login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A064842
Maximal value of Sum_{i=1..n} (p(i) - p(i+1))^2, where p(n+1) = p(1), as p ranges over all permutations of {1, 2, ..., n}.
4
0, 2, 6, 18, 36, 66, 106, 162, 232, 322, 430, 562, 716, 898, 1106, 1346, 1616, 1922, 2262, 2642, 3060, 3522, 4026, 4578, 5176, 5826, 6526, 7282, 8092, 8962, 9890, 10882, 11936, 13058, 14246, 15506, 16836, 18242, 19722, 21282, 22920, 24642, 26446, 28338, 30316
OFFSET
1,2
LINKS
G. L. Cohen and E. Tonkes, Dartboard arrangements, Elect. J. Combin., 8(2) (2001), #R4.
Vasile Mihai and Michael Woltermann, Problem 10725: The Smoothest and Roughest Permutations, Amer. Math. Monthly, 108 (2001), 272-273.
Keith Selkirk, Re-designing the dartboard, Math. Gaz., 60 (1976), 171-178.
FORMULA
If n mod 2 = 0, then n^3/3 - 4*n/3 + 2 else n^3/3 - 4*n/3 + 1.
a(n) = 2 * A064843(n).
G.f.: -2*x^2*(-1 + x^3 - 2*x^2) / ((1 + x)*(x - 1)^4). - R. J. Mathar, Nov 26 2012
a(n) = (2*n^3 - 8*n + 3*(-1)^n + 9)/6. - Luce ETIENNE, Jul 08 2014
E.g.f.: (2 - x + x^2 + x^3/3)*cosh(x) + (1 - x + x^2 + x^3/3)*sinh(x) - 2. - Stefano Spezia, Apr 13 2024
EXAMPLE
a(4) = 18 because the values of the sum for the permutations of {1, 2, 3, 4} are 10 (8 times), 12 (8 times) and 18 (8 times).
MAPLE
a:=proc(n) if n mod 2 = 0 then (n^3-4*n)/3+2 else (n^3-4*n)/3+1 fi end: seq(a(n), n=1..41); # Emeric Deutsch
MATHEMATICA
LinearRecurrence[{3, -2, -2, 3, -1}, {0, 2, 6, 18, 36}, 45] (* Jean-François Alcover, Apr 01 2020 *)
CROSSREFS
Cf. A064843.
Sequence in context: A146345 A328633 A368566 * A302647 A324580 A338765
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Oct 25 2001
EXTENSIONS
Edited by Emeric Deutsch, Jul 30 2005
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy