login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A000115
Denumerants: Expansion of 1/((1-x)*(1-x^2)*(1-x^5)).
(Formerly M0279 N0098)
6
1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 16, 18, 20, 22, 24, 26, 29, 31, 34, 36, 39, 42, 45, 48, 51, 54, 58, 61, 65, 68, 72, 76, 80, 84, 88, 92, 97, 101, 106, 110, 115, 120, 125, 130, 135, 140, 146, 151, 157, 162, 168, 174, 180, 186, 192, 198, 205, 211, 218, 224, 231, 238
OFFSET
0,3
COMMENTS
Number of partitions of n into parts 1, 2, or 5.
First differences are in A008616. First differences of A001304. Pairwise sums of A008720.
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 120, D(n;1,2,5).
M. Jeger, Ein partitions problem ..., Elemente de Math., 13 (1958), 97-120.
J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 152.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
FORMULA
a(n) = round((n+4)^2/20).
a(n) = a(-8 - n) for all n in Z. - Michael Somos, May 28 2014
EXAMPLE
G.f. = 1 + x + 2*x^2 + 2*x^3 + 3*x^4 + 4*x^5 + 5*x^6 + 6*x^7 + 7*x^8 + ...
MAPLE
1/((1-x)*(1-x^2)*(1-x^5)): seq(coeff(series(%, x, n+1), x, n), n=0..65);
# next Maple program:
s:=proc(n) if n mod 5 = 0 then RETURN(1); fi; if n mod 5 = 1 then RETURN(0); fi; if n mod 5 = 2 then RETURN(1); fi; if n mod 5 = 3 then RETURN(-1); fi; if n mod 5 = 4 then RETURN(-1); fi; end: f:=n->(2*n^2+16*n+27+5*(-1)^n+8*s(n))/40: seq(f(n), n=0..65); # from Jeger's paper
MATHEMATICA
nn=50; CoefficientList[Series[1/(1-x)/(1-x^2)/(1-x^5), {x, 0, nn}], x] (* Geoffrey Critzer, Jan 20 2013 *)
LinearRecurrence[{1, 1, -1, 0, 1, -1, -1, 1}, {1, 1, 2, 2, 3, 4, 5, 6}, 70] (* Harvey P. Dale, Sep 27 2019 *)
PROG
(Magma) [Round((n+4)^2/20): n in [0..70]]; // Vincenzo Librandi, Jun 23 2011
(PARI) a(n)=(n^2+8*n+26)\20 \\ Charles R Greathouse IV, Jun 23 2011
CROSSREFS
KEYWORD
nonn,easy
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy