login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A014896
a(1) = 1, a(n) = 13*a(n-1) + n.
3
1, 15, 198, 2578, 33519, 435753, 5664796, 73642356, 957350637, 12445558291, 161792257794, 2103299351334, 27342891567355, 355457590375629, 4620948674883192, 60072332773481512, 780940326055259673, 10152224238718375767, 131978915103338884990
OFFSET
1,2
FORMULA
a(n) = 15*a(n-1)-27*a(n-2)+13*a(n-3), with a(1)=1, a(2)=15, a(3)=198. - Vincenzo Librandi, Oct 20 2012
G.f.: x/((1-13*x)*(1-x)^2). - Jinyuan Wang, Mar 11 2020
MAPLE
a:=n->sum((13^(n-j)-1)/12, j=0..n): seq(a(n), n=1..17); # Zerinvary Lajos, Jan 05 2007
a:= n-> (Matrix([[1, 0, 1], [1, 1, 1], [0, 0, 13]])^n)[2, 3]:
seq(a(n), n=1..17); # Alois P. Heinz, Aug 06 2008
MATHEMATICA
LinearRecurrence[{15, -27, 13}, {1, 15, 198}, 20] (* Vincenzo Librandi, Oct 20 2012 *)
PROG
(Magma) I:=[1, 15, 198]; [n le 3 select I[n] else 15*Self(n-1) - 27*Self(n-2)+ 13*Self(n-3): n in [1..20]]; // Vincenzo Librandi, Oct 20 2012
(Maxima)
a[1]:1$
a[2]:15$
a[3]:198$
a[n]:=15*a[n-1]-27*a[n-2]+13*a[n-3]$
A014896(n):=a[n]$ makelist(A014896(n), n, 1, 30); /* Martin Ettl, Nov 07 2012 */
CROSSREFS
Sequence in context: A180789 A078264 A322914 * A048444 A002007 A207835
KEYWORD
nonn,easy
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy