login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A048580
Pisot sequence L(3,10).
4
3, 10, 34, 116, 396, 1352, 4616, 15760, 53808, 183712, 627232, 2141504, 7311552, 24963200, 85229696, 290992384, 993510144, 3392055808, 11581202944, 39540700160, 135000394752, 460920178688, 1573679925248, 5372879343616, 18344157523968, 62630871408640
OFFSET
0,1
LINKS
FORMULA
a(n) = 4*a(n-1) - 2*a(n-2) (holds at least up to n = 1000 but is not known to hold in general).
Empirical g.f.: (3-2*x)/(1-4*x+2*x^2). [Colin Barker, Feb 21 2012]
MATHEMATICA
RecurrenceTable[{a[0] == 3, a[1] == 10, a[n] == Ceiling[a[n - 1]^2/a[n - 2]]}, a, {n, 0, 30}] (* Bruno Berselli, Feb 05 2016 *)
PROG
(Magma) Lxy:=[3, 10]; [n le 2 select Lxy[n] else Ceiling(Self(n-1)^2/Self(n-2)): n in [1..30]]; // Bruno Berselli, Feb 05 2016
(PARI) pisotL(nmax, a1, a2) = {
a=vector(nmax); a[1]=a1; a[2]=a2;
for(n=3, nmax, a[n] = ceil(a[n-1]^2/a[n-2]));
a
}
pisotL(50, 3, 10) \\ Colin Barker, Aug 07 2016
CROSSREFS
It appears that this is a subsequence of A007052.
See A008776 for definitions of Pisot sequences.
Sequence in context: A255813 A113300 A332872 * A007052 A291292 A289612
KEYWORD
nonn
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy