login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A008679
Expansion of 1/((1-x^3)*(1-x^4)).
6
1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 3, 2, 3, 3, 3, 3, 3, 3, 4, 3, 3, 4, 4, 3, 4, 4, 4, 4, 4, 4, 5, 4, 4, 5, 5, 4, 5, 5, 5, 5, 5, 5, 6, 5, 5, 6, 6, 5, 6, 6, 6, 6, 6, 6, 7, 6, 6, 7, 7, 6, 7, 7, 7, 7, 7, 7, 8, 7
OFFSET
0,13
COMMENTS
Number of partitions of n into parts 3 and 4. - Reinhard Zumkeller, Feb 09 2009
Convolution of A112689 (shifted left once) by A033999. - R. J. Mathar, Feb 13 2009
With four 0's prepended and offset 0, a(n) is the number of partitions of n into four parts whose largest three parts are equal. - Wesley Ivan Hurt, Jan 06 2021
FORMULA
a(n+12) = a(n) + 1. - Reinhard Zumkeller, Feb 09 2009
G.f.: 1/((1-x)^2*(1+x)*(1+x+x^2)*(1+x^2)). - R. J. Mathar, Feb 13 2009
a(n) = 1 + floor(n/3) + floor(-n/4). - Tani Akinari, Sep 02 2013
E.g.f.: (1/72)*(9*exp(-x)+21*exp(x)+6*exp(x)*x+18*cos(x)+24*exp(-x/2)*cos(sqrt(3)*x/2)-18*sin(x)+8*sqrt(3)*exp(-x/2)*sin(sqrt(3)*x/2)). - Stefano Spezia, Sep 09 2019
a(n) = A005044(n+3) - A005044(n+1). - Yuchun Ji, Oct 10 2020
From Wesley Ivan Hurt, Jan 17 2021: (Start)
a(n) = a(n-3) + a(n-4) - a(n-7).
a(n) = Sum_{k=1..floor((n+4)/4)} Sum_{j=k..floor((n+4-k)/3)} Sum_{i=j..floor((n+4-j-k)/2)} [j = i = n+4-i-k-j], where [ ] is the Iverson bracket. (End)
MAPLE
seq(coeff(series(1/((1-x^3)*(1-x^4)), x, n+1), x, n), n = 0..90); # G. C. Greubel, Sep 09 2019
MATHEMATICA
LinearRecurrence[{0, 0, 1, 1, 0, 0, -1}, {1, 0, 0, 1, 1, 0, 1}, 90] (* Vladimir Joseph Stephan Orlovsky, Feb 23 2012 *)
CoefficientList[Series[1/((1-x)^2(1+x)(1+x+x^2)(1+x^2)), {x, 0, 90}], x] (* Vincenzo Librandi, Jun 11 2013 *)
PROG
(PARI) my(x='x+O('x^90)); Vec(1/((1-x^3)*(1-x^4))) \\ G. C. Greubel, Sep 09 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 90); Coefficients(R!( 1/((1-x^3)*(1-x^4)) )); // G. C. Greubel, Sep 09 2019
(Sage)
def A008679_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P(1/((1-x^3)*(1-x^4))).list()
A008679_list(90) # G. C. Greubel, Sep 09 2019
(GAP) a:=[1, 0, 0, 1, 1, 0, 1, 1];; for n in [8..90] do a[n]:=a[n-3]+a[n-4]-a[n-7]; od; a; # G. C. Greubel, Sep 09 2019
CROSSREFS
KEYWORD
nonn,easy
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy