login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A035507
Inverse Stolarsky array read by antidiagonals.
7
1, 2, 4, 3, 7, 12, 5, 9, 20, 33, 6, 14, 25, 54, 88, 8, 17, 38, 67, 143, 232, 10, 22, 46, 101, 177, 376, 609, 11, 27, 59, 122, 266, 465, 986, 1596, 13, 30, 72, 156, 321, 698, 1219, 2583, 4180, 15, 35, 80, 190, 410, 842, 1829, 3193, 6764, 10945, 16, 41, 93, 211, 499
OFFSET
0,2
COMMENTS
The inverse Stolarky array is the dispersion of the sequence u given by u(n) = floor(n*x + x + n + 1 - x/2), where x=(golden ratio). For a discussion of dispersions, see A191426.
LINKS
C. Kimberling, Interspersions
C. Kimberling, Interspersions and dispersions, Proceedings of the American Mathematical Society 117 (1993) 313-321.
N. J. A. Sloane, Classic Sequences
FORMULA
The term in row n and column k of the inverse Stolarsky array has the following expression: a(n, k) = F(2k-3) - 1 - c1(n)*F(2k-4) + c2(n)*F(2k-2), where F is the Fibonacci sequence; c1(n)=1 if n=1, [(n-1)*tau] if n>1 (first column of the Inverse Stolarsky array) and c2(n) = c1(n) + 1 + floor((2*c1(n)+1)*tau/2) (second column of the Inverse Stolarsky array). tau = (1+sqrt(5))/2 and [] denotes the nearest integer function. - C. Ronaldo (aga_new_ac(AT)hotmail.com), Dec 31 2004
Also, the following recurrence holds: a(n, k) = 3*a(n, k-1) - a(n, k-2) + 1 with a(n, 1)=c1(n) and a(n, 2)=c2(n). - C. Ronaldo (aga_new_ac(AT)hotmail.com), Dec 31 2004
EXAMPLE
Top left hand corner of array:
1, 4, 12, 33, 88, 232, ...
2, 7, 20, 54, 143, 376, ...
3, 9, 25, 67, 177, 465, ...
5, 14, 38, 101, 266, 698, ...
6, 17, 46, 122, 321, 842, ...
MAPLE
with(combinat, fibonacci): gold:=(1+sqrt(5))/2: c1:=n->piecewise(n<>1, round((n-1)*gold), 1): c2:=n->c1(n)+floor((2*c1(n)+1)*gold/2)+1: inv_stol:=(n, k)->fibonacci(2*k-3)-1-c1(n)*fibonacci(2*k-4)+c2(n)*fibonacci(2*k-2): seq(seq(inv_stol(n+1-k, k), k=1..n), n=1..11); inv_stol2:=(n, k)->(1+c0(n))*fibonacci(2*k-3)+(1+floor((2*c0(n)+1)*gold/2))*fibonacci(2*k-2)-1:seq(seq(inv_stol2(n+1-k, k), k=1..n), n=1..11); # C. Ronaldo, Dec 31 2004
MATHEMATICA
(* program generates the dispersion array T of the complement of increasing sequence f[n] *)
r = 40; r1 = 12; (* r=# rows of T, r1=# rows to show *)
c = 40; c1 = 12; (* c=# cols of T, c1=# cols to show *)
x = GoldenRatio; f[n_] := Floor[n*x + x + n + 1 - x/2] (* f(n) is complement of column 1 *)
mex[list_] :=
NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1,
Length[Union[list]]]
rows = {NestList[f, 1, c]};
Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}];
t[i_, j_] := rows[[i, j]]; (* the array T *)
TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]]
(* Inverse Stolarsky array, A035507 *)
Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]]
(* array as a sequence *)
(* Program by Peter J. C. Moses, Jun 01 2011 *)
CROSSREFS
Cf. A035506 (Stolarsky array), A191426.
Sequence in context: A207625 A238953 A238964 * A138612 A246680 A294244
KEYWORD
nonn,tabl,easy,nice
EXTENSIONS
More terms from C. Ronaldo (aga_new_ac(AT)hotmail.com), Dec 31 2004
Mathematica program, extended example, and comments from Clark Kimberling, Jun 03 2011
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy