OFFSET
0,2
COMMENTS
General solution for the Stolarsky array by row, column is given by the PARI/GP program. Solution for the main diagonal in A035506 is found by setting r=c. If computing large terms for the Stolarsky array, increase the default precision of PARI/GP to accommodate the size. - Randall L Rathbun, Jan 25 2002
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..4765
N. J. A. Sloane, Classic Sequences
MAPLE
a:= proc(n) local t, a, b;
t:= (1+sqrt(5))/2;
a:= floor(n*(t+1)+1+t/2);
b:= round(a*t);
(<<0|1>, <1|1>>^n. <<a, b>>)[1, 1]
end:
seq(a(n), n=0..33); # Alois P. Heinz, Mar 22 2023
MATHEMATICA
a[n_] := Module[{t = GoldenRatio, a, b},
a = Floor[n*(t+1) + 1 + t/2];
b = Round[a*t];
(MatrixPower[{{0, 1}, {1, 1}}, n].{a, b})[[1]]];
Table[a[n], {n, 0, 33}] (* Jean-François Alcover, Apr 16 2023, after Alois P. Heinz *)
PROG
(PARI) {Stolarsky(r, c)= tau=(1+sqrt(5))/2; a=floor(r*(1+tau)-tau/2); b=round(a*tau); if(c==1, a, if(c==2, b, for(i=1, c-2, d=a+b; a=b; b=d; ); d))}
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from Randall L Rathbun, Jan 25 2002
STATUS
approved