login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A026960
a(n) = Sum_{k=0..n} (k+1) * A026615(n,k).
16
1, 3, 10, 30, 78, 189, 440, 999, 2230, 4917, 10740, 23283, 50162, 107505, 229360, 487407, 1032174, 2179053, 4587500, 9633771, 20185066, 42205161, 88080360, 183500775, 381681638, 792723429, 1644167140, 3405774819, 7046430690, 14562623457, 30064771040
OFFSET
0,2
FORMULA
For n>1, a(n) = 7*(n+2)*2^(n-3) - n - 2.
From Colin Barker, Feb 18 2016: (Start)
a(n) = 6*a(n-1)-13*a(n-2)+12*a(n-3)-4*a(n-4) for n>5
G.f.: (1-3*x+5*x^2-3*x^3-4*x^4+3*x^5) / ((1-x)^2*(1-2*x)^2).
(End)
MATHEMATICA
Join[{1, 3}, Table[7(n+2)2^(n-3)-n-2, {n, 2, 30}]] (* or *) LinearRecurrence[ {6, -13, 12, -4}, {1, 3, 10, 30, 78, 189}, 30] (* Harvey P. Dale, Oct 31 2015 *)
PROG
(PARI) Vec((1-3*x+5*x^2-3*x^3-4*x^4+3*x^5)/((1-x)^2*(1-2*x)^2) + O(x^40)) \\ Colin Barker, Feb 18 2016
(Magma) [n le 1 select 2*n+1 else 7*(n+2)*2^(n-3) - n - 2: n in [0..40]]; // G. C. Greubel, Jun 16 2024
(SageMath) [7*(n+2)*2^(n-3) - n - 2 + (5/4)*int(n==0) + (3/4)*int(n==1) for n in range(41)] # G. C. Greubel, Jun 16 2024
KEYWORD
nonn,easy
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy