login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A020654
Lexicographically earliest infinite increasing sequence of nonnegative numbers containing no 5-term arithmetic progression.
49
0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18, 25, 26, 27, 28, 30, 31, 32, 33, 35, 36, 37, 38, 40, 41, 42, 43, 50, 51, 52, 53, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 67, 68, 75, 76, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 125, 126, 127
OFFSET
1,3
COMMENTS
This is also the set of numbers with no "4" in their base-5 representation. In fact, for any prime p, the sequence consisting of numbers with no (p-1) in their base-p expansion is the same as the earliest sequence containing no p-term arithmetic progression. - Nathaniel Johnston, Jun 26-27 2011
LINKS
J. L. Gerver and L. T. Ramsey, Sets of integers with no long arithmetic progressions generated by the greedy algorithm, Math. Comp., 33 (1979), 1353-1359.
Samuel S. Wagstaff, Jr., On k-free sequences of integers, Math. Comp., 26 (1972), 767-771.
MAPLE
seq(`if`(numboccur(4, convert(n, base, 5))=0, n, NULL), n=0..127); # Nathaniel Johnston, Jun 27 2011
MATHEMATICA
Select[ Range[ 0, 100 ], (Count[ IntegerDigits[ #, 5 ], 4 ]==0)& ]
PROG
(PARI) is(n)=while(n>4, if(n%5==4, return(0)); n\=5); 1 \\ Charles R Greathouse IV, Feb 12 2017
(Python)
from sympy.ntheory.factor_ import digits
print([n for n in range(201) if digits(n, 5)[1:].count(4)==0]) # Indranil Ghosh, May 23 2017
(Julia)
function a(n)
m, r, b = n, 0, 1
while m > 0
m, q = divrem(m, 4)
r += b * q
b *= 5
end
r end; [a(n) for n in 0:66] |> println # Peter Luschny, Jan 03 2021
CROSSREFS
Cf. A023717.
Summary of increasing sequences avoiding arithmetic progressions of specified lengths (the second of each pair is obtained by adding 1 to the first):
3-term AP: A005836 (>=0), A003278 (>0);
4-term AP: A005839 (>=0), A005837 (>0);
5-term AP: A020654 (>=0), A020655 (>0);
6-term AP: A020656 (>=0), A005838 (>0);
7-term AP: A020657 (>=0), A020658 (>0);
8-term AP: A020659 (>=0), A020660 (>0);
9-term AP: A020661 (>=0), A020662 (>0);
10-term AP: A020663 (>=0), A020664 (>0).
Sequence in context: A087069 A023737 A037459 * A182777 A214988 A028804
KEYWORD
nonn,easy
EXTENSIONS
Added "infinite" to definition. - N. J. A. Sloane, Sep 28 2019
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy