login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A007676
Numerators of convergents to e.
(Formerly M0869)
28
2, 3, 8, 11, 19, 87, 106, 193, 1264, 1457, 2721, 23225, 25946, 49171, 517656, 566827, 1084483, 13580623, 14665106, 28245729, 410105312, 438351041, 848456353, 14013652689, 14862109042, 28875761731, 534625820200, 563501581931, 1098127402131, 22526049624551
OFFSET
0,1
COMMENTS
Same as A113873 without its first two terms. - Jonathan Sondow, Aug 16 2006
REFERENCES
CRC Standard Mathematical Tables and Formulae, 30th ed. 1996, p. 88.
W. J. LeVeque, Fundamentals of Number Theory. Addison-Wesley, Reading, MA, 1977, p. 240.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Eric W. Weisstein, Table of n, a(n) for n = 0..1000 (first 200 terms from T. D. Noe)
L. Bayon, P. Fortuny, J. M. Grau, M. M. Ruiz, M. A. Oller-Marcen, The Best-or-Worst and the Postdoc problems with random number of candidates, arXiv:1809.06390 [math.PR], 2018.
C. Elsner, M. Stein, On Error Sum Functions Formed by Convergents of Real Numbers, J. Int. Seq. 14 (2011) # 11.8.6.
J. Sondow, A geometric proof that e is irrational and a new measure of its irrationality, Amer. Math. Monthly 113 (2006) 637-641.
J. Sondow and K. Schalm, Which partial sums of the Taylor series for e are convergents to e? (and a link to the primes 2, 5, 13, 37, 463), II, Gems in Experimental Mathematics (T. Amdeberhan, L. A. Medina, and V. H. Moll, eds.), Contemporary Mathematics, vol. 517, Amer. Math. Soc., Providence, RI, 2010.
Eric Weisstein's World of Mathematics, e Continued Fraction
Eric Weisstein's World of Mathematics, Sultan's Dowry Problem
EXAMPLE
2, 3, 8/3, 11/4, 19/7, 87/32, 106/39, 193/71, 1264/465, 1457/536, 2721/1001, 23225/8544, 25946/9545, 49171/18089, 517656/190435, 566827/208524, 1084483/398959, 13580623/4996032, 14665106/5394991, 28245729/10391023, 410105312/150869313, 438351041/161260336, 848456353/312129649, ...
MAPLE
Digits := 60: convert(evalf(E), confrac, 50, 'cvgts'): cvgts;
MATHEMATICA
Numerator[Convergents[E, 30]] (* T. D. Noe, Oct 12 2011 *)
Numerator[Table[Piecewise[{
{Hypergeometric1F1[-1 - n/3, -1 - (2 n)/3, 1]/Hypergeometric1F1[-(n/3), -1 - (2 n)/3, -1], Mod[n, 3] == 0},
{Hypergeometric1F1[1/3 (-2 - n), -(2/3) (2 + n), 1]/Hypergeometric1F1[1/3 (-2 - n), -(2/3) (2 + n), -1], Mod[n, 3] == 1},
{Hypergeometric1F1[1/3 (-1 - n), 1 - (2 (4 + n))/3, 1]/Hypergeometric1F1[1/3 (-4 - n), 1 - (2 (4 + n))/3, -1], Mod[n, 3] == 2}
}], {n, 0, 30}]] (* Eric W. Weisstein, Sep 09 2013 *)
Table[Piecewise[{
{(-1 + (2 (3 + n))/3)!/(-1 + (3 + n)/3)! Hypergeometric1F1[1/3 (-3 - n), 1 - (2 (3 + n))/3, 1], Mod[n, 3] == 0},
{((2 (2 + n))/3)!/((2 + n)/3)! Hypergeometric1F1[1/3 (-2 - n), -(2/3) (2 + n), 1], Mod[n, 3] == 1},
{(5/3 + (2 n)/3)!/((1 + n)/3)! Hypergeometric1F1[1/3 (-1 - n), 1 - (2 (4 + n))/3, 1], Mod[n, 3] == 2}
}], {n, 0, 30}] (* Eric W. Weisstein, Sep 10 2013 *)
CROSSREFS
Cf. A007677 (denominators of convergents to e).
Cf. A003417 (continued fraction of e).
Sequence in context: A206241 A295333 A113873 * A042443 A042263 A280323
KEYWORD
nonn,easy,nice,frac
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy