login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A015219
Odd tetrahedral numbers: a(n) = (4*n+1)*(4*n+2)*(4*n+3)/6.
11
1, 35, 165, 455, 969, 1771, 2925, 4495, 6545, 9139, 12341, 16215, 20825, 26235, 32509, 39711, 47905, 57155, 67525, 79079, 91881, 105995, 121485, 138415, 156849, 176851, 198485, 221815, 246905, 273819, 302621, 333375, 366145, 400995, 437989
OFFSET
0,2
FORMULA
From Jaume Oliver Lafont, Oct 20 2009: (Start)
G.f.: (1+x)*(1+30*x+x^2)/(1-x)^4.
Sum_{n>=0} 1/a(n) = (3/2)*log(2). (End)
From Ant King, Oct 19 2012: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
a(n) = 64 + 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
a(n) = A000292(4*n+1). - L. Edson Jeffery, Jan 16 2013
a(n) = A000447(2*n+1). - Michel Marcus, Jan 25 2016
Sum_{n>=0} (-1)^n/a(n) = 3*(sqrt(2)-1)*Pi/4. - Amiram Eldar, Jan 04 2022
a(n) = A001505(n)/6. - R. J. Mathar, Apr 17 2024
MATHEMATICA
LinearRecurrence[{4, -6, 4, -1}, {1, 35, 165, 455}, 35] (* Ant King, Oct 19 2012 *)
Table[(4 n + 1) (4 n + 2) (4 n + 3)/6, {n, 0, 40}] (* Vincenzo Librandi, Jan 25 2016 *)
PROG
(PARI) a(n)=binomial(4*n+3, 3) \\ Charles R Greathouse IV, Jan 16 2013
(Magma) [(4*n+1)*(4*n+2)*(4*n+3)/6: n in [0..40]]; // Vincenzo Librandi, Jan 25 2016
CROSSREFS
Sequence in context: A045614 A154074 A260867 * A195545 A270860 A228453
KEYWORD
nonn,easy
EXTENSIONS
More terms from Erich Friedman.
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy