login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A026068
(d(n)-r(n))/5, where d = A026066 and r is the periodic sequence with fundamental period (0,3,1,0,1).
1
21, 33, 49, 68, 90, 116, 145, 179, 217, 259, 306, 357, 414, 476, 543, 616, 694, 779, 870, 967, 1071, 1181, 1299, 1424, 1556, 1696, 1843, 1999, 2163, 2335, 2516, 2705, 2904, 3112, 3329, 3556, 3792, 4039, 4296, 4563, 4841, 5129, 5429, 5740, 6062, 6396, 6741
OFFSET
7,1
FORMULA
a(n)=(n + 7)*(n^2 + 35*n + 90)/30 - 1/5*(1 + ( - 1/2 + 3/10*5^(1/2))*cos(2*n*Pi/5) + (1/5*2^(1/2)*(5 + 5^(1/2))^(1/2) + 1/10*2^(1/2)*(5 - 5^(1/2))^(1/2))*sin(2*n*Pi/5) + ( - 1/2 - 3/10*5^(1/2))*cos(4*n*Pi/5) + ( - 1/10*2^(1/2)*(5 + 5^(1/2))^(1/2) + 1/5*2^(1/2)*(5 - 5^(1/2))^(1/2))*sin(4*n*Pi/5)) - Richard Choulet, Dec 14 2008
a(n)= 3*a(n-1) -3*a(n-2) +a(n-3) +a(n-5) -3*a(n-6) +3*a(n-7) -a(n-8). G.f.: -x^7*(-21+30*x-13*x^2+x^3+20*x^5-29*x^6+11*x^7)/( (x^4+x^3+x^2+x+1) * (x-1)^4). - R. J. Mathar, Oct 05 2009
MATHEMATICA
LinearRecurrence[{3, -3, 1, 0, 1, -3, 3, -1}, {21, 33, 49, 68, 90, 116, 145, 179}, 60] (* Harvey P. Dale, Sep 10 2014 *)
CROSSREFS
Cf. A152892.
Sequence in context: A279229 A339963 A141249 * A217263 A330441 A176945
KEYWORD
nonn,easy
EXTENSIONS
Corrected by T. D. Noe, Dec 11 2006
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy