login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A019628
Expansion of 1/((1-4*x)*(1-7*x)*(1-12*x)).
2
1, 23, 369, 5143, 66977, 841575, 10367953, 126315191, 1529146113, 18443562247, 221980457777, 2668373663319, 32052757927009, 384859080003239, 4619891122628241, 55449769683406327, 665474773978915265
OFFSET
0,2
FORMULA
a(n) = 2*4^n/3 - 7^(n+2)/15 + 18*12^n/5. - R. J. Mathar, Nov 11 2012
a(0)=1, a(1)=23, a(2)=369; for n>2, a(n) = 23*a(n-1) -160*a(n-2) +336*a(n-3). - Vincenzo Librandi, Jul 03 2013
a(n) = 19*a(n-1) - 84*a(n-2) + 4^n. - Vincenzo Librandi, Jul 03 2013
MATHEMATICA
CoefficientList[Series[1 / ((1 - 4 x) (1 - 7 x) (1 - 12 x)), {x, 0, 20}], x] (* Vincenzo Librandi, Jul 03 2013 *)
LinearRecurrence[{23, -160, 336}, {1, 23, 369}, 30] (* G. C. Greubel, Jan 28 2018 *)
PROG
(Magma) m:=20; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-4*x)*(1-7*x)*(1-12*x)))); /* or */ I:=[1, 23, 369]; [n le 3 select I[n] else 23*Self(n-1)-160*Self(n-2)+336*Self(n-3): n in [1..20]]; // Vincenzo Librandi, Jul 03 2013
(PARI) x='x+O('x^30); Vec(1/((1-4*x)*(1-7*x)*(1-12*x))) \\ G. C. Greubel, Jan 28 2018
CROSSREFS
Cf. A021894 (partial sums).
Sequence in context: A021629 A019869 A021294 * A018091 A021279 A018071
KEYWORD
nonn,easy
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy