login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A060930
Third convolution of Lucas numbers A000032(n+1), n >= 0.
4
1, 12, 70, 280, 905, 2568, 6666, 16220, 37580, 83780, 181074, 381488, 786715, 1593160, 3176210, 6246732, 12139859, 23344760, 44471340, 84005640, 157483176, 293201912, 542468100, 997906400, 1826073525
OFFSET
0,2
FORMULA
G.f.: ((1+2*x)/(1-x-x^2))^4.
a(n) = A060922(n+3, 3) (fourth column of Lucas triangle).
a(n) = (2*(25*n^3 + 60*n^2 + 35*n +24)*L(n+2) + (25*n^3 + 90*n^2 + 95*n + 6)*L(n+1))/(3!*5^2), with the Lucas numbers L(n) = A000032(n).
MATHEMATICA
Table[((25*n^3+90*n^2+95*n+6)*LucasL[n+4] -12*(5*n^2+10*n-3)*LucasL[n+2])/150, {n, 0, 40}] (* G. C. Greubel, Apr 08 2021 *)
PROG
(Magma)
R<x>:=PowerSeriesRing(Integers(), 40);
Coefficients(R!( ((1+2*x)/(1-x-x^2))^4 )); // G. C. Greubel, Apr 08 2021
(Sage)
def A060930_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( ((1+2*x)/(1-x-x^2))^4 ).list()
A060930_list(40) # G. C. Greubel, Apr 08 2021
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Apr 20 2001
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy