login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A010127
Continued fraction for sqrt(23).
4
4, 1, 3, 1, 8, 1, 3, 1, 8, 1, 3, 1, 8, 1, 3, 1, 8, 1, 3, 1, 8, 1, 3, 1, 8, 1, 3, 1, 8, 1, 3, 1, 8, 1, 3, 1, 8, 1, 3, 1, 8, 1, 3, 1, 8, 1, 3, 1, 8, 1, 3, 1, 8, 1, 3, 1, 8, 1, 3, 1, 8, 1, 3, 1, 8, 1, 3, 1, 8, 1, 3, 1, 8, 1, 3, 1, 8, 1, 3, 1, 8, 1, 3, 1, 8, 1, 3, 1, 8
OFFSET
0,1
REFERENCES
Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See Table 95 at p. 262.
FORMULA
From Amiram Eldar, Nov 12 2023: (Start)
Multiplicative with a(2) = 3, a(2^e) = 8 for e >= 2, and a(p^e) = 1 for an odd prime p.
Dirichlet g.f.: zeta(s) * (1 + 1/2^(s-1) + 5/4^s). (End)
From Stefano Spezia, Aug 17 2024: (Start)
G.f.: (4 + x + 3*x^2 + x^3 + 4*x^4)/(1 - x^4).
E.g.f.: (5*cos(x) + 11*cosh(x) + 2*sinh(x) - 8)/2. (End)
EXAMPLE
4.795831523312719541597438064... = 4 + 1/(1 + 1/(3 + 1/(1 + 1/(8 + ...)))). - Harry J. Smith, Jun 03 2009
MATHEMATICA
ContinuedFraction[Sqrt[23], 300] (* Vladimir Joseph Stephan Orlovsky, Mar 05 2011 *)
PadRight[{4}, 120, {8, 1, 3, 1}] (* Harvey P. Dale, Oct 23 2024 *)
PROG
(PARI) { allocatemem(932245000); default(realprecision, 17000); x=contfrac(sqrt(23)); for (n=0, 20000, write("b010127.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Jun 03 2009
CROSSREFS
Cf. A010479 (decimal expansion).
Sequence in context: A089612 A353776 A292269 * A263022 A326690 A353275
KEYWORD
nonn,cofr,easy,mult
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy