login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A047477
Numbers that are congruent to {0, 5, 7} mod 8.
2
0, 5, 7, 8, 13, 15, 16, 21, 23, 24, 29, 31, 32, 37, 39, 40, 45, 47, 48, 53, 55, 56, 61, 63, 64, 69, 71, 72, 77, 79, 80, 85, 87, 88, 93, 95, 96, 101, 103, 104, 109, 111, 112, 117, 119, 120, 125, 127, 128, 133, 135, 136, 141, 143, 144, 149, 151, 152, 157, 159
OFFSET
1,2
COMMENTS
Numbers m such that Lucas(m) mod 3 = 2. - Bruno Berselli, Oct 19 2017
FORMULA
G.f.: x^2*(5+2*x+x^2)/((1-x)^2*(1+x+x^2)). - Colin Barker, May 14 2012
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4. - Vincenzo Librandi, May 16 2012
From Wesley Ivan Hurt, Jun 10 2016: (Start)
a(n) = (24*n - 12 + 3*cos(2*n*Pi/3) - 7*sqrt(3)*sin(2*n*Pi/3))/9.
a(3*k) = 8*k-1, a(3*k-1) = 8*k-3, a(3*k-2) = 8*k-8. (End)
MAPLE
A047477:=n->(24*n-12+3*cos(2*n*Pi/3)-7*sqrt(3)*sin(2*n*Pi/3))/9: seq(A047477(n), n=1..100); # Wesley Ivan Hurt, Jun 10 2016
MATHEMATICA
Select[Range[0, 300], MemberQ[{0, 5, 7}, Mod[#, 8]] &] (* Vincenzo Librandi, May 16 2012 *)
PROG
(Magma) I:=[0, 5, 7, 8]; [n le 4 select I[n] else Self(n-1)+Self(n-3)-Self(n-4): n in [1..70]]; // Vincenzo Librandi, May 16 2012
CROSSREFS
Cf. A000032.
Cf. A016825: numbers m such that Lucas(m) mod 3 = 0.
Cf. A047459: numbers m such that Lucas(m) mod 3 = 1.
Sequence in context: A314374 A066001 A320391 * A216555 A288151 A242408
KEYWORD
nonn,easy
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy