login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A008495
Expansion of (1-x^13) / (1-x)^13.
2
1, 13, 91, 455, 1820, 6188, 18564, 50388, 125970, 293930, 646646, 1352078, 2704156, 5200299, 9657687, 17383769, 30421300, 51894115, 86487037, 141101961, 225742452, 354691350, 548060110, 833805154, 1250325622, 1849778840, 2702274848, 3901139736, 5569469620
OFFSET
0,2
COMMENTS
Coordination sequence for 12-dimensional cyclotomic lattice Z[zeta_13].
LINKS
M. Beck and S. Hosten, Cyclotomic polytopes and growth series of cyclotomic lattices, arXiv:math/0508136 [math.CO], 2005-2006.
Index entries for linear recurrences with constant coefficients, signature (12,-66,220,-495,792,-924,792,-495,220,-66,12,-1).
FORMULA
From Colin Barker, Jan 06 2017: (Start)
a(n) = 13*n*(19056960 + 18128396*n^2 + 2641925*n^4 + 88803*n^6 + 715*n^8 + n^10)/39916800 for n>0.
G.f.: (1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^10 + x^11 + x^12) / (1 - x)^12. (End)
E.g.f.: 1 + x*(518918400 +1297296000*x +1470268800*x^2 +821620800*x^3 + 263783520*x^4 +51171120*x^5 +6280560*x^6 +489060*x^7 +24310*x^8 + 715*x^9 +13*x^10)*exp(x)/39916800. - G. C. Greubel, Nov 07 2019
MAPLE
1, seq(13*n*(19056960 + 18128396*n^2 + 2641925*n^4 + 88803*n^6 + 715*n^8 + n^10)/39916800, n=1..40); # G. C. Greubel, Nov 07 2019
MATHEMATICA
CoefficientList[(1-x^13)/(1-x)^13 + O[x]^30, x] (* Jean-François Alcover, Jan 09 2019 *)
Table[If[n==0, 1, 13*n*(19056960 + 18128396*n^2 + 2641925*n^4 + 88803*n^6 + 715*n^8 + n^10)/39916800], {n, 0, 40}] (* G. C. Greubel, Nov 07 2019 *)
PROG
(PARI) Vec((1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^10 + x^11 + x^12) / (1 - x)^12 + O(x^30)) \\ Colin Barker, Jan 06 2017
(Magma) [1] cat [13*n*(19056960 + 18128396*n^2 + 2641925*n^4 + 88803*n^6 + 715*n^8 + n^10)/39916800: n in [1..40]]; // G. C. Greubel, Nov 07 2019
(Sage) [1]+[13*n*(19056960 + 18128396*n^2 + 2641925*n^4 + 88803*n^6 + 715*n^8 + n^10)/39916800 for n in (1..40)] # G. C. Greubel, Nov 07 2019
(GAP) Concatenation([1], List([1..40], n-> 13*n*(19056960 + 18128396*n^2 + 2641925*n^4 + 88803*n^6 + 715*n^8 + n^10)/39916800 )); # G. C. Greubel, Nov 07 2019
CROSSREFS
Sequence in context: A162631 A247611 A008505 * A010965 A221144 A022578
KEYWORD
nonn,easy
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy