login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A037001
Positions of the digit '2' in the decimal expansion of Pi (where positions 0, 1, 2,... refer to the digits 3, 1, 4,...).
26
6, 16, 21, 28, 33, 53, 63, 73, 76, 83, 89, 93, 102, 112, 114, 135, 136, 140, 149, 160, 165, 173, 185, 186, 203, 221, 229, 241, 244, 260, 275, 280, 289, 292, 298, 302, 326, 329, 333, 335, 337, 354, 374, 380, 406, 423, 435, 456, 462, 477, 479, 484, 485, 500
OFFSET
1,1
COMMENTS
The first few primes in this sequence are 53, 73, 83, 89, 149, 173, 229, 241, 337, 479, 571, 613, 661, 757, 829, 877, 911, 977, 991, ... - M. F. Hasler, Jul 28 2024
LINKS
Eric Weisstein's World of Mathematics, Pi Digits.
FORMULA
a(n) ~ 10*n if Pi is normal, as generally assumed. - M. F. Hasler, Jul 28 2024
MATHEMATICA
Flatten @ Position[ RealDigits[Pi - 3, 10, 500][[1]], 2] (* Robert G. Wilson v, Mar 07 2011 *)
PROG
(PARI) A037001_upto(N=999, d=2)={localprec(N+20); [i-1|i<-[1..#N=digits(Pi\10^-N)], N[i]==d]} \\ M. F. Hasler, Jul 28 2024
CROSSREFS
Cf. A000796 (decimal expansion (or digits) of Pi).
Cf. A053746 (= a(n) + 1: the same with different offset).
Cf. A037000, A037002, A037003, A037004, A037005, A036974, A037006, A037007, A037008 (similar for digits 1, ..., 9 and 0).
Cf. A035117 (first occurrence of at least n '1's), A050281 (n '2's), A050282, A050283, A050284, A050286, A050287, A048940 (n '9's).
Cf. A096755 (first occurrence of exactly n '1's), A096756, A096757, A096758, A096759, A096760, A096761, A096762, A096763 (exactly n '9's), A050279 (exactly n '0's).
Cf. A121280 = A068987 - 1: position of "123...n" in Pi's decimals.
Cf. A176341: first occurrence of n in Pi's digits.
Sequence in context: A335226 A104392 A291746 * A118139 A087446 A340497
KEYWORD
nonn,base
AUTHOR
Nicolau C. Saldanha (nicolau(AT)mat.puc-rio.br)
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy