login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A042859
Denominators of continued fraction convergents to sqrt(960).
3
1, 1, 61, 62, 3781, 3843, 234361, 238204, 14526601, 14764805, 900414901, 915179706, 55811197261, 56726376967, 3459393815281, 3516120192248, 214426605350161, 217942725542409, 13290990137894701, 13508932863437110, 823826961944121301, 837335894807558411
OFFSET
0,3
COMMENTS
The following remarks assume an offset of 1. This is the sequence of Lehmer numbers U_n(sqrt(R),Q) for the parameters R = 60 and Q = -1. This is a strong divisibility sequence, that is, gcd(a(n),a(m)) = a(gcd(n,m)) for all positive integers n and m. Consequently, this is a divisibility sequence: if n divides m then a(n) divides a(m). - Peter Bala, May 26 2014
LINKS
Eric Weisstein's World of Mathematics, Lehmer Number
FORMULA
G.f.: -(x^2-x-1) / ((x^2-8*x+1)*(x^2+8*x+1)). - Colin Barker, Dec 25 2013
a(n) = 62*a(n-2) - a(n-4) for n>3. - Vincenzo Librandi, Dec 25 2013
From Peter Bala, May 26 2014: (Start)
The following remarks assume an offset of 1:
Let alpha = sqrt(15) + 4 and beta = sqrt(15) - 4 be the roots of the equation x^2 - sqrt(60)*x - 1 = 0. Then a(n) = (alpha^n - beta^n)/(alpha - beta) for n odd, while a(n) = (alpha^n - beta^n)/(alpha^2 - beta^2) for n even.
a(n) = product {k = 1..floor((n-1)/2)} ( 60 + 4*cos^2(k*Pi/n) ). Recurrence equations: a(0) = 0, a(1) = 1 and for n >= 1, a(2*n) = a(2*n - 1) + a(2*n - 2) and a(2*n + 1) = 60*a(2*n) + a(2*n - 1). (End)
MATHEMATICA
Denominator[Convergents[Sqrt[960], 30]] (* Vincenzo Librandi, Dec 25 2013 *)
PROG
(Magma) I:=[1, 1, 61, 62]; [n le 4 select I[n] else 62*Self(n-2)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Dec 25 2013
CROSSREFS
Cf. A002530.
Sequence in context: A379096 A258158 A364715 * A258157 A114085 A195378
KEYWORD
nonn,frac,easy
AUTHOR
N. J. A. Sloane, Dec 11 1999
EXTENSIONS
More terms from Colin Barker, Dec 25 2013
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy