login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A036774
Number of labeled rooted unordered binary trees (each node has out-degree <= 2).
14
0, 1, 2, 9, 60, 540, 6120, 83790, 1345680, 24811920, 516650400, 11992503600, 307069963200, 8598348158400, 261387760233600, 8573572885878000, 301809119163552000, 11349727401396384000, 454104511068656448000, 19261139319649202976000
OFFSET
0,3
LINKS
B. Otto, Coalescence under Preimage Constraints, arXiv:1903.00542 [math.CO], 2019.
L. Takacs, Enumeration of rooted trees and forests, Math. Scientist 18 (1993), 1-10, esp. Eq. (14) with r = 2.
FORMULA
E.g.f.: (1 - x - sqrt(1-2*x-x^2))/x.
E.g.f. A(x) satisfies x*A(x)^2 + 2*(x-1)*A(x) + 2*x = 0, A(0)=0 and A(x) = x/(1-x-(x/2)*A(x)). - Michael Somos, Sep 06 2003
a(n) = n!*Sum_{k=0..floor((n-1)/2)} binomial(n-1, 2k)*binomial(2k, k)/(2^k*(k+1)). - Emanuele Munarini, Feb 06 2013
a(n) ~ sqrt(2-sqrt(2))*n^(n-1)/(exp(n)*(sqrt(2)-1)^(n+1)). - Vaclav Kotesovec, Sep 24 2013
Recurrence: (n+1)*a(n) = n*(n-1)*(n-2)*a(n-2) + n*(2*n-1)*a(n-1), n >= 3, a(1)=1, a(2)=2. - Fung Lam, Feb 24 2014
a(n) = n!*hypergeom([(1 - n)/2, 1 - n/2], [2], 2) for n >= 1. Peter Luschny, Apr 20 2020
MAPLE
# This is a crude Maple program based on Eq. (14), p. 4, in Takacs (1993). It calculates a(n) for n >= 2. Here, r = 2 is the maximum out-degree of each node.
ff := proc(r, n) simplify(subs(x = 0, diff(sum(x^k/k!, k = 0 .. r)^n, x$(n - 1)))); end;
seq(ff(2, i), i = 2 .. 40); # Petros Hadjicostas, Jun 09 2019
MATHEMATICA
Range[0, 20]! CoefficientList[Series[(1 - x - ((x - 1)^2 - 2 x^2)^(1/2))/x, {x, 0, 20}], x] (* Geoffrey Critzer, Nov 22 2011 *)
f[r_, n_][x_] := Sum[x^k/k!, {k, 0, r}]^n;
a[n_] := If[n == 1, 1, Derivative[n - 1][f[2, n]][0]];
a /@ Range[0, 19] (* Jean-François Alcover, Apr 20 2020, after Petros Hadjicostas *)
a[n_] := n! Hypergeometric2F1[1/2 - n/2, 1 - n/2, 2, 2]; a[0] = 0;
Array[a, 20, 0] (* Peter Luschny, Apr 20 2020 *)
PROG
(PARI) a(n)=if(n<1, 0, n!*polcoeff(2*x/(1-x+sqrt(1-2*x-x^2+O(x^n))), n))
(PARI) a(n)=if(n<1, 0, n!*polcoeff(serreverse(2*x/(2+2*x+x^2)+x*O(x^n)), n))
(Maxima) makelist(n!*sum(binomial(n-1, 2*k)*binomial(2*k, k)/(2^k*(k+1)), k, 0, floor((n-1)/2)), n, 0, 20); /* Emanuele Munarini, Feb 06 2013 */
CROSSREFS
A071356(n) = a(n + 1) * 2^n/(n + 1)!.
Cf. A036775 (outdegree <= r = 3), A036776 (out-degree <= r = 4), A036777 (out-degree <= r = 5).
Sequence in context: A001193 A161391 A120014 * A306065 A166882 A268937
KEYWORD
nonn
EXTENSIONS
Better description and formula from Christian G. Bower, Nov 29 2001
"unordered" added to the name by David Callan, Apr 22 2012
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy