login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A033507
Number of matchings in graph P_{4} X P_{n}.
6
1, 5, 71, 823, 10012, 120465, 1453535, 17525619, 211351945, 2548684656, 30734932553, 370635224561, 4469527322891, 53898461609719, 649966808093412, 7838012982224913, 94519361817920403, 1139818186429110279, 13745178487929574337, 165754445655292452448
OFFSET
0,2
REFERENCES
H. Hosoya and A. Motoyama, An effective algorithm for obtaining polynomials for dimer statistics. Application of operator technique on the topological index to two- and three-dimensional rectangular and torus lattices, J. Math. Phys., 26(1985), 157-167.
LINKS
David Friedhelm Kind, The Gunport Problem: An Evolutionary Approach, De Montfort University (Leicester, UK, 2020).
Per Hakan Lundow, Computation of matching polynomials and the number of 1-factors in polygraphs, Research report, No 12, 1996, Department of Math., Umea University, Sweden.
Index entries for linear recurrences with constant coefficients, signature (9,41,-41,-111,91,29,-23,-1,1).
FORMULA
From Sergey Perepechko, Apr 24 2013: (Start)
a(n) = 9*a(n-1) +41*a(n-2) -41*a(n-3) -111*a(n-4) +91*a(n-5) +29*a(n-6) -23*a(n-7) -a(n-8) +a(n-9).
G.f.: (1-x) * (1 -3*x -18*x^2 +2*x^3 +12*x^4 +x^5 -x^6) / (1 -9*x -41*x^2 +41*x^3 +111*x^4 -91*x^5 -29*x^6 +23*x^7 +x^8 -x^9). (End)
EXAMPLE
a(1) = 5: the graph is
. o-o-o-o
and the five matchings are
. o o o o
. o-o o o
. o o-o o
. o o o-o
. o-o o-o
MAPLE
a:=array(0..20, [1, 5, 71, 823, 10012, 120465, 1453535, 17525619, 211351945]):
for j from 9 to 20 do
a[j]:=9*a[j-1]+41*a[j-2]-41*a[j-3]-111*a[j-4]+91*a[j-5]+
29*a[j-6]-23*a[j-7]-a[j-8]+a[j-9]
od:
convert(a, list);
# Sergey Perepechko, Apr 24 2013
MATHEMATICA
LinearRecurrence[{9, 41, -41, -111, 91, 29, -23, -1, 1}, {1, 5, 71, 823, 10012, 120465, 1453535, 17525619, 211351945}, 30] (* Harvey P. Dale, Mar 27 2015 *)
PROG
(PARI) my(x='x+O('x^30)); Vec((1-x)*(1 -3*x-18*x^2+2*x^3+12*x^4+x^5-x^6)/(1-9*x-41*x^2+41*x^3+111*x^4-91*x^5 -29*x^6+23*x^7+x^8-x^9)) \\ G. C. Greubel, Oct 26 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-x)*(1 -3*x-18*x^2+2*x^3+12*x^4+x^5-x^6)/(1-9*x-41*x^2+41*x^3+111*x^4-91*x^5 -29*x^6+23*x^7+x^8-x^9) )); // G. C. Greubel, Oct 26 2019
(Sage)
def A033507_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (1-x)*(1 -3*x-18*x^2+2*x^3+12*x^4+x^5-x^6)/(1-9*x-41*x^2+41*x^3+111*x^4-91*x^5 -29*x^6+23*x^7+x^8-x^9) ).list()
A033507_list(30) # G. C. Greubel, Oct 26 2019
(GAP) a:=[1, 5, 71, 823, 10012, 120465, 1453535, 17525619, 211351945];; for n in [10..30] do a[n]:=9*a[n-1]+41*a[n-2]-41*a[n-3]-111*a[n-4]+91*a[n-5] +29*a[n-6]-23*a[n-7]-a[n-8]+a[n-9]; od; a; # G. C. Greubel, Oct 26 2019
CROSSREFS
Column 4 of triangle A210662. Row sums of A100265.
For perfect matchings see A005178.
Bisection (even part) gives A260034.
Sequence in context: A197427 A197668 A064752 * A092250 A362159 A371326
KEYWORD
nonn
AUTHOR
EXTENSIONS
Edited by N. J. A. Sloane, Nov 15 2009
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy