login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A011942
a(n) = floor( n*(n-1)*(n-2)*(n-3)/32 ).
2
0, 0, 0, 0, 0, 3, 11, 26, 52, 94, 157, 247, 371, 536, 750, 1023, 1365, 1785, 2295, 2907, 3633, 4488, 5486, 6641, 7969, 9487, 11212, 13162, 15356, 17813, 20553, 23598, 26970, 30690, 34782, 39270, 44178, 49533, 55361, 61688, 68542, 75952, 83947, 92557, 101813, 111746, 122388, 133773, 145935, 158907, 172725
OFFSET
0,6
LINKS
Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-6,6,-10,10,-6,6,-10,10,-6,6,-10,10,-5,1).
FORMULA
From R. J. Mathar, Apr 15 2010: (Start)
a(n) = +5*a(n-1) -10*a(n-2) +10*a(n-3) -6*a(n-4) +6*a(n-5) -10*a(n-6) +10*a(n-7) -6*a(n-8) +6*a(n-9) -10*a(n-10) +10*a(n-11) -6*a(n-12) +6*a(n-13) -10*a(n-14) +10*a(n-15) -5*a(n-16) +a(n-17).
G.f.: x^5*(1-x+x^2)*(3-x-3*x^2+5*x^4-3*x^6-x^7+3*x^8)/((1-x)^5*(1+x^4)*(1+x^8) ). (End)
MATHEMATICA
Floor[3*Binomial[Range[0, 60], 4]/4] (* G. C. Greubel, Oct 26 2024 *)
PROG
(Magma) [Floor(3*Binomial(n, 4)/4): n in [0..60]]; // G. C. Greubel, Oct 26 2024
(SageMath) [3*binomial(n, 4)//4 for n in range(61)] # G. C. Greubel, Oct 26 2024
CROSSREFS
Cf. A011915.
Sequence in context: A272296 A051925 A211811 * A220147 A256315 A376752
KEYWORD
nonn,easy
EXTENSIONS
More terms added by G. C. Greubel, Oct 26 2024
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy