login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A033714
Number of zeros in numbers 0 to 999..9 (n digits).
5
1, 10, 190, 2890, 38890, 488890, 5888890, 68888890, 788888890, 8888888890, 98888888890, 1088888888890, 11888888888890, 128888888888890, 1388888888888890, 14888888888888890, 158888888888888890, 1688888888888888890, 17888888888888888890, 188888888888888888890
OFFSET
1,2
COMMENTS
This sequence also gives the total count of digits of n below 10^n. In such counts it makes sense to omit 10^0 as we are interested in having ten digits under each power of 10. For each power of 10 the total number of digits 0-9 is always the total of zeros for the next power. For example, at 10^1 there is 1 of each numeral 0-9, total 10 digits. At 10^2, the number of zeros is 10, with 20 each for the other 9 numerals and so on. - Enoch Haga, May 13 2006
Also the position of 10^n in Champernowne's constant (A033307). See Sikora, p. 3. - Robert G. Wilson v, Jun 29 2014
FORMULA
a(n) = 10^(n-1)*n - (1/9)*10^n + 10/9. - Robert Israel, Jun 30 2014
G.f.: -x*(100*x^2-11*x+1) / ((x-1)*(10*x-1)^2). - Colin Barker, Jan 27 2015
From Bernard Schott, Nov 20 2022: (Start)
a(n) = A033713(n) + 1.
a(n+1) = a(n) + 9 * A053541(n). (End)
MATHEMATICA
a[1] = 1; a[n_] := a[n] = 9*10^(n-2)*(n-1) + a[n-1]; Table[a[n], {n, 1, 17}] (* Jean-François Alcover, Jul 13 2012 *)
f[n_] := 1 + Sum[9 m*10^(m - 1), {m, n}]; Array[f, 18, 0] (* Robert G. Wilson v, Jun 29 2014 *)
LinearRecurrence[{21, -120, 100}, {1, 10, 190}, 20] (* Harvey P. Dale, Dec 03 2021 *)
PROG
(Magma) [(9*n*10^n-10*10^n+100)/90: n in [1..20]]; // Vincenzo Librandi, Jul 01 2014
(PARI) Vec(-x*(100*x^2-11*x+1)/((x-1)*(10*x-1)^2) + O(x^100)) \\ Colin Barker, Jan 27 2015
CROSSREFS
Cf. A212704 (first differences).
Sequence in context: A173813 A249643 A056174 * A169959 A131521 A113373
KEYWORD
nonn,base,nice,easy
AUTHOR
Olivier Gorin (gorin(AT)roazhon.inra.fr)
EXTENSIONS
More terms from Erich Friedman
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy