login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A023201
Primes p such that p + 6 is also prime. (Lesser of a pair of sexy primes.)
117
5, 7, 11, 13, 17, 23, 31, 37, 41, 47, 53, 61, 67, 73, 83, 97, 101, 103, 107, 131, 151, 157, 167, 173, 191, 193, 223, 227, 233, 251, 257, 263, 271, 277, 307, 311, 331, 347, 353, 367, 373, 383, 433, 443, 457, 461, 503, 541, 557, 563, 571, 587, 593, 601, 607, 613, 641, 647
OFFSET
1,1
LINKS
Eric Weisstein's World of Mathematics, Sexy Primes. [The definition in this webpage is unsatisfactory, because it defines a "sexy prime" as a pair of primes.- N. J. A. Sloane, Mar 07 2021].
FORMULA
From M. F. Hasler, Jan 02 2020: (Start)
a(n) = A046117(n) - 6 = A087695(n) - 3.
A023201 = { p = A000040(k) | A000040(k+1) = p+6 or A000040(k+2) = p+6 } = A031924 U A007529. (End)
MAPLE
A023201 := proc(n)
option remember;
if n = 1 then
5;
else
for a from procname(n-1)+2 by 2 do
if isprime(a) and isprime(a+6) then
return a;
end if;
end do:
end if;
end proc: # R. J. Mathar, May 28 2013
MATHEMATICA
Select[Range[10^2], PrimeQ[ # ]&&PrimeQ[ #+6] &] (* Vladimir Joseph Stephan Orlovsky, Apr 29 2008 *)
Select[Prime[Range[120]], PrimeQ[#+6]&] (* Harvey P. Dale, Mar 20 2018 *)
PROG
(Magma) [n: n in [0..40000] | IsPrime(n) and IsPrime(n+6)] // Vincenzo Librandi, Aug 04 2010
(Haskell)
a023201 n = a023201_list !! (n-1)
a023201_list = filter ((== 1) . a010051 . (+ 6)) a000040_list
-- Reinhard Zumkeller, Feb 25 2013
(PARI) is(n)=isprime(n+6)&&isprime(n) \\ Charles R Greathouse IV, Mar 20 2013
CROSSREFS
A031924 (primes starting a gap of 6) and A007529 together give this (A023201).
Cf. A046117 (a(n)+6), A087695 (a(n)+3), A098428, A000040, A010051, A006489 (subsequence).
Sequence in context: A040146 A243593 A015914 * A106059 A102386 A348936
KEYWORD
nonn,easy
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy