login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A051151
Generalized Stirling number triangle of first kind.
7
1, -6, 1, 72, -18, 1, -1296, 396, -36, 1, 31104, -10800, 1260, -60, 1, -933120, 355104, -48600, 3060, -90, 1, 33592320, -13716864, 2104704, -158760, 6300, -126, 1, -1410877440, 609700608, -102114432, 8772624, -423360, 11592, -168
OFFSET
1,2
COMMENTS
a(n,m) = R_n^m(a=0, b=6) in the notation of the given 1961 and 1962 references.
a(n,m) is a Jabotinsky matrix, i.e., the monic row polynomials E(n,x) := Sum_{m=1..n} a(n,m)*x^m = Product_{j=0..n-1} (x-6*j), n >= 1, and E(0,x) := 1 are exponential convolution polynomials (see A039692 for the definition and a Knuth reference).
This is the signed Stirling1 triangle A008275 with diagonal d >= 0 (main diagonal d = 0) scaled with 6^d.
LINKS
Wolfdieter Lang, First 10 rows.
D. S. Mitrinovic, Sur une classe de nombres reliés aux nombres de Stirling, Comptes rendus de l'Académie des sciences de Paris, t. 252 (1961), 2354-2356. [The numbers R_n^m(a,b) are first introduced.]
D. S. Mitrinovic and R. S. Mitrinovic, Tableaux d'une classe de nombres reliés aux nombres de Stirling, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No. 77 (1962), 1-77. [Special cases of the numbers R_n^m(a,b) are tabulated.]
FORMULA
a(n, m) = a(n-1, m-1) - 6*(n-1)*a(n-1, m), n >= m >= 1; a(n, m) := 0, n < m; a(n, 0) := 0 for n >= 1; a(0, 0) = 1.
E.g.f. for the m-th column of the signed triangle: ((log(1 + 6*x)/6)^m)/m!.
a(n, m) = S1(n, m)*6^(n-m), with S1(n, m) := A008275(n, m) (signed Stirling1 triangle).
EXAMPLE
Triangle a(n,m) (with rows n >= 1 and columns m = 1..n) begins:
1;
-6, 1;
72, -18, 1;
-1296, 396, -36, 1;
31104, -10800, 1260, -60, 1;
-933120, 355104, -48600, 3060, -90, 1;
...
3rd row o.g.f.: E(3,x) = 72*x - 18*x^2 + x^3.
CROSSREFS
First (m=1) column sequence is: A047058(n-1).
Row sums (signed triangle): A008543(n-1)*(-1)^(n-1).
Row sums (unsigned triangle): A008542(n).
Cf. A008275 (Stirling1 triangle, b=1), A039683 (b=2), A051141 (b=3), A051142 (b=4), A051150 (b=5).
Sequence in context: A356653 A009384 A280520 * A009330 A300512 A343622
KEYWORD
sign,easy,tabl,changed
EXTENSIONS
Various sections edited by Petros Hadjicostas, Jun 08 2020
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy