OFFSET
0,13
COMMENTS
Number of partitions of n into parts 3 and 4. - Reinhard Zumkeller, Feb 09 2009
With four 0's prepended and offset 0, a(n) is the number of partitions of n into four parts whose largest three parts are equal. - Wesley Ivan Hurt, Jan 06 2021
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 216
A. V. Kitaev and A. Vartanian, Algebroid Solutions of the Degenerate Third Painlevé Equation for Vanishing Formal Monodromy Parameter, arXiv:2304.05671 [math.CA], 2023. See p. 20.
Index entries for linear recurrences with constant coefficients, signature (0,0,1,1,0,0,-1).
FORMULA
a(n+12) = a(n) + 1. - Reinhard Zumkeller, Feb 09 2009
G.f.: 1/((1-x)^2*(1+x)*(1+x+x^2)*(1+x^2)). - R. J. Mathar, Feb 13 2009
a(n) = 1 + floor(n/3) + floor(-n/4). - Tani Akinari, Sep 02 2013
E.g.f.: (1/72)*(9*exp(-x)+21*exp(x)+6*exp(x)*x+18*cos(x)+24*exp(-x/2)*cos(sqrt(3)*x/2)-18*sin(x)+8*sqrt(3)*exp(-x/2)*sin(sqrt(3)*x/2)). - Stefano Spezia, Sep 09 2019
From Wesley Ivan Hurt, Jan 17 2021: (Start)
a(n) = a(n-3) + a(n-4) - a(n-7).
a(n) = Sum_{k=1..floor((n+4)/4)} Sum_{j=k..floor((n+4-k)/3)} Sum_{i=j..floor((n+4-j-k)/2)} [j = i = n+4-i-k-j], where [ ] is the Iverson bracket. (End)
MAPLE
seq(coeff(series(1/((1-x^3)*(1-x^4)), x, n+1), x, n), n = 0..90); # G. C. Greubel, Sep 09 2019
MATHEMATICA
LinearRecurrence[{0, 0, 1, 1, 0, 0, -1}, {1, 0, 0, 1, 1, 0, 1}, 90] (* Vladimir Joseph Stephan Orlovsky, Feb 23 2012 *)
CoefficientList[Series[1/((1-x)^2(1+x)(1+x+x^2)(1+x^2)), {x, 0, 90}], x] (* Vincenzo Librandi, Jun 11 2013 *)
PROG
(PARI) my(x='x+O('x^90)); Vec(1/((1-x^3)*(1-x^4))) \\ G. C. Greubel, Sep 09 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 90); Coefficients(R!( 1/((1-x^3)*(1-x^4)) )); // G. C. Greubel, Sep 09 2019
(Sage)
def A008679_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P(1/((1-x^3)*(1-x^4))).list()
A008679_list(90) # G. C. Greubel, Sep 09 2019
(GAP) a:=[1, 0, 0, 1, 1, 0, 1, 1];; for n in [8..90] do a[n]:=a[n-3]+a[n-4]-a[n-7]; od; a; # G. C. Greubel, Sep 09 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved