OFFSET
0,2
REFERENCES
H. Hosoya and A. Motoyama, An effective algorithm for obtaining polynomials for dimer statistics. Application of operator technique on the topological index to two- and three-dimensional rectangular and torus lattices, J. Math. Phys., 26(1985), 157-167.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..500
David Friedhelm Kind, The Gunport Problem: An Evolutionary Approach, De Montfort University (Leicester, UK, 2020).
Per Hakan Lundow, Computation of matching polynomials and the number of 1-factors in polygraphs, Research report, No 12, 1996, Department of Math., Umea University, Sweden.
Per Hakan Lundow, Enumeration of matchings in polygraphs, 1998.
Index entries for linear recurrences with constant coefficients, signature (9,41,-41,-111,91,29,-23,-1,1).
FORMULA
From Sergey Perepechko, Apr 24 2013: (Start)
a(n) = 9*a(n-1) +41*a(n-2) -41*a(n-3) -111*a(n-4) +91*a(n-5) +29*a(n-6) -23*a(n-7) -a(n-8) +a(n-9).
G.f.: (1-x) * (1 -3*x -18*x^2 +2*x^3 +12*x^4 +x^5 -x^6) / (1 -9*x -41*x^2 +41*x^3 +111*x^4 -91*x^5 -29*x^6 +23*x^7 +x^8 -x^9). (End)
EXAMPLE
a(1) = 5: the graph is
. o-o-o-o
and the five matchings are
. o o o o
. o-o o o
. o o-o o
. o o o-o
. o-o o-o
MAPLE
a:=array(0..20, [1, 5, 71, 823, 10012, 120465, 1453535, 17525619, 211351945]):
for j from 9 to 20 do
a[j]:=9*a[j-1]+41*a[j-2]-41*a[j-3]-111*a[j-4]+91*a[j-5]+
29*a[j-6]-23*a[j-7]-a[j-8]+a[j-9]
od:
convert(a, list);
# Sergey Perepechko, Apr 24 2013
MATHEMATICA
LinearRecurrence[{9, 41, -41, -111, 91, 29, -23, -1, 1}, {1, 5, 71, 823, 10012, 120465, 1453535, 17525619, 211351945}, 30] (* Harvey P. Dale, Mar 27 2015 *)
PROG
(PARI) my(x='x+O('x^30)); Vec((1-x)*(1 -3*x-18*x^2+2*x^3+12*x^4+x^5-x^6)/(1-9*x-41*x^2+41*x^3+111*x^4-91*x^5 -29*x^6+23*x^7+x^8-x^9)) \\ G. C. Greubel, Oct 26 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-x)*(1 -3*x-18*x^2+2*x^3+12*x^4+x^5-x^6)/(1-9*x-41*x^2+41*x^3+111*x^4-91*x^5 -29*x^6+23*x^7+x^8-x^9) )); // G. C. Greubel, Oct 26 2019
(Sage)
def A033507_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (1-x)*(1 -3*x-18*x^2+2*x^3+12*x^4+x^5-x^6)/(1-9*x-41*x^2+41*x^3+111*x^4-91*x^5 -29*x^6+23*x^7+x^8-x^9) ).list()
A033507_list(30) # G. C. Greubel, Oct 26 2019
(GAP) a:=[1, 5, 71, 823, 10012, 120465, 1453535, 17525619, 211351945];; for n in [10..30] do a[n]:=9*a[n-1]+41*a[n-2]-41*a[n-3]-111*a[n-4]+91*a[n-5] +29*a[n-6]-23*a[n-7]-a[n-8]+a[n-9]; od; a; # G. C. Greubel, Oct 26 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Edited by N. J. A. Sloane, Nov 15 2009
STATUS
approved