login
A001136
Primes p such that the multiplicative order of 2 modulo p is (p-1)/6.
(Formerly M5221 N2271)
11
31, 223, 433, 439, 457, 727, 919, 1327, 1399, 1423, 1471, 1831, 1999, 2017, 2287, 2383, 2671, 2767, 2791, 2953, 3271, 3343, 3457, 3463, 3607, 3631, 3823, 3889, 4129, 4423, 4519, 4567, 4663, 4729, 4759, 5167, 5449, 5503, 5953, 6007, 6079, 6151, 6217, 6271, 6673, 6961, 6967, 7321
OFFSET
1,1
REFERENCES
M. Kraitchik, Recherches sur la Théorie des Nombres. Gauthiers-Villars, Paris, Vol. 1, 1924, Vol. 2, 1929, see Vol. 1, p. 59.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
MATHEMATICA
Reap[For[p = 2, p < 10^4, p = NextPrime[p], If[MultiplicativeOrder[2, p] == (p - 1)/6, Sow[p]]]][[2, 1]] (* Jean-François Alcover, Dec 10 2015, adapted from PARI *)
PROG
(Magma) [ p: p in PrimesUpTo(6079) | r eq 1 and Order(R!2) eq q where q, r is Quotrem(p, 6) where R is ResidueClassRing(p) ]; // Klaus Brockhaus, Dec 02 2008
(PARI) forprime(p=3, 10^4, if(znorder(Mod(2, p))==(p-1)/6, print1(p, ", "))); \\ Joerg Arndt, May 17 2013
CROSSREFS
Cf. A001133.
Sequence in context: A183784 A042874 A221448 * A256172 A142939 A229018
KEYWORD
nonn
EXTENSIONS
More terms and better definition from Don Reble, Mar 11 2006
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy