login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A021129
Expansion of 1/((1-x)*(1-2*x)*(1-5*x)*(1-8*x)).
1
1, 16, 175, 1650, 14481, 122316, 1010995, 8250550, 66817861, 538611216, 4329233415, 34735589850, 278393339641, 2229689837716, 17850234337435, 142865452943550, 1143241514899821, 9147521576217816, 73188119895363055, 585544695592055650, 4684556246884298401, 37477443385817847516
OFFSET
0,2
FORMULA
a(0)=1, a(1)=16, a(2)=175, a(3)=1650; for n>3, a(n) = 16*a(n-1) -81*a(n-2) +146*a(n-3) -80*a(n-4). - Vincenzo Librandi, Jul 07 2013
a(0)=1, a(1)=16; for n>1, a(n) = 13*a(n-1) -40*a(n-2) +2^n -1. - Vincenzo Librandi, Jul 07 2013
a(n) = (2*8^(n+3) - 7*5^(n+3) + 14*2^(n+3) - 9)/252. [Yahia Kahloune, Jul 07 2013]
MATHEMATICA
CoefficientList[Series[1 / ((1 - x) (1 - 2 x) (1 - 5 x) (1 - 8 x)), {x, 0, 20}], x] (* Vincenzo Librandi, Jul 07 2013 *)
LinearRecurrence[{16, -81, 146, -80}, {1, 16, 175, 1650}, 30] (* Harvey P. Dale, Nov 12 2021 *)
PROG
(Magma) I:=[1, 16, 175, 1650]; [n le 4 select I[n] else 16*Self(n-1)-81*Self(n-2)+146*Self(n-3)-80*Self(n-4): n in [1..25]]; // Vincenzo Librandi, Jul 07 2013
(Magma) m:=25; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-x)*(1-2*x)*(1-5*x)*(1-8*x)))); // Vincenzo Librandi, Jul 07 2013
CROSSREFS
Sequence in context: A215687 A187720 A017931 * A268869 A268459 A070030
KEYWORD
nonn,easy,changed
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy