early industrialization, and to established industrializa-
tion. It is important that we also examine these types of 
lifestyle transitions in modern-day settings, as they have 
been demonstrated to play major roles in shaping the 

oral microbiome throughout human history via analyses 
of ancient dental calculus. For example, increasing levels 
of putatively pathogenic microbes in the oral microbiome 
are attributed to the Neolithic Revolution and increased 
starch consumption with the rise of agricultural practices 
[37, 38]. Whether this pattern holds in modern-day life-
style transitions remains unclear.

To address these gaps, we characterized the salivary 
microbiota of Nepali individuals across a spectrum of 
human subsistence strategies, from traditional foragers 
to agriculturalists. Importantly, we are able to isolate the 
role of lifestyle from confounders, as geographical and 
technical variability are controlled for in the study with 
the inclusion of multiple lifestyles solely from Nepal. We 
specifically investigated six ethnically Nepali populations 
across  four  lifestyles.  The Chepang represent foragers, 
the Raji and Raute are hunters and gatherers that recently 
settled and began subsistence farming in the 1980s, the 
Tharu and Newars living in Nepal are agriculturalists, 
and the Nepali expatriates living in the USA represent 
a population that recently transitioned to industrializa-
tion. We also include Americans of European descent as 
representatives of a fully industrialized population, for a 
total of five lifestyles. We demonstrate that oral microbi-
ome composition differs along a gradient of traditional to 
industrialized lifestyles but, unlike that of the gut micro-
biome, differences are relatively subtle. By integrating 
questionnaire-based data encompassing diverse lifestyle 
variables such as diet, education, and medical practices, 
we identify specific lifestyle factors associated with oral 
microbial compositional changes. Finally, we examine the 
gut-oral microbiome axis to evaluate whether the degree 
of intra-individual similarity between the two sites differs 
across lifestyles. These results demonstrate that like the 
gut microbiome, the oral microbiome mirrors lifestyle.

Results
Description of populations
We investigated the oral microbiome in diverse Nepali 
populations practicing a spectrum of lifestyles and an 
American population representing an industrialized 
lifestyle. In total, we examined individuals practicing 
five lifestyles: foragers, recently settled, agriculturalists, 
expats, and American industrialists. These lifestyles were 
defined a priori by subsistence strategy. However, a num-
ber of specific lifestyle factors differ across groups in 
addition to subsistence strategies, such as household size, 
diet, and smoking habits. Briefly, the Nepali individu-
als in this study belonged to five ethnic groups native to 
Nepal–Chepang (n = 18), Raji (n = 11), Raute (n = 14), 
Tharu (n = 20), and Newar (n = 8) (Fig.  1, Table  S1). We 
also included expatriate Newar (n = 12) and European-
Americans (n = 6), both of whom reside in the San 
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Francisco Bay Area. The Chepang, numbering 84,400 
[39], are foragers who primarily reside in small commu-
nities of remote, isolated villages within the hills of the 
lower Himalaya in central Nepal. The Chepang village 
in this study lacks modern amenities such as electric-
ity, running water, and other indicators of urbanization. 
While they supplement their diets with food grown via 
slash-and-burn agriculture, the low productivity of the 
hilly terrain compels them to heavily depend on foraged 
jungle foods such as undomesticated tubers and wild net-
tle (sisnu). The Raji and Raute, previously nomadic for-
agers, transitioned to subsistence agriculture within the 
past 50  years. The Raute and Raji are among the small-
est ethnic groups in Nepal. The Raute, with roughly 550 
individuals [39], reside in the far western hills of Nepal, 
whereas the Raji, numbering 5100 [39], inhabit the 
neighboring Terai plains. These two populations will 
be referred to as “recently settled” in this study, due to 
the transitional nature of their lifestyle. By contrast, the 
Tharu and Newar, two of the largest ethnic groups in 
Nepal numbering 1.8 and 1.3 million, respectively [39], 
practice agriculture. The Tharu, hailing from the Terai 
plains in Southern Nepal, fully transitioned to agriculture 

about 300  years ago. The Newar originate from Kath-
mandu valley and are renowned for their cultural and 
economic contributions to Nepal. Although increasing 
urbanization of Kathmandu valley has afforded some 
Newar individuals access to industrialized comforts, the 
population in this study resides in a relatively rural vil-
lage on the outskirts of Kathmandu valley and primar-
ily engages in agriculture. For those reasons, in this 
study, both the Tharu and Newar will be referred to as 
the established agriculturalists. The expatriate Newar in 
the USA (“expats”) also originated from the Kathmandu 
valley and emigrated within the past 20 years, settling in 
the USA in their mid-30s. The Chepang, Raji, Raute, and 
Tharu individuals sampled here largely overlap with a 
previous study of Nepali gut microbiomes [15]. Both the 
fecal samples in this previous study and the saliva sam-
ples in this current study were collected concurrently. 
By focusing on individuals across a range of lifestyles 
within a confined geographic region, our study aims to 
discern oral microbial signatures of lifestyle without the 
confounding effects of geography, climate, and technical 
factors.

Fig. 1 Sampling locations of all Nepal- and USA-based populations. A Locations of the populations sampled in Nepal and the USA. The US 
populations are specifically from the Northern California region. Location of Kathmandu is indicated in red on the Nepal map. Colors correspond 
to lifestyle groupings as described in B. B Oral microbiome samples were collected from individuals that span a spectrum of lifestyles, from nomadic 
foraging populations (dark blue), to populations that recently transitioned from foraging to small scale agriculture (teal), to established small scale 
agriculturalists (sky blue), to Nepali expats residing in the US practicing an industrialized lifestyle (peach), and to American industrialists (red). 
Sample sizes for each lifestyle category are indicated
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Lifestyle factors differ across populations
Given that multiple dietary, environmental, and socio-
economic factors differ across populations in Nepal, we 
administered a survey to capture the specific lifestyle fac-
tors that differ across the Nepali populations (Table S1). 
We used Random Forests to evaluate the ability of the 
37 lifestyle factors obtained from the survey questions 
to classify individuals according to their respective life-
style groups. Nepali individuals are correctly assigned to 
their respective lifestyle categories with 92.06% overall 
accuracy (Fig. S1), suggesting that the populations in our 
study are highly distinguishable based on these factors.

We then performed correspondence analysis (CA) to 
determine which specific variables distinguish the life-
styles. Our analysis reveals a significant dependence 
between the samples and lifestyle factors (p = 0.004; chi-
square test of independence). Individuals cluster closely 
in the top two dimensions of CA based on their lifestyle 
group, as do similar specific lifestyle variables (i.e., edu-
cation and literacy, Fig. S2 A). Specifically, CA axis 1 
follows the lifestyle trend (p = 3.26 ×  10−14; Jonckheere-
Terpstra test), whereas CA axis 2 does not (p = 0.21; 
Jonckheere-Terpstra test, Fig. S2 B-C). The top 10 con-
tributing lifestyle factors to CA1 include sisnu consump-
tion, fuel source, and literacy (Fig. S2 D). For example, the 
Chepang consume sisnu most frequently, use solid fuel 
for cooking, and have low literacy rates, while the Expats 
do not consume sisnu, use gas or electricity for cooking, 
and are literate. By contrast, the top contributing factors 
to CA2 include behavioral factors like smoking and alco-
hol consumption (Fig. S2 E). The high predictive capa-
bilities of the Random Forest analysis and discrimination 
between lifestyle categories based on specific lifestyle fac-
tors suggest that the lifestyles are both well-defined by 
subsistence strategy and effectively described by the sur-
vey metadata.

Oral microbiome diversity does not differ across Nepali 
populations
Fecal samples concurrently collected with the saliva from 
the Chepang, Raji, Raute, and Tharu individuals previ-
ously revealed pronounced gut microbiome composi-
tional differences across the gradient of lifestyles from 
foraging to industrialized [15]. To evaluate whether oral 
microbiome compositional differences align with the 
continuum of lifestyles, we initially characterized the oral 
microbiome via saliva samples collected from 89 indi-
viduals across five lifestyles (Table  S1). Recognizing the 
potential for DNA extraction methodology to introduce 
variability in microbiome studies [34, 35], we performed 
DNA extraction using two different kits, Qiagen QIAamp 
MinElute Virus Spin kit and MO BIO PowerSoil DNA, 
to ensure the robustness of our conclusions. Overall 

microbiome composition and diversity are consistent 
between the two kits (Fig. S3). Consequently, all subse-
quent analyses were performed using the data obtained 
from the Qiagen kit for simplicity, which resulted in 69 
individuals that passed quality control steps (see the 
“Methods” section).

We first evaluated whether overall microbiome diver-
sity differed across lifestyle groups, as decreasing diver-
sity is typically thought of as a hallmark of traditional 
to industrialized lifestyle transitions [12, 24, 26]. We 
observe no significant difference in Shannon diver-
sity across the lifestyle groups (p > 0.05, Kruskal–Wal-
lis; Fig.  2), but there is a significant difference in Faith’s 
phylogenetic diversity between the lifestyles (p = 0.028; 
Kruskal–Wallis, Fig. 2). A post hoc pairwise comparison 
demonstrates that the American industrialists are driving 
the differences in Faith’s phylogenetic diversity (Ameri-
can Industrialists vs. other lifestyles: p < 0.05, Dunn’s 
post hoc test). Notably, there is no significant difference 
in Faith’s phylogenetic diversity between the four Nepali 
populations (p > 0.05; Kruskal–Wallis). These findings 
remain largely consistent with other alpha diversity met-
rics across both extraction kits (see the “Methods” sec-
tion, Fig. S4–S5). Aligning with the observations in the 
gut microbiomes of these individuals [15], our results 
indicate that oral microbiome diversity does not correlate 
with lifestyle differences within Nepal when geography 
is controlled for. Notably, our sample sizes, while mod-
est, are larger than most other oral microbiome studies 
examining traditional lifestyles [22–24, 26], underscoring 
that the lack of signal is not due to insufficient power. It is 
also important to note that the difference in microbiome 
diversity is observed using Faith’s phylogenetic diversity 
and not using Shannon’s diversity. While both within-
sample diversity metrics, Shannon’s diversity accounts 
for species abundance and evenness without considera-
tion of underlying phylogenetic structure, whereas Faith’s 
phylogenetic diversity accounts for the total phylogenetic 
breadth of the residing taxa. As a result, our results sug-
gest that while the microbes residing in the Nepali indi-
viduals cover a larger extent of the phylogenetic tree than 
the American industrialists, the relative evenness is fairly 
equal between the populations.

Oral microbiome composition differs across lifestyles
Unlike microbiome diversity, microbiome composition 
varies across lifestyles. We calculated between-sample 
Bray–Curtis distances to measure beta diversity [146], 
revealing that oral microbiome composition varies sig-
nificantly with lifestyle (p = 2.3 ×  10−4; PERMANOVA, 
Fig.  3A). This relationship remains significant even 
when accounting for sex across all individuals and both 
sex and age across the Nepali individuals (p = 1.5 ×  10−4, 
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p = 0.025; respectively, PERMANOVA). Subsequent 
pairwise comparisons demonstrate multiple significant 
differences between specific pairs of groups (foragers 
vs. American industrialists, foragers vs. expats, agricul-
turalists vs. American industrialists: p < 0.05, pairwise 
PERMANOVA). When visualized via principal coordi-
nate analysis (PCoA), the first axis (PCoA1, explaining 
28.62% of microbiome variation) follows the lifestyle 
gradient (p = 0.0014; Jonckheere-Terpstra test, Fig. 3B), 
with the expatriates and Americans being most differ-
ent from the traditional Nepali populations. This pat-
tern is consistent across data from both extraction kits 
(Fig. S6 B–D) and with UniFrac metrics (Figs. S7–S8) 
[40]. These compositional differences across groups, 
however, are fairly subtle, with the classification of 
microbiomes into lifestyle groupings via Random For-
ests not being better than expected by random chance 
(43.48% accuracy, Fig. S9).

Because overall microbiome composition differed 
based on lifestyle, we next determined which specific taxa 
differed across the lifestyles. To do this, we conducted 

differential abundance analysis using ALDEx2, which 
accounts for compositionality in its application [41]. We 
observe that 2 of the 111 oral genera (1.8%) were sig-
nificantly differentially abundant after accounting for 
multiple tests, namely Streptobacillus and an unclassi-
fied Porphyromonadaceae genus (padj = 0.011 and 0.021, 
respectively; Kruskal–Wallis) (Table  S2). These results 
are robust to the inclusion of sex and age as covariates 
(Table S3). We also implemented an alternative approach 
for identifying which taxa were following the lifestyle 
gradient by performing the Jonckheere-Terpstra test for 
all genera and correcting for multiple tests. We find that 
nine genera significantly followed the lifestyle gradient, 
including the two that were also identified using ALDEx2 
(Fig. 4, Table S4). Eight genera—Streptobacillus, Porphy-
romonadaceae_unclassified, Granulicatella, Moraxella, 
Simonsiella, Neisseria, Bacteroidetes_unclassified, and 
Brachymonas—show decreasing abundance with indus-
trialization, consistent with the trend observed in Faith’s 
phylogenetic diversity. The only exception is Atopobium, 
which shows the opposite trend of increasing abundance 

Fig. 2 Alpha diversity does not significantly differ by lifestyle in Nepal. Faith’s phylogenetic diversity (Faith’s PD—left) and Shannon alpha 
diversity (Shannon Diversity—right) shown for all individuals, grouped by lifestyle. Lifestyles are ordered from most traditional (foragers) to most 
industrialized (American industrialists), left to right. No significant difference detected across lifestyles for Shannon alpha diversity (p = 0.8, Kruskal–
Wallis), but a marginally significant difference detected for Faith’s phylogenetic diversity (p = 0.028, Kruskal–Wallis). Notably, those significant 
differences only occur between the American industrialists and other lifestyle groups, not between Nepali individuals residing in Nepal or the USA. 
Significant differences (p < 0.05) between specific populations are indicated (*)
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with industrialization (Fig. 4). To identify whether these 
trends were driven primarily by the industrialists, we 
analyzed the lifestyle gradient for only the Nepali groups. 
We find that only Streptobacillus significantly follows the 
lifestyle gradient within Nepali individuals after correct-
ing for multiple tests. Interestingly, when applying the 
same approach to all individuals except the foragers, we 
also find that, again, only Streptobacillus significantly fol-
lows the lifestyle gradient. These results confirm that the 
extreme ends of the lifestyle gradient have substantially 
different microbial relative abundances, with the inter-
mediate stages exhibiting more subtle differences in rela-
tive abundance.

Grain type is associated with microbiome differences 
across lifestyles
Given that overall microbiome composition mirrored the 
transition of lifestyles within Nepal, we sought to identify 
lifestyle factors that potentially underlie these differences. 
To do this, we first started at a broad scale by compar-
ing the major axes defining oral microbiome compo-
sition and the lifestyle variables from PCoA and CA, 
respectively. We calculated the correlation between the 
first three CA axes, which cumulatively captured 37.14% 

of the variation in the lifestyle survey data, and the first 
three PCoA axes, which cumulatively captured 49.35% 
of the variation in the microbiome data. We observe a 
significant correlation between PCoA2 and CA2, which 
is primarily comprised of behavioral lifestyle factors like 
tobacco and alcohol use and distinguishes the recently 
settled populations from foragers and agriculturalists 
(p = 0.03; rho =  − 0.27; Spearman correlation, Fig. S10 A). 
No significant correlation is observed between the CA 
axes and alpha diversity (Fig. S10 B).

We then identified which specific lifestyle factors are 
associated with the observed differences in microbiome 
composition. As testing all 37 measured lifestyle factors 
would be prohibitive due to multicollinearity, we selected 
the top 15 key lifestyle distinguishing factors based on 
their contributions to the first two CA axes (Fig. S2). We 
used these factors to perform canonical correspondence 
analysis (CCA) to determine which variables are associ-
ated with shifts in the microbiome. We find significant 
associations between these lifestyle distinguishing factors 
and the oral microbiome composition among the Nepalis 
(p = 0.013; ANOVA); with the top factors being alcohol 
consumption, smoking habits, location, sisnu consump-
tion, and grain type (p = 0.044, 0.001, 0.003, 0.003, and 
0.027, respectively, ANOVA) (Fig. 5A).

Fig. 3 Oral microbiome composition significantly differs based on lifestyle. A Microbiome composition varies significantly with lifestyle 
(p = 2.3 ×  10−4, PERMANOVA). The PCoA plot shows individuals ordinated based on Bray–Curtis distance and colored by lifestyle. B The distribution 
of individuals along PCoA axis 1 follows the lifestyle gradient, from traditional to industrial (p = 0.0014, Jonckheere-Terpstra test). Lifestyles are 
ordered from most traditional (foragers) to most industrialized (American industrialists), left to right
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Finally, we identified associations between the nine taxa 
that are differentially abundant across lifestyle groupings 
(Table S4) and the 37 lifestyle factors included in our sur-
vey via linear models. Out of the 333 associations tested, 
we find that Brachymonas is significantly associated with 
grain consumption at an adjusted p-value, with a higher 
abundance of this taxon observed in individuals who pri-
marily consume barley and maize compared with those 
who primarily consume rice and wheat (padj = 0.022; 
Fig. 5B). Furthermore, we observe an additional 27 asso-
ciations that are significant at a nominal p-value < 0.05 
(Fig.  5C, Table  S5). For example, we observe that the 
relative abundances of Granulicatella, Neisseria, and 
Porphyromonadaceae_unclassified are higher in non-
smokers, whereas Atopobium relative abundance is 
lower in non-smokers (p = 0.006, p = 0.032, p = 0.033, and 
p = 0.023, respectively, Fig. S11 A). Similarly, the relative 

abundances of Brachymonas, Moraxella, and Porphy-
romonadaceae_unclassified are higher in individuals 
that consume sisnu (p = 0.014, p = 0.019, and p = 0.012, 
respectively, Fig. S11 B). Notably, while both smoking 
and alcohol are associated with the oral microbiome 
and both factors are top contributors to lifestyle, neither 
of these factors significantly follow the lifestyle gradient 
from traditional to expatriate (p > 0.05; Cochran-Armit-
age test, Fig. S12). These results demonstrate that a vari-
ety of lifestyle factors potentially underlie the differences 
in oral microbiome composition observed between life-
styles within Nepal.

Predicted metabolism pathways are differentially 
abundant across lifestyles
In addition to the taxonomic differences observed 
between lifestyle groups, the predicted functional 

Fig. 4 Abundances of nine genera significantly follow the lifestyle gradient. The relative abundances of nine genera significantly follow the lifestyle 
gradient via a Jonckheere-Terpstra test followed by Benjamini–Hochberg correction (adjusted p < 0.05). Lifestyles are ordered from most traditional 
(foragers) to most industrialized (American industrialists), left to right. All taxa have been log10-transformed for visualization purposes. Taxa 
marked with * are also significantly differentially abundant across lifestyles based on ALDEx2. Most taxa tend to decrease in relative abundance 
as the lifestyles transition from more traditional to industrial, while the abundance of Atopobium increases. 
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Fig. 5 Alcohol, smoking, location, sisnu, and grain type are associated with the oral microbiome. A There are significant associations 
between lifestyle factors and the microbiome as observed via CCA. Points represent individuals and color represents corresponding lifestyle, 
with ellipses around each population. Red arrows represent the lifestyle factors significantly associated with the microbiome. A total of 15 lifestyle 
factors were inputted into the CCA model based on contribution to each CA axis. B Brachymonas is significantly associated with grain type 
consumed (padj = 0.022). Specifically, relative abundance is higher in individuals who report barley and maize consumption compared with rice 
and wheat. Taxa were log10 transformed for visualization. C Several specific lifestyle factors are associated with individual oral genera. Significant 
associations based on a nominal p-value threshold are indicated with *. The significant association based on an adjusted p-value threshold 
is indicated with **
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potential of the microbiome significantly differs as well. 
Based on the use of PICRUSt2 [42], predicted functional 
abundance significantly varies with lifestyle (p = 0.0036; 
PERMANOVA, Fig. S13 A). The top two PCA axes both 
significantly follow the lifestyle gradient (PC1: p = 0.049, 
PC2: p = 0.0064; Jonckheere-Terpstra test, Fig. S13 B). We 
note that while the taxa present in Nepali oral microbi-
omes seem to be fairly closely represented in the refer-
ence taxonomy used to predict gene content (average 
NSTI = 0.037), there are many caveats to predictive 
methods such as PICRUSt2 and these results should be 
viewed as hypothesis-generating [43].

To identify specific potential functional differences 
across lifestyles, we conducted differential abundance 
testing with ALDEx2 using the predicted abundances of 
109 pathways. Although none are significant after mul-
tiple test corrections, 22 pathways are significant at a 
nominal p-value of p < 0.05 (Table S6), 13 of which are 
classified as metabolism pathways (Fig. S14A). These 
metabolism pathways can be categorized into 7 classes, 
some of which increase in abundance with increasing 
industrialization, including lipid metabolism and gly-
can biosynthesis, while others decrease, such as xenobi-
otics degradation and microbial metabolism in diverse 
environments (Fig. S14B). General transporter proteins 
(ATP-binding cassette transporters—padj = 0.0013, 
phosphotransferase system—padj = 0.0013) and deg-
radation pathways (aminobenzoate degradation—
padj = 0.0028) are significantly enriched via enrichment 
analysis (Fig. S15). Finally, the top 10 most significant 
pathways from ALDEx2 were further examined to iden-
tify the top contributing microbes and whether they 
differ by lifestyle. Fusobacterium is one of the top taxa 
contributing to platinum resistance (Fig. S16 A). There 
is a significant enrichment of Fusobacterium in the tra-
ditional Nepali populations compared with industrial-
ized populations (p = 0.0037; Kruskal–Wallis test, Fig. 
S16 B). Overall, predicted metabolism pathways signifi-
cantly differ across lifestyles, mirroring the taxonomic 
gradient across lifestyles in Nepal.

Microbial network structure varies across lifestyles
We then investigated network structure to determine 
whether community structure differs across lifestyles. 
We used the SparCC module in the SpiecEasi pack-
age [44, 45] to generate a network from all 111 genera 
observed in this study. The resulting network consists 
of 37 nodes with at least one edge and 6 co-abundance 
groups, with a modularity of 0.45 (Fig.  6A). Among the 
taxa identified as following the lifestyle gradient, 5 out 
of the 9 are connected to at least one other taxon, with 
Porphyromonadaceae_unclassified, Neisseria, Bacteroi-
detes_unclassified, and Granulicatella being in the same 

co-abundance group (CAG1), whereas Atopobium is in a 
separate co-abundance group (CAG2). Interestingly, the 
proportions of CAGs differ across lifestyles, with CAG1 
decreasing with industrialization and CAG2 increasing 
with industrialization (Fig.  6B). These results demon-
strate that community network structure differs along the 
lifestyle gradient, in addition to individual microbial taxa 
and predicted functional potential.

Oral‑gut microbiome distance decreases with agrarianism
Finally, we examined the role of lifestyle along the oral-
gut microbiome axis. While different lifestyle factors 
independently associated with the oral and gut micro-
biomes, the compositional similarity between the two 
sites within an individual increases  with the extent of 
urbanization [25]. Thus, we were interested in assessing 
whether there was a similar association across lifestyles, 
in which we might expect to see increasing intra-individ-
ual similarity across the gradient of lifestyles from tradi-
tional to agrarian. To do this, we examined individuals 
for whom both oral and gut microbiome data were col-
lected concurrently, for a total of 12 foragers, 14 recently 
settled individuals, and 12 agriculturalists (Table  S7), 
and calculated Bray–Curtis dissimilarity between the 
oral and gut microbiomes. We find that intra-individual 
oral-gut microbiome dissimilarity decreases, and there-
fore similarity increases, across the gradient of tradi-
tional to agrarian lifestyle as predicted, although this 
trend is not statistically significant (p = 0.11; Jonckheere-
Terpstra test, Fig.  7). We, however, do observe signifi-
cant similarities in composition between the two body 
sites across individuals (p = 0.013, rho =  − 0.4; Spearman 
correlation, Fig. S17), suggesting that we are perhaps 
underpowered to detect the significance of intra-indi-
vidual dissimilarity at our current sample size. To verify 
this, we conducted a power analysis and determined that 
we only have 4.1% power given our measured effect size 
differences between groups and would require at least 62 
individuals per group to detect a significant trend with 
80% power (Fig. S18).

Discussion
Much of human microbiome research is weighted 
towards populations living in North America and 
Europe, with South Asia being particularly underrep-
resented [46]. As a consequence, our understanding of 
how the oral microbiome varies across human lifestyles 
is extremely limited, especially with regard to non-
industrialized lifestyles including foraging, hunting and 
gathering, and small-scale agriculturalism. Some exist-
ing studies identify differences in the oral microbiome 
between hunter-gatherers and farmers [24, 26]. Others 
investigate the role of a few specific lifestyle factors; like 
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smoking, alcohol consumption, and diet; but only in a 
single, usually industrialized, population [36, 47–49]. 
Our study is the first comprehensive examination of the 
oral microbiome across a gradient of lifestyles, includ-
ing transitional lifestyles—recently settled nomadic for-
aging individuals now practicing small-scale agriculture 

and expatriates transitioning from farming to industri-
alization—and numerous lifestyle factors characterizing 
each lifestyle. Importantly, we are able to isolate the role 
of lifestyle, as geography and technical factors are con-
trolled for. We observe that even when controlling for 
geography, microbiome composition mirrors lifestyle 

Fig. 6 Differentially abundant taxa are highly connected in the oral microbiome co-occurrence network. A The SparCC module in the SpiecEasi 
package was used to generate a network from 111 genera. Network of 37 nodes with at least one significant edge is shown, with 6 co-abundance 
groups (CAGs) indicated by node color. Labeled nodes indicate genera that were identified as significantly differentially abundant across lifestyles. B 
Proportions of CAGs vary across lifestyle. Specifically, CAG1 decreases with industrialization, whereas CAG2 increases with industrialization

Fig. 7 Correlation between the oral and gut microbiomes within an individual strengthens with agrarianism. Microbiome dissimilarity (as measured 
by Bray–Curtis dissimilarity) between the gut and oral microbiomes within an individual decreases across the gradient of lifestyles from traditional 
to agrarian for individuals residing in Nepal, albeit not significantly (p = 0.11; Jonckheere-Terpstra test)
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transitions, likely due to differences in dietary and behav-
ioral habits.

In general, populations in industrialized countries have 
lower gut microbiome diversity than those practicing 
more traditional lifestyles [5, 11–14, 16, 50, 51]. This has 
led to an active discussion regarding whether we should 
intervene to improve human health and reduce micro-
bial loss in industrialized countries [9, 52, 53]. While it 
is tempting to attribute the observed diversity differ-
ences across populations to lifestyle, controlling for geog-
raphy eliminates those differences [14, 54, 55]. In fact, 
when examining the gut microbiomes of the individuals 
included in this study, there was no significant differ-
ence in within-sample alpha diversity across lifestyles, 
even when including American industrialists [15]. Fewer 
studies examine oral microbiome diversity across human 
lifestyles, and most of them observe a decrease in diver-
sity across lifestyles [24, 26]. That said, it is important to 
highlight that geography was not closely controlled for 
and might have confounded the results, as examining 
lifestyle while controlling for geography results in no dif-
ference in diversity [22].

Here, we demonstrate that alpha diversity of the oral 
microbiome does not significantly differ across lifestyles 
between Nepali individuals, aligning with findings from 
oral microbiome studies that control for geography [22]. 
Interestingly, unlike the gut microbiomes of the same 
individuals [15], we observe a significant decrease in 
Faith’s phylogenetic diversity in the American industrial 
population compared with Nepali individuals, including 
the Nepali expats. As the Nepali expats and American 
industrialists currently reside within the same metro area, 
geography is effectively controlled. There are several pos-
sible explanations for why these differences are observed 
between the Nepali expats and American industrialists, 
but not the populations within Nepal. First, the main dif-
ferentiating factor may not be geography, as one might 
assume if only comparing the populations residing in 
Nepal with American industrialists, but rather lifestyle 
factors that have more extreme effects between indus-
trialists and other lifestyles than between the traditional 
and agrarian populations within Nepal. For example, the 
Nepali expats included in this study tend to retain their 
traditional cuisine, which differs greatly from a standard 
American diet. Although recipes are modified to account 
for local ingredient availability, the main dietary com-
ponents remain consistent across the ethnically Nepali 
populations, regardless of geography. Another possibil-
ity is that geography does drive oral microbial diversity, 
but can only do so during critical windows earlier in life 
in which oral microbiomes are malleable [56]. While gut 
microbiota appear to be malleable even with immigra-
tion well into adulthood [57], it is not clear if the same 

is true for the oral microbiome. Once a stable microbial 
community or host immune repertoire is established, 
moving to another geographic region may not result in 
diversity changes. The Nepali expatriates included in this 
study immigrated around their mid-30s, so they may 
have missed this window. Further investigation would be 
needed to tease apart these and other possible explana-
tions for the differences in diversity we observed between 
Nepali individuals and American industrialists.

Similar to the gut microbiomes in the same individuals 
[15], oral microbiome composition mirrors lifestyle. Spe-
cifically, we observe a consistent compositional gradient 
when comparing individuals from traditional foraging 
populations (Chepang) to recently settled populations 
(Raji and Raute), to small-scale agriculturalists (Newar 
and Tharu), to immigrants (Newar) and industrialized 
Americans. Compared with the gut, which we reana-
lyzed using ALDEx2 to ensure comparability of results 
(Table  S8), differences across lifestyles are more muted 
in the oral microbiome. More genera in the gut are sig-
nificantly differentially abundant across lifestyles (27% in 
gut, 1.8% in oral), even though there was slightly more 
power with the oral samples due to increased sample 
size. This finding may be due to the increased resiliency 
of the salivary microbiome compared with the gut micro-
biome, thus resulting in fewer differences in the microbi-
ome across lifestyles [58–62]. It is important to note that 
these considerations are specific to the salivary microbi-
ome, as the microbiomes of other oral anatomical sites, 
including dental calculus, differ significantly from that of 
saliva [63–65].

When examining microbial abundance across lifestyles, 
most of the differentially abundant microbes decrease 
across the gradient of traditional to industrialized. Many 
of these taxa co-occur and lie in the same co-abun-
dance group when considering the full oral microbiome 
network (CAG1). One such taxon is Neisseria, which 
decreases in abundance with industrialization in other 
lifestyle studies [24, 28]. Neisseria plays a beneficial role 
in periodontal health, possibly by preventing the colo-
nization of pathogenic microbes [66, 67]. Its decreas-
ing abundance aligns with the hypothesis that the loss 
of crucial microbes is associated with the emergence of 
disease in industrialized society [68]. Other previously 
identified lifestyle-associated oral microbes are not sig-
nificantly associated with lifestyle in our study, such as 
Haemophilus, Prevotella, and Streptococcus [23, 24, 26, 
29]. Instead, we observe decreasing levels of an unclas-
sified Porphyromonadaceae genus. Porphyromonas gin-
givalis is a member of the Porphyromonadaceae family, 
well-established as a pathogenic oral microbe contrib-
uting to periodontal disease [69]. Further investigation 
is needed of this microbe in our dataset, as this would 
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provide insight into Porphyromonadaceae as a potential 
oral pathogen at a global scale. Streptobacillus is another 
microbe that decreases in abundance with increasing 
industrialization. In North America, Streptobacillus is 
most well-known as Streptobacillus moniliformis for its 
presence in rat oral microbiomes and its role in rat bite 
fever [70]. By contrast, Streptobacillus appears as a com-
mensal member in the human oral microbiomes of Asian 
populations. More specifically, Streptobacillus hongkon-
gensis resides in the oral cavity of populations from Hong 
Kong and the United Arab Emirates [71, 72]. Streptoba-
cillus has also been found in the Agta hunter-gatherers in 
the Philippines [73], thus suggesting that Streptobacillus 
presence in the human oral microbiome may be region-
ally limited to Asia. This hypothesis aligns with our study, 
as Streptobacillus is not observed in the American indus-
trialists and is also less abundant in the expats. However, 
we note that our American industrialist sample size is 
limited, and larger sample sizes would be needed to con-
firm the low prevalence of this taxa in non-Asian popu-
lations. The relative abundance of differentially abundant 
microbes decreasing with industrialization is consistent 
with prior observations of decreased microbiome diver-
sity in industrialized populations.

By contrast, the one genus that significantly increases 
in relative abundance with industrialization is Atopo-
bium. High levels of oral Atopobium relative abundance 
are associated with a variety of negative health outcomes, 
many of which are more common in industrialized soci-
eties. Highly abundant in individuals with dental caries, 
Atopobium is believed to contribute to the development 
of dental caries as an accessory to Streptococcus mutans, 
a leading microbial cause of caries [74–76]. Oral Atopo-
bium carriage is also enriched in individuals with hyper-
tension [77], Sjögren’s Syndrome [78], and patients with 
severe oral mucositis, a toxicity occurring from cancer 
treatments [79]. Notably, we observe that Atopobium 
belongs to a separate co-abundance group from the other 
differentially abundant taxa, CAG2. CAG2 also contains 
Veillonella, a microbe that may be an accessory for oral 
pathogen colonization [80]. Future research is needed 
to disentangle whether Atopobium and other potentially 
pathogenic microbes play causal roles in the develop-
ment of oral conditions.

Multiple specific lifestyle factors are believed to play 
a role in shaping the oral microbiome, such as smoking, 
dietary fiber, and carbohydrate sources [47, 48, 81]. Most 
of these factors, however, were characterized in indus-
trialized populations and it remains unclear whether the 
same factors play a role in the oral microbiota of tradi-
tional populations. Using extensive survey metadata, we 
observe significant associations between the microbiome 

and 15 lifestyle factors, with smoking, grain type, and 
sisnu consumption most strongly associated.

Smoking consistently associates with oral microbiome 
composition across numerous industrialized populations, 
with increases in Atopobium and decreases in Neisseria 
and family-level Porphyromonadaceae being trademark 
indicators [48, 82–85]. We identify similar associations 
with smoking in our study as well. Specifically, Atopo-
bium abundance is increased in smokers, whereas 
Granulicatella, Neisseria, and Porphyromonadaceae_
unclassified abundances are decreased in smokers. The 
taxa with increased abundances in smokers cluster in the 
same co-abundance group, whereas Atopobium is found 
in a separate co-abundance group. Notably, while smok-
ing prevalence rates differ across lifestyle groups, they do 
not follow the gradient of lifestyles from traditional to 
agricultural. This suggests that the association of these 
taxa with smoking is independent of subsistence strat-
egy. These findings suggest that smoking habits may play 
an important, consistent role in defining oral microbi-
ome community dynamics across lifestyles and highlight 
the importance of accounting for smoking as a factor in 
future studies of lifestyle and the oral microbiome.

The associations we observe between grain type and 
the oral microbiome in Nepali populations are of particu-
lar interest, given the proposed importance of starch-rich 
foods in shaping oral microbiomes along the primate lin-
eage [86]. Carbohydrates are associated with a myriad of 
oral microbes, either due to their role in starch digestion 
or pathogenicity [87, 88]. In this study specifically, popu-
lations reported primarily consuming either barley and 
maize, or rice and wheat. Barley and maize differ sub-
stantially from rice and wheat in terms of phenol content, 
digestibility, fiber content, and glycemic index [89, 90]. 
More specifically, barley and maize contain higher levels 
of phenols, which positively associated with gut microbi-
ome health, oral microbiome health, and overall systemic 
health [91, 92]. In addition, rice and wheat are digested 
faster than barley and maize [90]. This higher digestibil-
ity might be attributed to differences in cell structure, 
like thinner cell walls [93]. More starch consumption and 
more salivary amylase, the first step of starch digestion, 
may also be contributing factors. Higher salivary amylase 
copy number has been observed in individuals with high 
starch diets [94] and is associated with oral microbiome 
composition [95]. Furthermore, barley has higher fiber 
content compared with other refined grains [96], which 
is also associated with improved health outcomes [97]. 
Finally, barley is reported to have a lower glycemic index 
compared with rice and wheat [89], which is generally 
associated with more positive health outcomes [98]. We 
observe a significant association between grain type and 
Brachymonas, which has not been previously found to be 



Page 14 of 23Ryu et al. Microbiome  (2024) 12:228

associated with grains in human oral microbiomes. Lit-
tle is known about the role of this microbe in humans, 
beyond its presence in healthy oral microbiomes [99–
102]. Instead, this microbe has been demonstrated to 
decrease in abundance in the rumen microbiome of cows 
fed a high-grain diet [103], so further investigation is 
needed to fully understand this potential relationship.

We also identify a possible relationship between sisnu 
and the oral microbiome. Sisnu, also referred to as net-
tle, is a fibrous plant known for its medicinal benefits and 
primarily consumed by the Chepang foragers [104]. Sisnu 
consumption is a major differentiating lifestyle factor in 
this study, as demonstrated by correspondence analysis 
(Fig. S2). Although widely used in traditional medicine, 
little is known about its role in the microbiome. Sisnu 
shows strong antimicrobial properties against a variety 
of gram-positive and negative bacteria in  vitro [105], 
although evidence is mixed [106]. Here, Porphyromona-
daceae_unclassified relative abundance increases with 
sisnu consumption. Several mechanisms could explain 
this association. First, ingesting sisnu may result in low-
ered absolute abundance of the oral microbiome over-
all, with Porphyromonadaceae_unclassified being more 
resilient than other microbes. Second, the antimicrobial 
effects could create an expanded niche for this microbe 
to thrive, without impacting absolute abundance levels 
across the oral microbiome. Finally, the association may 
be unrelated to the potential antimicrobial properties of 
the plant, but rather nutrition. A finer-grain investigation 
would be needed to fully establish the underlying causes 
of this association, especially considering the prominence 
of sisnu as a therapeutic agent. Overall, these analyses of 
specific lifestyle factors associated with the oral microbi-
ome in Nepali populations provide new insight into the 
role of specific dietary components and environmental 
factors in the oral microbiomes of non-industrialized, 
non-equatorial populations.

One unexpected result was the lack of an observed 
association with teeth brushing or flossing. Oral hygiene 
practices are associated with the microbiome, as the 
mechanical actions of brushing and flossing disrupt 
plaques and antimicrobial toothpastes also chemically 
break down biofilms. As a result, even subtle differences 
in types of toothpaste and brushing frequency result in 
changes in the plaque and salivary microbiota [107–110]. 
In traditional populations, miswak, also referred to as 
a chewing stick, is often utilized for mechanically and 
chemically cleaning teeth and has been demonstrated 
to inhibit common oral pathogens [111–115]. Finally, 
charcoal and ash have also been used historically for 
oral hygiene, although their effectiveness is highly dis-
puted [116]. Our study included individuals who report-
edly do not brush their teeth, those who use traditional 

methods of miswak or charcoal, and those who brush 
with a toothbrush and toothpaste. Unexpectedly, we 
observed no association with reported tooth brushing, 
let alone the brushing method or frequency. This may be 
due to undocumented variance in “brushers,” as impor-
tant aspects of oral hygiene such as differing toothpaste 
amounts, brushing times, and toothpaste type, including 
whether toothpaste included antibiotics like triclosan, 
were not fully captured in the administered survey. These 
factors may have confounded our ability to appropriately 
identify an association between teeth brushing and the 
microbiome. In a similar vein, we are also missing insight 
into oral health, such as disease status or symptoms. 
Gathering this type of information can only be effectively 
executed by a dentist, which entails identifying a dental 
professional willing to go into the field to do so. While 
challenging, additional data about oral hygiene and oral 
health would provide insight into how these factors shift 
with the microbiomes of traditional populations.

Finally, we examined the oral-gut microbiome axis 
across traditional lifestyles. The oral and gut niches are 
linked by a consistent one-way flow of the saliva, food, 
and microbes from the mouth through to the colon. 
Although each niche hosts a distinct microbial commu-
nity of locally adapted strains [117], the microbes origi-
nating in the oral cavity can colonize distal sites in the 
gut and the two communities have been demonstrated 
to be predictive of one another [118–120]. An estimated 
one third of oral microbes are able to colonize the guts of 
healthy individuals [121], with increasing rates of coloni-
zation in individuals with diseases such as bowel cancer 
[122, 123], rheumatoid arthritis [124], and inflammatory 
bowel diseases [125]. Given the higher incidence of these 
diseases in industrialized countries [126–128], an open 
question remains whether rates of translocation along 
the oral-gut axis vary with lifestyle, potentially being a 
risk factor for disease. While our 16S rRNA sequence 
data lacks the resolution needed to detect translocation 
specifically, we evaluated whether intra-individual simi-
larity between the oral and gut microbiomes increased 
along the lifestyle gradient from traditional to agrarian. 
As expected under this hypothesis, there is a decrease 
in intra-individual Bray–Curtis distances along the 
gradient of traditional to agrarian populations within 
Nepal, although not statistically significant. This finding 
is similar to results from Cameroonian populations, in 
which the similarity of the oral-gut axis increased across 
a gradient of rural to urban populations, albeit not sig-
nificantly [25]. Power analysis shows that given the effect 
size estimates at our current sample size, we are quite 
underpowered to detect a significant relationship, which 
may explain why there is a visible trend but no statisti-
cally significant trend. It is worth noting that we did not 
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include Nepali expats or American industrialists in this 
analysis as we did not have paired oral-gut samples for 
those participants. Other analyses have suggested that 
the lifestyle gradient is subtle, meaning that detecting 
the trend between similar lifestyle stages is more chal-
lenging. As a result, without the inclusion of the indus-
trialized populations, our ability to observe a significant 
trend may be dampened. We also note that the sequenc-
ing approach used only provides resolution to the genus 
level, so we were not able to distinguish whether similar-
ity is a result of the translocation of oral strains to the gut 
versus a homogenization towards similar taxonomic pro-
files between the niches. Regardless, these results point 
towards an intriguing hypothesis: oral-gut microbial 
translocation increases with industrialization, potentially 
being a risk factor for disease. Future work would entail 
both increasing sample sizes of individuals across life-
styles as well as using methodologies that reliably track 
strain sharing across the two body sites.

While we identify new insights into the role of lifestyle 
in shaping the oral microbiome, there are limitations in 
our investigation. First, our sample sizes may seem low. 
While our sample size is sufficient to capture broad com-
positional differences across subsistence strategy group-
ings and differential abundance of common taxa, we may 
not have the ability to detect significant differences in 
lowly abundant or rare taxa. In practice, however, achiev-
ing large sample sizes in studies of traditional human 
lifestyles can be challenging. For example, the total popu-
lation size of the Raute is only 550 individuals. We limited 
our sampling to unrelated individuals, further limiting 
the sample population. Similarly, the Chepang and Raji 
reside in small, remote villages scattered throughout 
Himalaya. As each village only consists of a few hundred 
individuals, it is very difficult to both reach these vil-
lages and also identify unrelated individuals. The indus-
trialist sample size is also low; however, we note that the 
transition from traditional to agricultural lifestyles was 
the main focus of this study and that including publicly 
available data has the potential to introduce geographi-
cal and technical confounders. Ultimately, the purpose 
of this investigation is to examine the transitions across 
lifestyles, and as it stands, our study has sufficient sam-
ple size to identify novel statistical trends and address key 
gaps within the field. Additional sampling would allow us 
to dive deeper into these trends and better understand 
the specific contributors to this relationship.

Second, our investigation utilizes 16S rRNA sequenc-
ing, which only identifies taxa at genus-level resolution. 
As a result, we are unable to compare species or strain 
level differences in the microbiome across groups [129]. 
In addition, we currently can only indirectly infer the 

functional capabilities of specific microbes. While PIC-
RUSt2 has been demonstrated to be more effective than 
other predictive functional potential methods, these 
tools are bound by their respective reference databases 
and have been demonstrated to miss microbial functional 
genes, highlighting the importance of validating such 
findings with metagenomic data [130, 131]. The collec-
tion of metagenomic data would allow for a more gran-
ular investigation of the microbial strains and functions 
that differ across lifestyles.

Third, our selection process of the lifestyle factors 
included in the CCA model may be biased. Our primary 
considerations were minimizing the number of tests 
performed to preserve power and minimizing multi-
collinearity, which is the correlation between predictor 
variables. Keeping collinear predictors can result in dif-
ficulty assessing the relationship between the predic-
tors and outcome and therefore inaccurate estimations 
of model coefficients. Our method of predictor removal 
involved selecting variables based on contribution to life-
style as our goal was to identify which lifestyle factors 
were associated with the microbiome; however, in doing 
so, we may have inadvertently removed any factors that 
are associated with the microbiome by means other than 
lifestyle. As a result, our CCA model may be inherently 
biased towards factors that follow the lifestyle trend and 
not fully capture all possible factors that influence the 
microbiome. It is for this reason that we also investigated 
the relationships of all lifestyle factors with the nine dif-
ferentially abundant taxa to confirm our CCA findings. 
Future work should entail a more targeted investigation 
of the lifestyle factors with larger sample sizes to mitigate 
the concerns of loss of power due to multiple testing and 
multicollinearity.

Conclusions
Our investigation of Nepali populations across a variety 
of human lifestyles expands our understanding of the 
oral microbiome at a global scale. In conjunction with 
gut microbiomes collected from the same individuals 
[15], we find that lifestyle is associated with the com-
position of both the gut and oral microbiomes, albeit to 
differing degrees. Metagenomic sequencing would pro-
vide finer-scale microbiome data that would allow us to 
more effectively identify the taxa and functional poten-
tial associated with lifestyle. In addition, studies in which 
industrialization is decoupled from background genetics, 
geography, and latitude will be essential for identifying 
the specific factors that result in microbiome differences 
across populations. Future work will reveal the extent to 
which oral microbiomes vary around the globe and refine 
our understanding of the environmental factors involved.
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Methods
Ethics approval
This work was approved by the Ethical Review Board of 
the Nepal Health Research Council (NHRC) as well as by 
the Stanford University Institutional Review Board. Sam-
ples were collected between March and April 2016 with 
informed consent from all participants.

Sample collection
Saliva samples were collected under informed consent 
using the DNA Genotek Oral Saliva kit (DNA Genotek, 
Stittsville, CA, USA) from five populations in Nepal: the 
Chepang (foragers, n = 19), Raji (recently settled/tran-
sitioned to agriculture, n = 11), Raute (recently settled/
transitioned to agriculture, n = 14), Tharu (established 
agriculturalist, n = 21), and Newar ethnic groups (estab-
lished agriculturalist, n = 8). Samples were collected in 
the winter of 2016 in March and April. Approximately 
1  mL of unstimulated saliva samples were stored in the 
stabilizing buffer provided in the DNA Genotek kit and 
transported over 7–10  days at room temperature, after 
which they were stored at − 20 ºC for 2–3 months at the 
Institute of Medicine in Tribhuvan University, Kath-
mandu, Nepal.

At the time of saliva sample collection, detailed meta-
data was also collected from all participants. These data 
include demographic, anthropometric measurements, 
environmental, and dietary data using a survey ques-
tionnaire specifically designed for this study (Table  S1). 
Participants’ responses to the survey data question-
naires were cleaned and standardized prior to analysis 
(Table S1).

Following the field work in Nepal, saliva samples were 
also collected from two populations in the USA with 
the same kits: the Newar population (expats emigrated 
from Nepal to the USA, n = 12) and European Americans 
(industrialist, n = 6) (Stanford IRB: 35,580). USA-based 
samples were collected in the winter of 2016 (November 
and December). All sampled individuals were unrelated 
and over 18 years old. Detailed survey data are available 
for the expat Newar population, but not the European 
American Industrialists (Table  S1). Overall, our cohort 
included foragers (Chepang, n = 19), recently settled indi-
viduals (total, n = 25; Raji, n = 11; Raute, n = 14), estab-
lished agriculturalists (total, n = 29; Tharu, n = 21; Newar, 
n = 8), expats (Newar, n = 12), and industrialists (Euro-
pean-Americans, n = 6).

DNA extraction and 16S rRNA Amplicon sequencing
For samples collected in Nepal, total DNA was extracted 
at the Institute of Medicine (IOM) in Kathmandu using 
the Qiagen QIAamp MinElute Virus Spin kit (Qiagen, 
Germantown, MD, USA) according to the manufacturer’s 

protocol. Both the remaining original saliva samples and 
the Qiagen kit-extracted DNA were shipped to Stanford 
University on dry ice and then stored at either − 20 ºC 
until sequencing (extracted DNA) or at − 80 ℃ (remain-
ing saliva sample). Total DNA was again extracted from 
saliva samples using the MO BIO PowerSoil DNA Iso-
lation kit (MO BIO, Carlsbad, CA, USA) following the 
manufacturer’s recommended protocol. For samples 
collected in the USA, they were extracted with both the 
Qiagen QIAamp MinElute Virus Spin kit and MO BIO 
PowerSoil DNA Isolation kit in the US. Extraction-neg-
ative controls were included in all extractions to evaluate 
contamination during analysis.

The V4 hypervariable region of the 16S rRNA gene was 
amplified for all DNA extracts and PCR-negative con-
trols using established primers and protocols [132]. The 
sample and negative control libraries were multiplexed 
and sequenced 250 bp single-end on the Illumina MiSeq 
platform at Stanford University, targeting a minimum of 
25,000 reads per sample for accurate relative abundance 
quantification (Table S1).

Sequencing data quality control and cleaning
All bioinformatic analyses were conducted in R version 
4.1.2, unless otherwise stated. Single-end sequences 
were cleaned and processed using DADA2 v.1.22.0 
[133]. First, reads were trimmed at 150  bp to remove 
low-quality bases, and then filtered to remove any reads 
with N nucleotides or more than two expected errors 
(maxN = 0, maxEE = 2, truncQ = 2, Table  S9). Next, 
sequence variants were inferred by pooling reads across 
samples (pool = TRUE). More specifically, 173 samples 
were pooled using 8,435,257 reads across 674,656 unique 
sequences. A sequence table was generated, consisting of 
173 samples and 5068 amplicon sequence variants (ASV). 
Eleven percent of the reads were removed as chimeric, 
resulting in 7,490,294 reads and 1424 ASVs remaining 
(Table S9). ASVs were classified using the RDP v14 train-
ing set [134]. Finally, a phylogenetic tree was generated 
by performing multiple sequence alignment using DECI-
PHER v.2.22.0 [135] and then constructing the tree by 
using a neighbor-joining tree as a starting point via the 
package phangorn v.2.11.1 [136]. ASVs were then handed 
off to phyloseq v.1.38.0 for additional cleaning and down-
stream analysis [137].

Next, predicted contaminants were identified and 
removed via decontam v.1.14.0 using both the frequency 
and prevalence methods, thereby removing 19 ASVs 
[138]. Singletons and any taxa that do not appear at least 
five times across at least two samples were removed 
to account for spurious taxa stemming from sequenc-
ing errors (Table  S9). For alpha diversity analyses, sam-
ples were rarefied using the rarefy_even_depth function 
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from the phyloseq package by subsampling to 26,923 
sequences (the minimum number of sequences across 
non-control samples) and then calculating alpha diver-
sity from the rarefied samples (Fig. S19–S20). This was 
repeated 1000 times to account for randomness in rar-
efaction, and the mean alpha diversity value was cal-
culated. Non-rarefied counts were used for tools with 
in-built compositionally aware transformation methods 
(i.e., centered log-ratio transformation). For all other 
analyses, counts were transformed to relative abundances 
using total-sum scaling. Log transformations were con-
ducted with log10 and a pseudocount of 0.0001. Finally, 
individuals currently taking antibiotics were removed 
(n = 2) (Fig. S21), because antibiotics have previously 
been associated with changes in the oral microbiome 
[139]. Furthermore, current antibiotic use was found to 
be marginally significant when compared across Shannon 
alpha diversity for samples extracted with the Qiagen kit 
(p = 0.048, Kruskal–Wallis). The post-QC result sample 
sizes are 60 samples extracted by the PowerSoil kit and 
69 samples extracted by the Qiagen kit (Fig. S22). The 
total number of ASVs across all samples extracted via the 
Qiagen and PowerSoil kits is 1000 ASVs.

Random Forests classifier
Random Forests was first conducted by building 500 
trees with 63 samples and 37 categorical variables from 
the survey data using the R package randomForest 
v.4.7–1.1 [140]. Random Forests models were subse-
quently conducted with 500 trees using microbiome data 
agglomerated to the genus level and transformed to rela-
tive abundances. Random Forests models were evaluated 
via out-of-bag error estimates, as well as assessing confu-
sion matrices. Improvement beyond random chance was 
assessed using the R package verification v.1.42 [141].

Diversity analyses
Five metrics were used to assess alpha diversity—Faith’s 
phylogenetic distance, Fisher’s alpha, Shannon alpha, 
Simpson alpha, and species richness [142–145]. Alpha 
diversity was calculated after rarefying sample counts 
to 26,923 counts 1000 times and taking the mean value. 
Kruskal–Wallis tests were performed to assess significant 
differences in alpha diversity between the ethnic groups. 
Dunn’s post hoc test was used to identify the group that 
was driving the differences.

Beta diversity was calculated from relative abundance 
counts using Bray–Curtis distance, unweighted Unifrac, 
and weighted Unifrac [40, 146]. The resulting distances 
were ordinated using PCoA as implemented in phyloseq. 
PERMANOVA was performed to assess dissimilarity 
between ethnic groups using vegan v.2.6–4, permuted 

99,999 times [147, 148]. Pairwise PERMANOVA com-
parisons were conducted using pairwiseAdonis v.0.4.1 
[149]. Jonckheere-Terpstra tests were used to assess 
whether the individual PCoA axes followed the lifestyle 
trend [150].

Extraction kit comparison
The Qiagen QIAamp MinElute Virus Spin and MO BIO 
PowerSoil DNA isolation extraction kits were compared 
based on overall microbiome beta diversity. Beta diver-
sity was calculated, and PERMANOVA was performed as 
described above. Comparisons suggest that while there 
is some qualitative difference between the two kits, there 
is no statistically significant difference (PERMANOVA, 
p > 0.05) (Fig. S3A), and PCoA axes 1 and 2 are highly 
correlated across kit (PCoA1 rho = 0.96, p < 2.2*10−16; 
PCoA2 rho = 0.89, p < 2.2*10−16) (Fig. S3B). For fidelity, 
diversity analyses were conducted using both extraction 
kits, but other analyses were conducted using only the 
dataset extracted via the Qiagen kit, selected for its larger 
sample size (Fig. S3).

Differential abundance analysis
Differential abundance analysis was conducted with 
microbiome count data agglomerated to the genus level 
using the ALDEx2 v.1.29.2.1. The Kruskal–Wallis mod-
ule was used to identify microbes differentially abundant 
across all lifestyles, whereas the standard t test module 
was used for assessing microbes differentially abundant 
across two conditions. To account for multiple tests, the 
Benjamini–Hochberg method for p-value correction was 
applied [151]. Effect sizes > 1 and adjusted p-values < 0.05 
were considered significant.

To validate that our findings are robust to the inclusion 
of sex and age as covariates, the GLM module was used. 
Because the outputs for the two modules differ, the data 
was reanalyzed with and without covariates for compari-
son purposes. Furthermore, because we are missing age 
data for the American industrialists, this comparison was 
conducted twice: once with all individuals and sex as the 
only covariate, and once with the Nepali individuals and 
both sex and age as the covariates. To account for mul-
tiple tests, the Benjamini–Hochberg method for p-value 
correction was applied [151]. Adjusted p-values < 0.05 
were considered significant.

To identify which microbes followed the lifestyle trend, 
Jonckheere-Terpstra tests were performed for each genus 
using microbiome data agglomerated to the genus level 
and transformed to relative abundances [150]. All p-val-
ues stemming from the Jonckheere-Terpstra tests were 
corrected for multiple tests using the Benjamini–Hoch-
berg method [151], and adjusted p-values < 0.05 were 
considered significant.
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To validate that the trend observed is not an artifact 
of sequencing depth, read depth was examined across 
lifestyles. Sequencing depth was not found to be asso-
ciated with lifestyle (p > 0.05, Kruskal-Wallis; Fig. S23 
A). For additional confirmation, Brachymonas relative 
abundance was assessed against read depth, and no cor-
relation was found (p > 0.05, rho =  − 0.11, Spearman cor-
relation; Fig. S23 B).

Associations between lifestyle factors, population, 
and the microbiome
Correspondence analysis (CA) was performed on the 
survey metadata using FactoMineR v.2.9 [152]. To deter-
mine whether the samples (rows) and lifestyle factors 
(columns) were significantly associated, a chi-square test 
of independence was performed. The top 10 most con-
tributing factors for CA1 and CA2 were identified. Alpha 
and beta diversity values were calculated as described 
above, and correlations to the CA axes were calculated 
using Spearman correlation. Canonical correspondence 
analysis (CCA) was performed with microbiome data 
agglomerated to the genus level, transformed to rela-
tive abundances, and then log-transformed using vegan 
v.2.6–4 [148]. As there was multicollinearity between the 
37 metadata variables (as established by variance infla-
tion factor analysis using the function vif.cca, VIF > 10), 
we considered the top 10 categorical lifestyle factors 
contributing to CA1 or CA2 only to reduce this burden. 
As some factors were top contributors to both CA1 and 
CA2, a total of 15 lifestyle factors were used for the CCA 
model. These 15 factors did not demonstrate collinear-
ity (VIF < 10). Model significance and significant lifestyle 
factors were identified and assessed using the function 
anova.cca from the vegan package, which performs an 
ANOVA-like permutation test, permuted 999 times.

To identify which lifestyle factors were specifically asso-
ciated with a particular taxon, a linear model was gener-
ated for the relationship between lifestyle variables and a 
selected taxon and then tested for significance. Taxa were 
agglomerated to the genus level, transformed to relative 
abundance, and then log-transformed for visualization. 
All p-values stemming from linear models were cor-
rected for multiple tests using the Benjamini–Hochberg 
method [151], and adjusted p-values < 0.05 were consid-
ered significant. To test whether alcohol use and smoking 
follow the lifestyle gradient from traditional to expatriate, 
we performed the Cochran-Armitage test using the func-
tion prop_trend_test from the package rstatix 0.7.2 [153].

PICRUSt2 analysis
PICRUSt2 v2.5.2 was conducted using the “–per_
sequence_contrib” option to predict pathway abundances 

for each ASV [42]. Pathway abundances were predicted 
using the KEGG database FTP release 2022–11-07 [154]. 
Differential abundance analysis and examination of func-
tions following the lifestyle trend were conducted as pre-
viously described using the pathway abundance output. 
To investigate microbiome functional enrichment, differ-
ential abundance analysis was conducted with the KEGG 
Orthologs (KO) and any significant K genes (prior to 
multiple test correction) were inputted into Microbiome-
Profiler v1.0.0 [155].

Network analysis
Network analysis was conducted using the SparCC 
module in SpiecEasi v.1.1.2 [44, 45]. Microbiome count 
data agglomerated to the genus level was inputted to 
generate correlations between taxa. Networks were 
analyzed for centrality, modularity, and degree dis-
tribution using igraph v.1.6.0 [156]. Co-abundance 
groups (CAGs) were generated using the cluster_fast_
greedy function in the igraph package [157]. Networks 
were plotted in Cytoscape v.3.8.2 [156, 158]. Nodes 
with 0 edges were removed for visualization and gen-
erating CAGs.

Comparison of the gut and oral microbiomes
The gut and oral microbiomes were only compared 
between the same individuals overlapping across both 
studies (Table  S7). PCoA axes were generated for the 
microbiome datasets for each location as previously 
described and Spearman correlations were calculated 
between axes. To compare intra-individual oral-gut 
microbiome dissimilarity across lifestyles,  Bray–Cur-
tis distance was  calculated between the gut and oral 
microbiomes within each individual and then compared 
across all individuals  for differences across lifestyle, 
with significance determined by a Jonckheere-Terpstra 
test. To conduct the power analysis, Cohen’s D was cal-
culated between each group and used as effect sizes. 
Power was subsequently calculated using the package 
clinfun v.1.1.5 [159].

Abbreviations
CA  Correspondence analysis
PERMANOVA  Permutational multivariate analysis of variance using distance 

matrices
PCoA  Principal coordinate analysis
CCA   Canonical correspondence analysis
ANOVA  Analysis of variance
padj  p-Values adjusted for multiple test correction
CAG   Co-abundance group
USA  United States of America
IRB  Institutional Review Board
bp  Base pair
ASV  Amplicon sequence variants
KO  KEGG Orthologs
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Read depth against lifestyle and Brachymonas relative abundance.

Additional file 2: S1 Table—Sequence, survey, population, and question-
naire info of the sampled individuals. Table S1 describes survey and 
sequence metadata data collected. Column abbreviations and responses 
are explained in greater detail in Tab 3. Column names that end with “2” 
contain responses that were categorized and transformed to a scale of 
0-3, in which possible values for binary variables are 0 or 3 (ie. sex) and 
possible values for continuous variables are 0, 1, 2, or 3 (ie. fuel source). No 
survey data was collected for the American Industrialists. Tab 2 describes 
the lifestyle pertaining to each population and their sample sizes. Tab 3 
contains the survey questionnaire, including the codes pertaining to each 
question asked and list of possible responses.

Additional 3: S2 Table—Oral microbiome differential abundance results 
from ALDEx2. Oral microbiome genera tested for differential abundance 
across lifestyle. Overall, 2/111 genera were identified as significantly 
differentially abundant. Kruskal-Wallis module was utilized and p-value 
correction was applied using the Benjamini-Hochberg method. Both 
unadjusted (kw.ep) and adjusted p-values (kw.eBH) are shown, and 
adjusted p-value < 0.05 is the threshold for significance.

Additional file 4: S3 Table—Oral microbiome differential abundance results 
from ALDEx2 with covariates age and sex. Oral microbiome genera tested 
for differential abundance across lifestyle with age and sex as covariates. 
Due to the lack of age data for the American Industrialists, only sex was 
included in the model tested with all individuals, whereas both sex and 
age were included in the model tested across the Nepali individuals. The 
glm module was utilized and p-value correction was applied using the 
Benjamini-Hochberg method. Both unadjusted (kw.ep) and adjusted 
p-values (kw.eBH) are shown, and adjusted p-value < 0.05 is the threshold for 
significance. Tab 1 shows the output for the glm model with no covariates 
and all individuals. Tab 2 shows the output for the glm model with sex as a 
covariate and all individuals. Tab 3 shows the output for the glm model with 
no covariates and only Nepali individuals. Tab 4 shows the output for the 
glm model with both sex and age as covariates and only Nepali individuals.

Additional file 5: S4 Table—Results of genera tested for following the 
lifestyle gradient. All genera tested for following the lifestyle gradient 
using the Jonckheere-Terpstra test followed by the Benjamini-Hoch-
berg method to correct for multiple tests (BHadj_p_value). Adjusted 
p-value < 0.05 is the threshold for significance. Nine genera significantly 
follow the lifestyle gradient. 

Additional file 6: S5 Table—Associations between differentially abundant 
microbes and lifestyle factors. Associations between differentially abundant 
microbes from the Jonckheere-Terpstra test and lifestyle factors were tested 
via linear models. Linear models were generated between each microbe 
and each lifestyle factor and then tested for significance, for a total of 333 
tested associations. P-value correction was applied using the Benjamini-
Hochberg method. Both unadjusted and adjusted p-values are shown. 
Adjusted p-value < 0.05 is the threshold for significance.

Additional file 7: S6 Table—Predicted functional potential differential 
abundance results. PICRUSt2 predicted functions were analyzed for dif-
ferential abundance based on lifestyle. None of the 107 tested functions 
were found to be significant after multiple test correction, but 21/107 
pathways were significant prior to correction. Kruskal-Wallis module 
in ALDEx2 was utilized and p-value correction was applied using the 
Benjamini-Hochberg method. Both unadjusted (kw.ep) and adjusted 
p-values (kw.eBH) are shown. Adjusted p-value < 0.05 is the threshold for 
significance.

Additional file 8: S7 Table—Samples overlapping between the gut and 
oral microbiome studies. List of samples overlapping between the gut and 
oral microbiome studies, along with the samples unique to each microbi-
ome study. The first column “both” lists sample IDs that are associated with 
both gut and oral samples. The second column “gut_only” lists sample IDs 
that are associated with only gut samples. The third column “oral_only” 
lists sample IDs that are associated with only oral samples.

Additional file 9: S8 Table—Gut microbiome differential abundance results 
from ALDEx2.  Gut microbiome genera analyzed for differential abundance 
based on lifestyle via ALDEx2. Overall, 37/136 genera were identified as 
significantly differentially abundant. Kruskal-Wallis module was utilized and 
p-value correction was applied using the Benjamini-Hochberg method. 
Both unadjusted (kw.ep) and adjusted p-values (kw.eBH) are shown. 
Adjusted p-value < 0.05 is the threshold for significance.

Additional file 10: S9 Table—Read counts through each sequence 
processing step. Read counts at each step of sequence processing, 
starting with raw demultiplexed reads and all the way through DADA2, 
merging, and chimera removal. “Input” column refers to the number of 
raw reads obtained per sample after sequencing, “filtered” refers to the 
number of reads remaining after initial read QC, “denoised” refers to the 
number of reads remaining after denoising in DADA2, “nochim” refers to 
the number of reads remaining after chimeric sequences were removed, 
and “retained_overall” is the total proportion of reads retained following all 
QC steps from the input amount. Table does not include the samples that 
failed to pass initial read QC.
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