login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A008589
Multiples of 7.
77
0, 7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91, 98, 105, 112, 119, 126, 133, 140, 147, 154, 161, 168, 175, 182, 189, 196, 203, 210, 217, 224, 231, 238, 245, 252, 259, 266, 273, 280, 287, 294, 301, 308, 315, 322, 329, 336, 343, 350, 357, 364, 371, 378
OFFSET
0,2
COMMENTS
Also the Engel expansion of exp(1/7); cf. A006784 for the Engel expansion definition. - Benoit Cloitre, Mar 03 2002
Complement of A047304; A082784(a(n))=1; A109720(a(n))=0. - Reinhard Zumkeller, Nov 30 2009
The most likely sum of digits to occur when randomly tossing n pairs of (fair) six-sided dice. - Dennis P. Walsh, Jan 26 2012
LINKS
Edward Brooks, Divisibility by Seven, The Analyst, Vol. 2, No. 5 (Sep., 1875), pp. 129-131.
Tanya Khovanova, Recursive Sequences
Michael Penn, The Luckiest Divisibility Test, YouTube video, 2022.
Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014.
FORMULA
(floor(a(n)/10) - 2*(a(n) mod 10)) == 0 modulo 7, see A076309. - Reinhard Zumkeller, Oct 06 2002
a(n) = 7*n = 2*a(n-1)-a(n-2); G.f.: 7*x/(x-1)^2. - Vincenzo Librandi, Dec 24 2010
E.g.f.: 7*x*exp(x). - Ilya Gutkovskiy, May 11 2016
EXAMPLE
For n=2, a(2)=14 because 14 is the most likely sum (of the possible sums 4, 5, ..., 24) to occur when tossing 2 pairs of six-sided dice. - Dennis P. Walsh, Jan 26 2012
MAPLE
A008589:=n->7*n; seq(A008589(n), n=0..50); # Wesley Ivan Hurt, Jun 06 2014
MATHEMATICA
Range[0, 1000, 7] (* Vladimir Joseph Stephan Orlovsky, May 27 2011 *)
7*Range[0, 60] (* Harvey P. Dale, Feb 28 2023 *)
PROG
(Maxima) makelist(7*n, n, 0, 20); /* Martin Ettl, Dec 17 2012 */
(Haskell)
a008589 = (* 7)
a008589_list = [0, 7 ..] -- Reinhard Zumkeller, Jan 25 2013
(Magma) [7*n : n in [0..50]]; // Wesley Ivan Hurt, Jun 06 2014
(PARI) a(n)=7*n \\ Charles R Greathouse IV, Jul 10 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Mar 15 1996
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy