login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A062000
a(n) = a(n-1)^2 - a(n-2)^2 with a(0) = 0, a(1) = 2.
2
0, 2, 4, 12, 128, 16240, 263721216, 69548879504781056, 4837046640370554355727482727956480, 23397020201120067002755280700388456275000098577861376610994277515264
OFFSET
0,2
FORMULA
a(n) = 2*A061999(n).
a(n) ~ c^(2^n), where c = 1.35388068260888709216374860554901303232201699191445590979673901150215855854... . - Vaclav Kotesovec, Dec 17 2014
EXAMPLE
a(3) = 4^2 - 2^2 = 12.
MATHEMATICA
t = {0, 2}; Do[AppendTo[t, t[[-2]]^2 - t[[-1]]^2], {n, 8}]; Abs[t] (* Vladimir Joseph Stephan Orlovsky, Feb 23 2012 *)
RecurrenceTable[{a[0]==0, a[1]==2, a[n]==a[n-1]^2 - a[n-2]^2}, a, {n, 0, 10}] (* Vaclav Kotesovec, Dec 17 2014 *)
PROG
(PARI) { for (n=0, 12, if (n>1, a=a1^2 - a2^2; a2=a1; a1=a, if (n==0, a=a2=0, a=a1=2)); write("b062000.txt", n, " ", a) ) } \\ Harry J. Smith, Jul 29 2009
(SageMath)
def a(n): # a = A062000
if (n<2): return 2*n
else: return a(n-1)^2 - a(n-2)^2
[a(n) for n in (0..14)] # G. C. Greubel, May 01 2022
CROSSREFS
Cf. A001042 and A057078 have the same recurrence.
Cf. A061999.
Sequence in context: A304986 A013333 A154882 * A053040 A154734 A291827
KEYWORD
nonn
AUTHOR
Henry Bottomley, May 29 2001
EXTENSIONS
First term corrected by Harry J. Smith, Jul 29 2009
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy